7 3 Y X A 46— 86
(1995. 7. 20)

Efficient Algorithms for Computing the Shadow
Volumes from an Area Light Source

Kwan-Hee Yoo"?, Dae Seoung Kim?, Kyung-Yong Chwa? and
Sung Yong Shin?
'Multimedia Lab., DACOM Corporation R&D Center
34 Gajeong-dong, Yusung-gu Taejon 305-350, KOREA
khyooQhalla.dacom.co.kr
*Department of Computer Science, KAIST
Kusung-dong 373-1, Yusung-gu Taejon 305-701, KOREA
{khyoo, dskim, kychwa, syshin}@jupiter.kaist.ac.kr

Suppose that an area light source in the 3D space shines past a scene polygon. The area
light source generates the two types of shadow volumes for each scene polygon, i.e., one with
partial occlusion and the other with complete occlusion. These are called, penumbra and umbra,
respectively.

In this paper, we propose two algorithms for computing the penumbra and the umbra of a
scene polygon with n vertices from an area light source with m vertices in O(m + n) time and
O(m + nlogn) time, respectively.

Efficient Algorithms for Computing the Shadow
Volumes from an Area Light Source '

Kwan-Hee Yoo'?, Dae Seoung Kim?, Kyung-Yong Chwa? and
Sung Yong Shin? k .
'"Multimedia Lab., DACOM Corporation R&D Center
34 Gajeong-dong, Yusung-gu Taejon 305-350, KOREA
khyoo@halla.dacom.co.kr
*Department of Computer Science, KAIST
Kusung-dong 373-1, Yusung-gu Taejon 305-701, KOREA
{khyoo, dskim, kychwa, syshin}@jupiter.kaist.ac.kr

SARLZEMPIEKEL SARERY Y DL +5. T2L2BE0E, TLbbLEBLA
ENTE2. AXTE mALAOSARKEL n HAOSABERY AL L ORI L 212, 20
FHERDDZ Om+n)BHOTALLT) XL LREERD 2 O(m +nlogn) BEO 7V TY X 24
©525%.



1 Introduction

‘Suppose that an area light source in the 3D space shines past the scene polygons which represent
walls, doors, windows, tables and so on. The polygons cast shadows, and in general attenuate or
eliminate the light reaching regions of the 3D space. In this environment, consider a rendering
system which generates a realistic picture of the scene from a view point. The system involves
shadow testing at every point on the visible surfaces. To efficiently perform the shadow testing,
many researchers [Cam91, Hec92, NN85] proposed algorithms for computing the shadow volume
cast by each scene polygon. The shadow testing for a point in the 3D space is done by checking
if the point is within a shadow volume. An area light source generates two types of shadow
volumes for each scene polygon, i.e., one with partial occlusion and the other with complete
occlusion. These are called, penumbra and umbra, respectively.

For a convex area light source with m vertices and a convex scene polygon with n vertices,
Nishita and Nakamae [NN85] proposed an algorithm for computing the penumbra and umbra
in O(mnlogmn) time, respectively. Campbell [Cam91] found the bounding planes of the
penumbra and those of the umbra in O(mn) time, respectively. In the latter method, an
additional processing is required to construct the umbra and the penumbra from the bounding
planes. He used a 3D dimensional binary space partition tree [PY90]. However, its construction
takes cubic time in the worst case [PY90].

In this paper, we propose two algorithms for constructing the penumbra and the umbra in
O(m+n) time and O(m +nlog n) time, respectively. The details of the algorithm are described
in Section 2 and Section 3. Finally, Section 4 concludes this paper.

2 Computing the Penumbra

In this section, we present an algorithm for computing the penumbra cast by a scene polygon
from an area light source.

Let P be a convex polygon with n vertices and S a convex area light source with m vertices.
We denote the vertices of P by vg, v1, -+ -, and v,-1 and those of S by ug, u1, -+, and Um—_1.
The area light source S generates a shadow volume for the polygon P such that the visibility
between the interior of the volume and S is partially or completely blocked by P. We call the
shadow volume the penumbra of P from S, and denote it by PE(S, P).

