7T T U X A 46— 8
(1995. 7. 20)

A Parallel Algorithm for the Mincut Linear Arrangement of

Binary Trees
(Extended Abstract)

Sung Kwon KIM!

! Department of Computer Science
Kyungsung University
Pusan 608-736
Korea
ksk@csd.kyungsung.ac.kr.
fax: +82-51-628-6059
Supported in part by Korea Science and Engineering Foundation (No. 941-0900-002-1)

Abstract: We present a parallel algorithm for the mincut linear arrangement of binary trees.
Given a binary tree with n vertices, our algorithm runs in O(logn) time using O(n?%/logn)
processors in the CRCW PRAM.

A Parallel Algorithm for the Mincut Linear Arrangement of
Binary Trees

Sung Kwon KIM!

! Department of Computer Science
Kyungsung University
Pusan 608-736
Korea

AXTR, 20KROBAY 7 VRBRELZ KD IEFIT VT VX L5513, nED 25kNE
xbhizk &2, 7Ly X sk CRCW PRAM kT O(n*3/logn) D70t vH i HnT
O(logn) BHEITRT+23.

1 Introduction

Given a graph G = (V, E) with |V| = n, a lin-
ear arrangement of G is a one-to-one mapping
7 from V to {1,2,...,n}. A linear arrange-
ment 7 embedds G on the real line so that the
vertices locate at the first n positive integers
and the edges connect corresponding vertices.
There are several well-studied linear arrange-
ment problems; for a survey of their complex-
ity results, see, e.g., [D].

We consider one of the linear arrangement
problems, called the MINCUT problem. The
MINCUT problem is to find a linear arrange-
ment 7 that minimizes v,(G) =
maxigiga(| {(w,v) € E:7(w) i< (@)}),
which is called the cut of G under x. Denote
the minimum cut (or mincut) of G by ¥(G).
The MINCUT problem for general graphs is
NP-complete [G], while the problem is solv-
able in O(nlogn) time for trees of unbounded
degree [Y] and in O(nlog?~?n) time for de-
gree d trees [C]. For degree three trees, both
algorithms take O(nlogn) time, but the latter
is simpler. The MINCUT problem for trees of
unbounded degree can be solved in O(log? n)
time using O(n?) processors in the CREW
PRAM [D1]; this algorithm makes use of ideas
of the sequential algorithm of [Y] and applies
the parallel tree contraction [J] in a novel way.
The algorithm still takes the same complexity
bounds for degree three trees.

In this paper, we present a parallel algo-
rithms for the MINCUT problem on trees of
degree three, which requires O(logn) time us-
ing O(n*®°/logn) processor in the CRCW
PRAM. Our algorithm is a non-straightforward
parallel implementation of the O(nlogn) time
sequential algorithm of [C] and works in two
stages. In the first stage (described in Section
3), it computes information, including ¥(T')
among others, to be used in the second stage,
by using the parallel tree contraction technique
[J). This stage needs O(n?%/logn) proces-
sors. The second stage (described in Section 4)
consisting of O(logn) phases actually assigns
1,2,...,n to the vertices of T so that ¥(T) is
achieved. Careful implementation is required
to make each phase of the stage take O(1) time
using O(n?) processors.

2 Review

This section reviews the result of Chung, Make-
don, Sudborough and Turner [C] concerning
the mincut linear arrangement of degree three
trees.

Let T = (V, E) be a tree and let {u,v1,...,
vs} € V. Define T(u,v1,...,vs) to be the
maximal subtree of T that contains v but none
of v1,...,vs. The following theorem is crucial
for our algorithm [C].

Theorem 1. ¥(T) < k if and only if every
vertez u of degree > 2 has neighbors vy, v such
that v(T(u,vi,v2)) <k~ 1.

Proof: We give a slightly modified version
of the proof of [C] for the if part only as this
gives an idea for our algorithm.

Consider two cases.

