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In this paper, we consider the problem of non-preemptively scheduling independent jobs
so as to minimize overall finish time on an m-dimensional hypercube system. This problem
is NP-hard. We propose a polynomial time heuristic algorithm, and prove that the absolute
performance ratio of the algorithm does not exceed 1.875. This is the first algorithm achieving
an absolute performance ratio less than 2 by a constant. Moreover, we discuss other related
problems including on-line scheduling problems.
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1 Introduction

An m-dimensional hypercube (or m-cube) is an undirected graph G = (V,E) with V =
{0,...,2™ — 1} and (v,w) € E iff the binary representations of v and w differ in exactly
one bit. A subgraph G’ of G is said to be a d-dimensional subcube (or d-subcube) iff G’ is
isomorphic to a d-cube. A hypercube system is a network of computers in which processors
are located at the nodes of the hypercube and communication channels between processors are
the edges of the hypercube. In such an environment, each job may just require a dedicated
subcube and many jobs can be running simultaneously. Then the problem of how to assign a
set of jobs to make efficient use of such systems becomes important [1, 7].

In this paper, we consider the problem of scheduling independent jobs so as to minimize the
overall finish time (makespan) on an m-dimensional hypercube system. Each job J;,1 < i < n,
is associated with a dimension d; and processing time t;, meaning that job J; requires a d;-
subcube for ¢; units of time. No preemption is allowed.

This problem is a generalization of the classical multiprocessor scheduling problem. So, it
is NP-hard [4]. Accordingly, polynomial time algorithms whose solutions in the worst case are
within a fixed multiplicative constant of the optimal solution have been investigated. For a
set of jobs J, let A(J) be the finish time of the schedule generated by an algorithm A, and
let OPT(J) be the optimal finish time. The absolute performance ratio [4] of algorithm A is
defined to be the maximum ratio %Ti()ij over all possible instances of input jobs J.

In [1], they proposed an algorithm called LDLPT(Largest Dimension Largest Processing
Time) of which the absolute performance ratio is proved to be 2 — 5% Zhu and Ahuja [7]
proved that a simple algorithm called LDF(Largest Dimension First) achieves an absolute
performance ratio 2 — 2—1,; These two algorithms are commonly based on the strategy called
list scheduling [2] where the jobs are ordered by non-increasing dimensions.

In this paper, we propose another polynomial time approximation algorithm, and prove
that the absolute performance ratio of the algorithm does not exceed 2 — . It is the first
algorithm achieving an absolute performance ratio less than 2 by a constant.

2 Preliminaries

Let G = (V, E) be an m-cube. For a,b € V with a < b, let {a,b] denote the set of processors
{p € V]a < p < b}. We also call [a,d] a p-interval, with a and b being the start point and end
point of the p-interval, respectively. Also let |[a,b]| be the number of processors in [a, b].

Let [u,v] be a p-interval, with 4 = #p---u; and v = vy ---vy in binary. It is clear
that [u,v] forms a k-subcube iff 1) wp - Uk41 = V- - Vg1, 1) - = 00---0, and iii)
vg-+-vy = 11---1. In that case, [u, v] is said to be a basic subcube. '

An arbitrary p-interval can be partitioned basic subcubes. For any p-interval I, a par-
tition P of I into basic subcubes is said to be minimal if no two or more subcubes in
P can be merged into a larger basic subcube. The minimal partition of any p-interval is
uniquely determined. Let M P(I) denote the minimal partition of p-interval I. For example,
MP([3,17]) = {[3,3], 14, 7], [8,15], [16, 17]}.

Let J = {J; = (di,t;) | 1 < i < n} be a set of jobs to be scheduled. We will assume that
d; <m —1,1 <1< n. Note that this assumption makes no loss of the generality. The size of
job J; = (di, t;) refers the size of the required subcube, i.e., 24,

Let tmaz(J) = maxicicn ti, and let hayg(J) = #leisn 2dit.. havg(J) is the average
work which should be done by a processor. It is obvious that OPT(J) > tnaz(J) and that
OPT(J) > hqyg(J). In the followings, we will use hqyy and tyqz instead of hey(J) and tiaz(J),
respectively.



Let J; € J, where 0 < z < 1, be the set of jobs with the processing time no less than
Z - tmaz, and let D, denote the sum of the size of all jobs in J;.

Since our scheduling algorithm depends heavily on LDF algorithm [7], we first give a sum-
mary on LDF algorithm. LDF algorithm is as follows: First, sort the jobs by the order of
non-increasing size; let F' be a set of basic subcubes; initially, F = {[0,2™ — 1]}. Second,
consider the jobs from the ordered list, one after another; when J; = (d;, t;) is considered, each
subcube [a, b] € F is divided into J%i{.ﬂ-l basic d;-subcubes, and then, J; is assigned to the earliest
available d;-subcube in F'.