Case (i): Suppose that every vertex u of
degree > 2 has a neighbor z such that v(T'(u, z))
< k—1. Note that this implies the if condition
that every vertex u of degree > 2 has neigh-
bors, vy, vz such that v(T(u,v1,v2)) < k— 1.
Choose a vertex y; of degree > 2. Then, y;
has a neighbor g, such that ¥(T(y1,¥2)) <
k— 1. If y is not a leaf, then it has a neighbor
ya # w1 such that ¥(T(y2,%1,93)) < k — 1.
If ¥(T(y2,91,2)) > k for all neighbors z #
y1 of y,, then there would be no neighbor
of y; such that v(T(y2,z)) < k¥ — 1. Simi-
larly, if 3 is not a leaf, then it has a neighbor
ya # y2 such that y(T(y3,y2,94)) < k—1. Let
P =(y1,.--,yr) be a path constructed in this
way, with a leaf y,. T ~ P 1 consists of trees
T(y1,%2), T(Yit1,¥irYig2) for 1 <2 < r =2,
and the leaf T(y,yr—1) = ¥, each of which
has 7(-) £ k= 1. So, v(T) < k.

Case (ii): Suppose that there is some ver-
tex c such that v(7'(c,z)) > & for all neighbors
z of c. By the if condition, ¢ has neighbors
y1,21 such that y(T(c,y1,21) < k — 1. Let
¢ = yo = 20. If y; is not a leaf, then it has a
neighbor y; # yo such that ¥(T(y1,%0,%2)) <
k — 1. To prove this, we need to show that
yo € {v1,v2}, where v; and v, are neighbors of
y1 such that y(T(y1,v1,v2)) < k- 1. I yo &
{v1,v2}, then there is a contradiction between

14 ~ B removes from A the edges in B but not
their end vertices; A — B removes both the vertices in
B and the edges incident on them.

Y(T(y1,v1,v2)) < k — 1 and T(yo,y1) = k be-
cause T(y1,v1,v2) D T(y0,1). Similarly, if y2
is not a leaf, then it has a neighbor y3 such that
(T (y2,91,93)) < k—1. Continuing in this way
we can construct a path Py = (Yo, ¥1s.--+¥r)
such that ¥(T(yit1,¥i, Yi+2)) < k—1for 1 <
i< r—1,and y, is a leaf.

A similar path P; = (20,21,...,2s) can be
constructed. Let P = Py U P;. T' ~ P consists
of trees T(c,y1,21), T(¥i+1,¥i,Yi+2) for 0 <
i < r—2,and T(zi41,2i, zig2) for 0 <1 < 52,
each of which has v(-) < k — 1. So, ¥(T) < k.
=]

Lemma 1. [C] For a tree T of degree d with
n vertices, Y(T') < (d/2)logn + 1.

So far, we have assumed that trees are of
unbounded degree. In the remaining part of
this paper, we will assume that trees T are of
degree three. Choose a vertex r of degree one
or two and let T be rooted at 7. T is now a
binary tree. T[u] for a vertex u of T' denotes
the subtree of T rooted at u. So, T = T[r].
For an edge e = (u,v) (v is the parent of u),
define Tle] = T[u] U {e}, i.e., T[e] is T[u] plus
vertex v and edge e. e is a child edge of v and
the parent edge of u; and u and v are the child
verter and parent vertez of e, respectively. For

descendants vy,...,v, of vertex u,
Tlu,v1,...,vs) = Tlu] — (Ui, T[vi]).
For descendants vy,...,v,s of edge e,

Tle,v1,-..,vs] = Tle] = (Ui, T(vi)).

A path P of a tree T is called a basic path
if T ~ P consists of trees T; with v(Ti) <
¥(T) — 1 for all 4.

A vertex ¢ in T is k-critical if ¢ has the
child edges e;,ez and y(T[e;]) = k for i = 1,2.
¢ is k-critical in the sense that if v(T{w]) = k
for an ancestor w of c, then any basic path of
T[w] must contain ey, 2.

The following theorem is a restatement of
Theorem 1 by using the k-criticalness. (Proof
omitted.) ,
Theorem 2. Let T be a binary tree with root
r. Let k be a positive integer. (i) If T has
no £-critical vertez for £ > k, then v(T) <
k. (i) If T has no L-critical vertez for £ > k
and ezactly one k-critical vertezx c¢ such that
Y(T[r,v1,v2)) < k=1 for two children v1, vz of
¢, then y(T') = k. (iii) If either T has more
than one k-critical vertez or T has ezactly one

but the one does not satisfy the condition stated
in (i), then ¥(T) > k.

Let T be a binary tree with root r. To com-
pute v(T), it is important to locate £-critical
vertices of T for £ > 1. Define ['(T) as in [C] to
be a decreasing sequence of integers lat,-..,as
with @1 > -+ > a, > 0 if T has vertices
Uy,...,Us—1 and u; has children yi, 2; such that

1 y(T[r, 31,21, %i-1,2i-1]) = @ifor 1 <
1 <s,

2. u; is aj-critical in T'[r, y1, 21, - - -, ¥i—1, Zi-1]
for1<i1<s—1,

3. T[T, Y1,21y - -
vertex, and

4. [ay,...,as] is lexicographically minimum
among those satisfying the three conditions
above.

For an empty tree T', T(T) = [].

To explain intuitively what I'(T') is, we give
the following “wrong” algorithmic definition of
[(T): Initially, ¢ = 1. Compute ¥(T), and
set a; = 4(T). Determine whether T contains
an a;-critical vertex v. If yes, set u; = v;
T := Tir,y;,z); i := i + 1; and repeat the
procedure. If no, stop.

For example, if T is a single-edge tree, then
I(T) = [1] as 7(T) = 1 and it has no 1-critical
vertex. For a single-vertex tree T, 7(T) = 0
and T(T) = [0]. For a three-vertex complete
binary tree, T(T) = [1,0] as the root is 1-
critical.

We compute T'(T[u]) in a bottom-up fash-
ion by calling function Gamma of [C] in Fig-
ure 1 for all internal vertices u of T, after as-
signing [0] to all leaves of T. For an internal
vertex u with children vy, vz, and child edges
e1 = (v1,u),e2 = (v2,u), given I'(T[v;]) for
i = 1,2, the first part (lines (3)-(13)) of func-
tion Gamma computes I'(T'[¢;]) from [(T[v]),
and its second part (lines (14)-(23)) combines
[(Tle;]) and I'(T'[e2]) to obtain I'(T[u]). For
correctness of function Gamma, see [C].

Each call of Gamma takes O(logn) time as
S; contains at most y(T') = O(logn) elements.
So, time to compute I'(T[u]) for all vertices u
of T is O(nlogn).

To actually arrange the vertices of T, we
make use of I'(T[u]) computed above. Note
that v(T) = maxT(T). Assume that v(T') =
k. Find a basic path P = (v1,...,vn) of T (by

., Ys—1, Zs—1) has no a,-critical

(1) function Gamma(Sy, S;) {Si = I'(T[v;])} (1) function Delta(é6;,6;)

(2) { Assume that 5; > S3.}

(3) if min Sy # 0 then H; := 5,
(4) else begin

(5) jr=min{i > 0|i¢ 51}

(6) Hy:=[luli>jlie $i]
(7 end

(8) if 5 =[] then return H,;
(9) if min 52 # 0 then Hg = Sz
(10) else begin

(11) ji=min{i > 0]|i¢g S2}
(12) Hy:=[jJUuli>jli€ S,
(13) end

(14) {Hi=T(T[ei]),i =1,2.}

(15) if Hyn H; = 0 then begin
(16) h := max{min Hy, min H,}
(17) return [i > h | i € H; U Hy)
(18) end

(19) h:=maxH; N H,

(20) if A = min H; = min H; then
(21) return [0JU[i > h|i€ Hy U H;]
(22) i:=min[f>h|j¢g HUH,
(23) return [{JU[j > i|j € HyU Hy)
(24) end

Figure 1: Function for computing I'(T[u]) from
I'(T[v1]) and T(T[vs)) [C].

using the idea in the proof of Theorem 1) such
that T ~ P consists of subtrees T; (v; € T})
satisfying v(T3) < k— 1. For1 < i < m,
assign {ni-1 + 1,...,n;} to T; in a recursive
way, where ng = 0 and n; = |T1| + --- + |T].
Time for the arrangement is O(n).