Let J; = (di, t;) be the job that finishes at time LD F(J), and let s; be the starting time of
Ji. No processor is idle before s;. This property was observed by Chen and Lai {1]. Hence, we
have LDF(J) = si + 1| € haug + tmaz < 20PT(J) — — — (1).

3 Scheduling Algorithm

In this section, we will give an algorithm that achieves an absolute performance ratio 1.875.
This algorithm is a sort of hybrid one in the sense that it schedules the relatively long jobs
firstly, in fact, the jobs in Ja, and then, schedules the remaining jobs by the similar method with
LDF algorithm. That is, two principles — largest processing time first and largest dimension
first — are used by a hybrid fashion.

In our algorithm, two different cases are considered separately. The first case is that D 2 <
2m=1. We give an algorithm called A for this case in Section 3.1. In Section 3.2, we give
another algorithm called B for the second case of D% > 2m-1,

3.1 The case of D% < gm-1

Algorithm A ‘

Step 1 Let Jg = {J1,J2,...,Ji}, where the jobs are indexed by the order of non-increasing
sizes. The i- th job Ji = (di,t;),1 < i@ < k, is assigned to the p- -interval (Cici<i- 1 2%,
Yicici 2% — 1] at time 0. Since the jobs are ordered by non- mc1easmg size, the asstgned
p-interval always forms a basic subcube.

Step 2 Let P = M P([0, Dg_ 1])UMP([D;,2’"—1]) Assume that each processor p € [0, Dg_ 1]
is available at time #,,0- Let J' = {J], J2, ..+, J]_.} be the set of remaining jobs that are a,lso
ordered by non-increasing size.

Step 3 Schedule each job in J’, one after another. When J] = (d!,t}) is considered, each

subcube [a,b] € P with |[a,b]| >‘2d;‘ is divided into ]%'?H basic d’-subcubes. J! is assigned to
‘ 29

the earliest availabl‘e d;—subcube in P.

Let J; = (dj, ;) be the job finished at time A(J), and let s; be the start time of J;. If more
than one jobs finish at time A(J) simultaneously, choose the one considered first among them.
Note that the jobs considered later than J; do not increase A(J) and also do not decrease
OPT(J). So, without loss of generality, we assume that J; is the lastly considered job, which
means that no job in J — J% has a dimension less than d;. '

First consider a special case of s; < t;q.. Since t; < itmaz, we have A(J) = s + ¢ <
tmaz + Stmaz < ZOPT(J), which is just what we want. Hence, in the followings, we will assume
that s > tmaz-

Let Q4 denote d;-subcube [j2%, (5 4+ 1)2% — 1] with j2% < Da —1<(@G+12%-1.1f Da

is a multiple of 2%, no such a subcube exists. In that case, let QA = {. We obtained Lemma 1
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Figure 1: Example schedule where Q4 =0

Lemma 1 In the schedule generated by algorithm A,
(1) no processor p € [0, D3 — 1]U Q4 is idle before s;
4
(2) no processor p € [O,D% — 1] - Qa4 is idle at any time t with t,.; <t < 1.

Proof. Suppose for contradiction that there is a processor p ¢ [O,D% — 1] U Q4 which is
idle at time t with t < s;. Let I denote the subcube in MP([D%,Z"‘ ~ 1]) which contains

processor p. Since p € Q 4, the size of I is no less than 241, While excuting Step 3, I may be
fragmented into the smaller basic subcubes. However, since each job considered prior to J; in
Step 3 has a dimension no less than d, it can not be fragmented into subcubes with size less
than 29. As a result, job J; should be assigned to the dj-subcube including p at time ¢, which
is a contradiction. In the case where p € [0---D% —~ 1] — Qa4, the similar argument can be
applied. O

From Lemma 1, we can figure out the schedule generated by algorithm A as shown in
Figure 1 and 2. Figure 1 shows an example schedule where Q4 = @, while Figure 2 shows
another schedule where Q4 # 0. Informally speaking, there are three types of wasted space in
the schedule. We will call each of these wasted spaces the internal waste, the external waste
and the vertical waste, respectively, as indicated in Figure 2. Note that Lemma 1 gives an
upper bound on the area of vertical waste. Let’s first consider the case where Q4 = 0.

Lemma 2 If D% is a multiple of 2%, that is, Q4 = 0, then A(J) < (2 - §)OPT(J).