We finish our review of the algorithm of
[C].

We will implement the algorithm in the
CRCW PRAM. Our parallel implementation
also consists of two stages: namely, the first
stage (section 3) of computing I'(T'[u]) for all
vertices u of T, and the second stage (section
4) of arranging the vertices of 7.

The implementation is non-trivial but re-
quires a non-straightforward application of the
parallel tree contraction and a careful book-
keeping of several labels in recursive calls of
the algorithm.

(2) { Assume that §; > 6. }

(3) if §; is even then 6, := §;

(4) else 6, :=6; +1

(5) if 62 = 0 then return 6,

(6) if 8, is even then 8, := 6,

(7) elsefr:=6,+1

(8) {0: represents I'(T[e;]), i = 1,2.}

(9) if(6; and §;) = 0 then begin

(10) h := max(rmo(6;), rmo(6.,))

(11) return (¢, or ;) and mask(h)

(12) end

(13) h:=1Imo(6, and 6;)

(14) ifh = rmo(f1) = rmo(f,) then begin

(15) return 1 + (6; or 6;)

(16) end

(17) 4 := rmo((not(6; or 6;)) and
mask(h + 1))

(18) return 2 4 ((6; or 6;) and
mask(7 + 1))

(19) end

Figure 2: Function for computing 6(u) from
8(v1) and 6(v;).

3 Computing the cut and other
information

By the definition of I'(*}, ¥(T') = a;. By Lemma
1, ¥(T) < 1.5logn + 1 for trees T of degree
three, and thus 0 < a; < [1.5logn| +1 fora; €
I(T). Let M = |1.5logn|+1. Then, I'(T) can
be represented as a bit-vector bpsbps_y -+ - bybg
such that b; = 1 if and only if ¢ € I'(T).

We will assign to each vertex u of T an un-
signed integer 6(u) defined as é(u) = "M b; -
2', which represents I'(T[u]). Note that 0 <
§(u) < 2M+1 _ 1 < 4qpls,

Let u be a vertex with two children bl,vz.
Then é(u) = Delta(é(vy), 6(v2)), where func-
tion Delta is described in Figure 2. For leaves
u, 6(u) = 1 as T(T[u]) = [0].

Function Delta uses bit-vectors to repre-
sent I"s while function Gamma uses sorted
lists of integers. In Delta, rmo(i) (resp., lmo(s))
returns the bit position of the rightmost (resp.,
leftmost) “1” in the M 4+ 1-bit binary represen-
tation of an unsigned integer i, and mask(h)

returns the M + 1-bit string such that its right-
most h bits are all zero and the remaining bits
are all one, i.e., mask(h) = 2M*+1 -1 (2 —1).
The operators, and, or, not, are all bitwise.

Correctness of function Delta is immediate
from that of function Gamma. (Details omit-
ted.)

Computing rmo(i) for 0 < i < 2M+1 _ 1
(i requires M + 1 bits) can be done as follows:
Precompute rmo(j) for all 0 < j < n. Di-
vide the binary representation of i (M + 1 bits
long) into the lower part, i;, consisting of the
rightmost [logn] bits and the upper part, iy,
consisting of the remaining M + 1 — [logn]
bits. If 4, = 0 then rmo(¢) = rmo(éz) + [log n].
Otherwise rmo(i) = rmo(7;).

Precomputing rmo(j) for all 0 < j < n can
be done in O(log n) time using O(n/ logn) pro-
cessors. Then rmo(i) for 0 < i < 2M+1 _1 can
be computed in constant time using a single
processor. In an analogous way, lmo(7) can
be computed in constant time using a single
processor if a precomputed table lmo(j) for
0 < j < n is available.

Combining all together, we can say that
one call of Delta(é1,62) takes constant time
using a single processor if precomputation has
been done to prepare Imo(j) and rmo(j) for
0<i<n.

The parallel tree contraction {J] will be used
to compute §(u) for all vertices u of T. The
parallel tree contraction contracts a binary tree
T to a single vertex by processing a logarith-
mic number of intermediate binary trees T; =
(Vi, Ei), i = 0,1,...,t with t = O(logn). Ini-
tially, Ty = T, and contract T; to obtain T;44.
Finally, T; consists of a single vertex.

Let z be a leaf of T; with parent u, grand-
parent z, and sibling y. The primitive opera-
tion, called rake, applied to z removes both u
and 2, and links y as a child of z. By carefully
applying rake operations to a subset of leaves
of T;, one can contract T; to T;41 and decrease
the number of leaves from £ to £/2, where £ is
the number of leaves of T;.

We can show that a rake operation applied
to a leaf of T; can be done in constant time
using O(n'") processors. (Details omitted.)
Theorem 3. Given a binary tree T, comput-
ing 6(u) for all vertices u of T can be done in

O(logn) time using O(n*®/logn) processors
in the EREW PRAM.

4 Linear arrangement

In the previous section, given a binary tree T,
we have assigned to each vertex u of T’ an un-
signed integer §(u) which contains information
needed to arrange the vertices of T in an op-
timal way. The basic idea of arranging T is
in the proof of Theorem 1. So, our linear ar-
rangement algorithm is basically the same as
that of [C], but requires careful implementa-
tion details, including representations of trees
and updating several labels of edges and ver-
tices.

We first compute é(e) for all edges e of T’
by doing the following:

if 6(u) is even then 6(e) := §(u)

else §(e) := 6(u) + 1
where € is the parent edge of u.

We will assume that either T' consists of a
single vertex only or the root of T has only one
child. This assumption automatically holds in
all subtrees of T' appearing during the execu-
tion of our arrangement algorithm as will be
clear later. If e is the child edge of the root of
T, then 6(e) represents I'(T'). In the remaining
of this section, we will use the 6(-) for the edges
of T only but no longer those for the vertices
of T.

Remember that v(7'[e]) is the leftmost bit
position of é(e) containing a “1”.

4.1 Overview of the algorithm
We describe an overview of our algorithm for
arrangement.

Step 1: (Preprocessing) Let T be a binary
tree with d(e) for all edges e of T whose root
r has less than two children. We assume that
the vertices of T' are stored in an array A[l..n]
such that A[{] contains the vertex with pre-
order number :. Each vertex will be respon-
sible for its parent edge, i.e., a vertex has all
information of its parent edge. If T consists of
a single vertex r, then assign 1 to r and stop.
Otherwise, do some preprocessing: Compute
ND(u), the number of descendants of u includ-
ing u itself, for all vertices u of 7'; and mark
edges of T and compute HEAD(e) for all edge
e of T as explained in section 4.2.

Find a basic path of T and denote it by
P = (v1,...,9m). Set START:= v;.

Step 2: Let T ~ P consist of subtrees
Ty,..., Ty, where T; contains v;. Find a basic
path of T; and denote it by P; = (w; 1, ..
If T; consists of a single vertex v;, then {; =1
and w1 = v. Set SUCC(wi;) = wij 41 for
1 <37 < {;. Set SUCC(w,‘,gi) = Wig1,, i
1<i<m-1.

Step 3: Recursively repeat Step 2 for T; ~
P if T3] > 2.

Step 4: (Postprocessing) All vertices in T
are linked as a linear linked list SUCC(-) with
starting vertex START. Apply the list ranking
[J] to number the vertices.

Theorem 4. The algorithm above can be per-
formed in O(logn) time using O(n?) proces-
sors in the CRCW PRAM.

Proof: Step 1 (see section 4.2) and step 4 can
be easily executed in O(logn) time using O(n)
processors. Since ¥(T') = O(logn) for a binary
tree T' by Lemma 1, the algorithm recurses
7(t) times at step 3. By Lemma 2 below each
execution of Step 2 takes constant time using
O(n?) processors. Hence, the whole algorithm
runs in O(logn) time using O(n?) processors
in the CRCW PRAM. O

Lemma 2. Ezecution of Step 2 for each recur-
sion can be done in constant time using O(n?)
processors in the CRCW PRAM.