Proof. As illustrated in Figure 1, there are only two types of wasted space: internal waste
and external waste. We can easily obtain a lower bound on the total work of the jobs, that
is, 2™ Rhqyg, as follows: 2™hgyy > A(J)2™ — 3111022™ — {tmaz2™1, where the second and third
terms of the right-hand side represent the external and internal waste, respectively. Lemma 2
follows immediately from this inequality. O

Now, consider the case of Q4 # 0. In this case, we need to have a more tight lower bound
on OPT(J). To do this, we will define another set of jobs J* by transforming the original set

of jobs J. The transformation is as follows: First, replace the set of jobs J3 in J by a set of D3
4 4

equal jobs with the dimension zero and processing time %tmu. Second, each job J; = (d;, 1)
inJ— J% is partitioned into 2%~% jobs with the dimension d; and processing time ¢;. Finally,

Dy
insert a new set of I';,ﬂ 24 — D% jobs with the dimension zero and processing time %tm”. As

D
a summary, the resulting set J* includes two types of jobs: i) [—27;‘:-] 2% jobs with the dimension

zero and processing time 3t,,,,; ii) a set of jobs with the equal dimension d;. Figure 3 shows
the result of transformation of the job set in Figure 2.
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Figure 2: Example schedule where 4 # 0

Lemma 3 asserts that OPT(J) > OPT(J*). It is obvious that the first and second steps of
the transformation do not increase the finish time of the optimal schedule. Hence, it is sufficient
to prove that the third step also does not increase the finish time of the optimal schedule. We
will present the proof of Lemma 3 in Section 3.3.

Lemma 3 OPT(J) > OPT(J*).

Now, we are ready to derive a lower bound on hayy(J*) in terms of A(J): 2Mhayy(J*) >
2MA(J) = 2% A(J) = (2™ = 2 2%) 3t 0, — (27T — 2t bmaz 4 3y 9d _  _ (2). The sec-
ond, third and fourth term of the right-hand side represent the vertical, external and internal
waste, respectively. The fifth term corresponds to the jobs inserted in the third step of the
transformation. From inequality (2), we can obtain Lemma 4.

Lemma 4 For any set of jobs J with Dy < 2™l if A(J) > (2~ H)OPT(J), then LDF(J) <
1+ HOPT(J).

Proof. In the case of d; < m -1, it is straightforward to show that A(J) < (2-3)OPT(J)
from inequality (2). When di = m — 1, inequality (2) is reduced to: A(J) < 20 PT(J) — 3t,n0,.
If 3tz > LOPT(J), then we have A(J) < (2 - DYOPT(J); otherwise, from inequality (1),
we have LDF(J) < hayg + tmaz < (14 3)OPT(J). O

3.2 The case of D% > gm-1

Algorithm B
Step 1 A subset J' of J is constructed as follows: Initially, J' = ; sort the jobs in J by

non-increasing order of the processing times, and examine the jobs, one after another, in this
order; for a job J; = (d;,t;) € J, if ; > %tmu and the sum of the size of jobs in J' U {J;} is no
more than 2™, then add J; into J'.

Step 2 Sort the jobs in J' by non-increasing size, and schedule them into p-interval [0,D - 1]
by the same method with Step 1 of algorithm A, where D is the sum of the size of all jobs in
J'.

Step 3 Let P = M P([D,2™ — 1]). The jobs in J — J’ are ordered by non-increasing size and
considered one after another. When J; = (d;,1;) is considered, each subcube in P with the size
larger than 2% is partitioned into basic dj-subcubes; the earliest available d;-subcube, if any,
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Figure 3: An example of the transformation

is selected; if J; can be finished before ¢;q; in the selected subcube, assign J; to that subcube;
otherwise, do nothing for J; and consider the next job.

Step 4 Upon the assumption that every processors are available at t,qz, apply LDF algorithm
for the remaining jobs.

A sample schedule generated by Algorithm B is shown in Figure 4. Suppose that J; =
(di, t;) is the job finished at B(J). Let @p be a dj-subcube [i2%, (i + 1)2% - 1] such that
28 <D-1< i+ 1)2“" — 1. When D is a multiple of 2%, no such a subcube exists. At that
case, let Qp = 0.

Lemma 5 In the schedule generated by algorithm B, no processor p ¢ Qg is idle before %tm“.

Proof. omitted. O
From Lemma 5, we can see that the number of processors that are idle before %tmw is no

more than 2%. Since D3 > 2™, the number of processors that are idle before %tmu is also
4
no more than 2™~!. From these two 1observa,tion, we can derive the following lower bound:
2 hayy 2 27 B(J) — (2™ = 20t — E—tmar — Stmaz — Ftmaz — — — (3).
One additional observation is that OPT(J) > 2t;. Now, it is easy to prove Lemma 6 from
inequality (3).

Lemma 6 For any set of jobs J with D% >2m-1 B(J) < (2 - L)oPT(J).

From Lemma 4, 6, we have Theorem 1. The time complexity O(nlogn) in Theorem 1 can
be achieved by using some typical implementation techniques, and the proof will be omitted.

Theorem 1 There is an O(nlogn) time scheduling algorithm with the absolute performance
ratio no more than 1.875.