Lemma 2 will be proved in the remainder
of this section.

4.2 Finding basic paths

As our algorithm proceeds, T will be parti-
tioned into several subtrees of different sizes;
the algorithm stops when all subtrees consist
of a single vertex. We will first explain how
to find a basic path of a subtree of T. Let T
with 4(7") = k be a subtree, rooted at 7/, ap-
peared during the execution of the algorithm.
We have two cases to consider by Theorem 2.
Case (i): T' has no k-critical vertex.

Case (ii): T' has only one k-critical vertex ¢
and y(T'[r',v1,v2]) < k — 1 where ¢ has chil-
dren v; and v,.

Cases (i) and (ii) will be used in the re-
maining part of this section to refer the cases
stated above.

In either of cases (i) and (ii) we need to
find a basic path P of T’ such that 7" ~ P

S Wig)-

consists of subtrees T satisfying v(T") < k-1
as explained in Section 2.

Each vertex with two child edges e1, ez com-
pares 7(T'[e1]) and v(T’[ez]) and marks the
edge with a larger value (tie breaks arbitrar-
ily). Each single-child vertex marks its child
edge. Then T’ contains several marked paths
(each marked path has as its end vertices an in-
ternal vertex and a leaf). Each marked edge e
has HEAD(e) which points to the vertex clos-
est to the root in the marked path which e
belongs to.

Case (i) Let P be the marked path con-
taining root 7. Then, P is a root-to-leaf path.
We will show that each subtree T" in T’ ~ P
has y(7”) € k — 1. Let u be a vertex in P.
If © has only one child in 7", then the sub-
tree T” containing u consists of u itself; thus
¥(T”) = 0. If v has two children, then let
e; and e; be its marked and unmarked child
edges, respectively. Then, T”[e3] is a subtree
in T" ~ P. Since v(T'[e1]) > 7¥(T"[ez]) and T”
has no k-critical vertex, y(T'[e2]) < k. So, P
is a basic path of T".

FEach marked edge e can determine whether
it belongs to P or not by comparing its HEAD(e)
with r’.

Case (ii) In this case T’ has only one k-
critical vertex ¢ and y(T'[7',v1,v2]) £ k-1
where v, v2 are the children of c. Since c is
k-critical, v(T"[e1]) = v(T'[ez]) = k for its two
child edges e1,e,. Let e; = (v1,¢) (resp., e2 =
(v2,¢)) be the marked (resp., unmarked) child
edge of c. Unmark the parent edge of ¢ (it is
easy to see that this edge was marked). Mark
es. Both of ¢’s child edges are now marked
and its parent edge is now unmarked. Let P
be the marked path containing c¢. P is a leaf-
to-leaf path. The subtree in T/ ~ P containing
cis T'[r’,v1,v2], whose ¥(-) is < k —1. For the
other subtrees 7" in T' ~ P, it can be shown in
a similar way as in case (i) that y(T") < k—1.
Thus P is a basic path.

We will show how a marked edge e can de-
termine whether it belongs to P or not. Since
P is a leaf-to-leaf path containing c, it can be
partitioned at c into two descending subpaths
Py, P,. Assume that e; € P, and e; € Ps. If
HEAD(e) = v, then e € P;. If HEAD(e) =
HEAD(e;) and e is further from the root than

e1 is, then e € P;. Since the preorder numbers
of the vertices of 7" are known (see section
4.3), it is easy to determine which of e and e;
is further from the root.

4.3 Updating tree representations
As mentioned earlier in step 1 of our algorithm
overview, the vertices of T are stored in an ar-
ray A[1..n] such that A[Z] contains the vertex
with preorder number i. Each subtree T ap-
peared during the execution of our algorithm
will be assigned a triple of integers (a,3,w)
such that

1. A[a] contains the root of T";

2. A[B..w] contains the other vertices of
T’ in preorder (A[S] contains the vertex with
preorder number 2 in T”, A8 + 1] one with 3,
and so on); and

3. f =w = 0,if T consists of a single
vertex.

ForT,wehavea =1, =2 and w =n.