3.3 Proof of Lemma 3

We need some additional notations. Let § be an arbitrary schedule. For any point of time
t, let ips(t) denote the set of processors that are idle at ¢, and, for any processor p, let r5(p)
be the finish time of the last job assigned to p. For any job J;, let sts(J;) denote the time at
which J; starts to execute in S.
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Figure 4: An example schedule generated by algorithm B

Lemma 7 Let J be a set of n jobs with the dimension either d or 0. The jobs with the
dimension zero have the same processing time t°. For any schedule S (which may use non-
basic subcubes) of J, there is another schedule S' such that

(1) S’ uses basic subcubes only;

(2) for any job Ji, sts:/(J;) < sts(Ji);

(8) each d-subcube @Q; = [129, (i + 1)2¢ = 1],0 < i < 22’7"— — 1, satisfies one of the following
conditions:

(a) Vp,q € Qi,rs(p) = rs:(q);

(b) Q; is partitioned into two p-interval U; and L; such that Vp,q € Ui, rs/(p) = rs(q) and
V', ¢ € Li,rs(p') = rsi(¢'). Moreover, r5:(p) — rs:(p') = t°, where p € U; and p' € Li;
in this case, Q; is said to be a dirty subcube;

(4) moreover, there is at most one dirty subcube among 32-; subcubes.

Proof. Induction on n. When n = 1, it is trivial. Assume that the statements hold for
any schedule of k£ jobs, and that § is a schedule of k + 1 jobs. Let Jry1 = (dk41,tkt1) be
the job started lastly in §, and let S) denote the schedule obtained by removing Ji41 from
S. From the induction hypothesis, there is another schedule S} which satisfies the conditions.
Note that, from condition (2), Iips;(Sts(Jk+1))| > lips,(sts(Jk+1)), and also that, from the
condition (3), in the schedule S}, the idle processors at any point of time can be partitioned
into a collection of basic d-subcubes and a p-interval with size less than 2¢.

Now, we have two cases. The first case is that dxyq1 = d. In that case, select the earliest
available basic d-subcube (which may be a dirty subcube), and assign Jx41 to that subcube.
From the observations above, it is easy to verify that the resulting schedule satisfies the con-
ditions. Now, examine the second case where diy; = 0. Suppose that there is a dirty subcube
Q;. Assign Jiy1 to the first processor p of L; at the time rs;‘(p). Note that rs;‘(p) < sts(Jpt1)-
If there is no dirty subcube, assign Jiy; to the first processor of the earliest available basic
d-subcube. The resulting schedule also satisfies the conditions. O

Lemma 7 says that there is an optimal schedule in which only the basic subcubes are used.
Moreover, the schedule generated by Lemma 7 also has the following property: if two jobs J;
and J; with the dimension zero start at time #; and ¢; in the processors p and g, respectively,
where p and ¢ are in the same basic d-subcube, then either t; = t; or [t; — t;| > t%. With this
property, we can prove Lemma 3.



Proof of Lemma 3
If the number of jobs with dimension zero is not a multiple of 2¢, there is a job J; with the

dimension zero in the optimal schedule such that J; is assigned to a processor in a subcube Q;,
and there exists another processor in @; which is idle while J; is running. We can add a new
job J' = (0,t%) to that processor without increasing the overall finish time of the schedule. O

4 Conclusions

In this paper, we consider the problem of scheduling independent jobs in a hypercube system.
In our setting, every job to be scheduled is initially available, and, moreover, the processing
time of each job is also specified initially. However, there is a variety of different models for
this problem. Several categories are commonly used in the scheduling theory to classify the

problems.

¢ Off-line vs. on-line In off-line scheduling, every job is given at time 0, while, in on-line
scheduling, each job is associated with an unknown ready time, and the existence of a
job is unknown until the ready time of that job.

¢ Clairvoyant vs. non-clairvoyant [5] In clairvoyant system, the processing time of a
job is given to the scheduler when the job is ready, while, in non-clairvoyant system, the
processing time is not given until the execution of that job is completed.

Using these categories, let’s discuss several variants of the problem considered in this paper.

Off-line, non-clairvoyant scheduling It is easy to show that no algorithm can do better,
in the worst case, than LDF algorithm.

On-line, non-clairvoyant scheduling The technique given by [6] which converts an off-line
algorithm into an on-line algorithm can be applied to this problem. If we use LDF algorithm
as an off-line algorithm, we obtain an on-line algorithm with the absolute performance ratio 3.
Greedy rule is a natural strategy to schedule jobs in this environment. Formally speaking,
a scheduling algorithm is said to be greedy if it does not leave any subcube idle so long as there
is a job that can be executed in that subcube. Using Corollary 4.1 in [3], we can prove that no
greedy algorithm can achieves an absolute performance ratio 3 — ¢ for any constant € > 0.
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