Let ¥(T') = k and its triple be (a,8,w)
satisfying the conditions above. Let P be a
basic path of T/ computed in section 4.2. We
will show how each subtree 7 in T’ ~ P can
be assigned a triple of integers in constant time
using O(|T”|) processors in the CREW PRAM.

Case (i) T’ has no k-critical vertex and
P is a root-to-leaf path. Each subtree 7" in
T’ ~ P either consists of a single vertex or is a
tree with two or more vertices whose root has
only one child. If T” consists of a single vertex
v, then T” has {@1,0,0) such that A{oy] = v.
If T" consists of root v, its child w and the
descendants of w, then 7" has (a1, f1,w;) such
that Aley] = v, A[f] = w and wy = By +
ND’(w) — 1, where ND’(w) is the number of
the descendants of w in T'. By a property of
preorder traversal, the descendants of w in T"
appear consecutively in A[B; ..w;].

Case (ii) 7' has the unique k-critical ver-
tex ¢ with two children v, v, and P is a leaf-
to-leaf path. Let T; = T'[v;] for i = 1,2. Let
T3 = T'[r',v1,v3], where 7' is the root of 7".
T; is one of the subtrees in 77 ~ P.

We first show that T3 can be assigned a
triple of integers. Suppose that Alp — 1] = ¢
and the descendants of ¢ (i.e., the vertices of
Ty U Ty) are stored consecutively in Afp..0]
for integers # < p < 0 < w. This is true be-
cause the vertices of T’ are stored in A[a] and

A[B..w]in the order of their preorder traversal
and the descendants of ¢ appear consecutively.
If o =w(ie., if no vertex of T3 has preorder
number greater than that of c), then T3 has
a triple (@, 8,p — 1) and we are done. So, as-
sume that ¢ < w. Some vertices in T3 have
preorder number greater than that of ¢. The
vertices in A[§..p— 1] and Alc+1..w] belong
to T3, while those in A[p..o] belong to T1UT3.
Move Alp..0] to Alp — 0 + w..w] and move
Alo4+1..w]to Alp..p— 0 +w —1]. Then the
root of T3, ', is in A[a] and the other vertices
of Ty arein A[f ..p—o+w—1]. It is not difficult
to see that those in A[8..p— o +w— 1] appear
consecutively in the order of preorder traversal
of T5. Thus, T has a triple (a, 8,p— o +w—1).
Datamovement in A[p..w] can be done in con-
stant time using O(|T’|) processors.

Now, T} has a new triple (p — 0 + w,p —
o+ w+ 1,p), and T; has a new triple (p +
1,u+2,w), where g = p— o +w+ND(v1) — 1.
For i = 1,2, since P N7T; is a root-to-leaf path
in T}, it is easy to see that each subtree T" of
T; ~ P can be assigned a triple of integers in
a similar way as in case (i).

We have showed that all subtrees appeared
during the execution of the algorithm can be
assigned by triples of integers. All vertices of a
subtree except its root are stored in the order
of their preorder sequence in a subarray of A.
This is important for each recursive execution
of our algorithm to run in constant time.

4.4 Updating §’s

Initially, we have &(e) (representing I'(T[e]))
for all edges e of T. As before, let T/ be a
subtree appeared during the execution of the
algorithm. Assume that §’(e) (representing
['(T'[e])) for all edges e of T” are available. We
will show that, for each subtree 7" in T/ ~ P,
§"(e) (representing ['(T"[e])) for all edges e
in T” can be obtained in constant time using
O(T"]) processors. Let y(T') = k.

Case (i) 6”(e) = 6§'(e) for all edges e in
T ~ P.

Case (ii) Let Q be the path between c and
the root of T'. For the edges e in T ~ P,

6'(e) —2% if e€Q,

" _
§°(e) = { 8'(e) otherwise.
4.5 Updating HEAD’s

We now show how to update HEAD’s. We
assume all definitions in the previous subsec-
tions.

Case (i) For the marked edges e of T’ ~ P,
HEAD"(e) =

parent of HEAD'(e) if the parent of
HEAD'(e) is in P,

HEAD'(e) otherwise.

Case (ii) Let T} = T'[v;] for i = 1,2. Let
T3 = T'[r',v1,v3], where 7’ is the root of T".
For those edges e in T3 U T, ~ P, HEAD"(e)
can be assigned in a similar way as in case (i).

For those edges e in T3, we need to be care-
ful to determine HEAD”(e). Remember from
case (ii) of section 4.4 that 6”(e) = 6'(e) — 2*
for the edges e € Q. For all vertices u € Q,
we should do marking again: compare the v(+)
values of their children and mark the edge with
a larger value. We do not need re-marking for
the edges e € T3 — Q because §”(e) = &§'(e).

To update HEAD”(e) for e € T3, we first
consider the edges in Q. Note that all edges
in Q were marked in 7”. After the re-marking
above, some edges in Q are still marked, and
the others are unmarked (instead, their sibling
edges are now marked; we call these sibling
edges newly marked edges).

As mentioned in section 4.3, T3 is assigned
a triple of integers (a,3,w). The root is in
Ala] and the other vertices are in A[8..w] in
the order of preorder traversal. Since each ver-
tex is responsible for its parent edge, we will
assume that the edges of T3 are also stored
in A[B..w]. Assign 1's to all unmarked edges
in @ and assign 0's to the other edges in T3.
In the array, each marked edge e € Q (as-
signed a 0) finds the nearest unmarked edge
f € Q (assigned a 1), if any, to its left. Then,
HEAD"(e) = u if u is the child vertex of f. If
there is no such f for a marked edge e € @,
then HEAD"(e) = 7/, the root of 7. Finding
the rightmost 1 in a boolean array of size k
can be solved in O(1) time using O(k) proces-
sors in the CRCW PRAM [F]. So, we need
O(|T3|?) processors to compute HEAD”(e) for
all marked edges e € Q. This is where concur-
rent writes are required and a quadratic num-
ber of processors are used.

We, now, compute HEAD"(e) for e € T3 ~
Q. First, consider the newly marked edges.
These are all adjacent to vertices in Q. So,
HEAD”(e) = HEAD”(f) where f, if any, is the
marked edge in adjacent to e, and HEAD" (e)
7" if no such f exists. Second, consider the
other marked edges e in T5. These were marked
in T’ and are still marked. If HEAD'(e) is the
child vertex of a newly marked edge f, then
HEAD"(e) = HEAD”(f).

Updating ND’s is rather simple, so we omit
it.

Back to Step 2 of our overview in section
4.1: I all information is available, finding a
basic path of 7; can be done in constant time
using O(|T;|) processors. Linking SUCC(:) can
also be done in constant time. Note that the
vertices in a basic path need not to be stored
consecutively in an array.

This completes our proof of Lemma 2, and
thus, of Theorem 4.

By Theorems 3 and 4, we have proved our
main theorem.

Theorem 5. For a tree T of degree three with
n vertices, one can find a mincut linear ar-
rangement of T' in O(logn) time using

0(n*3/logn) processors in the CRCW PRAM.

References
[C] M.J. Chung et al, Polynomial time algo-
rithms for the min cut problem on degree re-
stricted tree, 23rd FOCS, pp. 262-271, 1982.

J. Diaz, Graph layout problems, 17th MFCS,
LNCS, vol. 629, pages 14-23, 1992.

J. Diaz et al., Efficient parallel algorithms for
some tree layout problems, TR, LSI-92-33-R,
UPC, Barcelona.

F.E. Fich, P. Ragde, and A. Wigderson, Rela-
tions between concurrent-write models of par-
allel computation, SIAM J. Computing, 17
(1988) pp. 606-627.

M.R. Garey and D.S. Johnson, Computers
and Intractibility: A Guide 1o the Theory of
NP-Completeness, Freeman, 1979.

[3] J. JaJ4, An Introduction to Parallel Algo-
rithms, Addison Wesley, 1992.

M. Yannakakis, A polynomial algorithm for
the min-cut linear arrangement of trees, J.
ACM, 32 (1985) pp. 950-988.

(D]

(D1]

(F]

(6]