Without loss of generality, we assume that P and S are not coplanar. Otherwise, the
problem can be solved trivially. ‘

Figure 1: Penumbra volume derivations of Nishita and Nakamae’s algorithm

Nishita and Nakamae [NN85] treated each vertex of S as a point light source that has a
shadow volume generated from P. They showed that PE(S, P) is the smallest convex polyhe-
dron that contains these shadow volumes (see Figure 1). Based on this observation, they were



able to compute PE(S, P) in O(mnlogmn) time.

Campbell [Cam91] characterized the bounding planes of PE(S, P). The bounding planes
consist of three types of planes : a plane containing P (type I plane), the planes which support
an edge of § and a vertex of P (type II planes), and the planes which support a vertex of §
and an edge of P (type IIT planes).

He also showed that the type II plane supporting an edge in § and a vertex in P makes a
smaller angle with the plane containing S than any other plane supporting the same edge in §
and another vertex in P does, as illustrated in Figure 2 (a). This is equivalent to the fact that
S and P lie on the opposite sides of a type II plane. By a similar argument, the same is true
for a type III plane (see Figure 2 (b)).

A type I plane |

Figure 2: Illustration of the bounding planes of PE(S, P)

To compute a type II plane, all planes supporting an edge and the vertices of P are enu-
merated to find the one that makes the smallest angle with the plane containing §. A type
III plane can similatly be found by enumerating the plane supporting an edge in P and the
vertices of §. Therefore, it takes O(mn) to find all planes bounding PE(S, P), where m and n
are the numbers of vertices in § and P, respectively. For each bounding plane H, let H* be
the half-space not containing S. Campbell proved that PE(S, P) is the intersection of all such
half-spaces as H*.

This argument is valid if neither the plane containing S intersects P nor that containing P
does S(see Figure 3 (a) and (b)). Otherwise, either S or P is split by the intersecting plane,
which further increases the cost in time to find the bounding faces.

/]

Figure 3: The special cases of Campbell’s algorithm

In order to construct a penumbra PE(S, P) in O(m + n) time, we need more sophisticated
characterizations of faces in PE(S, P). A face of PE(S, P) is said to be of type I, II, or III if
it is contained in a type I, II, or III plane, respectively.

Denoting C H(q,S) be the convex hull of a point p and S, we begin with characterizing a
type I face.

Lemma 1 P is the type I face of PE(S, P) if and only if the plane H containing P does not
intersect the interior of §.
Proof: Omitted O



Now, let f be a type II face lying on the plane H which supports a vertex v; in P aﬁd
an edge e(u;_1,u;) in S. Let I(p,q) be a line containing two points, p and ¢, and 7(p,ab)
denotes a half-line from p in the direction from a to b. Clearly, e(u;—1, u;) is contained in a
half-plane determined by [(u;—1,v;). This half-plane is denoted by H*¥(u;-1,v;). H ™ (ui-1,v;)
denotes the other half-plane in H with respect to I(u;_1,v;). Similarly, I(u;,v;) gives two
half-planes, H*(u;,v;) and H~(u;, v;) such that H¥(u;, v;) contains e(u;_1,%;). The following
lemma characterizes a type II face f.

Lemma 2 Let f be a type Il face lying on the plane H supporting a vertex v; in P and an edge
e(ui—1,u;) in S. Then, f = H™(ui-1,v;) N H ™ (ui,v;). That is, r(v;, Ti=19;) and v(v;, %Gv;) is
the boundary of f (see Figure 4 (a)).

Proof: Omitted O

Finally, we characterize a type III face in the following lemma:

Lemma 3 Let f be a type III face lying on the plane H supporting an edge e(v;_1,v;) in P
and u; in S. Let H¥(u;,vj—1) and H*(u;,v;) be the half-planes containing e(vj_1,v;). Suppose
that u; is contained in H*(v;_1,v;). Then, f = H*¥(u;,vj—1)NH (u;,v;) N H ™ (vj_1,v;). That
is, the boundary of f is r(v;-1,%v;-1), €(vj-1,v;), and r(v;,%v;) (see Figure 4 (b)).

Proof: Omitted O

TV i)

®)

@

Figure 4: Illustration of the type II and type III faces of PE(S, P)

From the proofs of Lemmas 2 and 3, the following results are immediate.
Corollory 1 Every type II or III plane contains only one face.

This corollary is important since we do not need to make an extra effort to construct another
face in a plane if a face in it is identified. ‘

Now, we are ready to give a sketch of our algorithm for constructing PE(S, P). Initially, we
find a type II face fp from an edge e(u;..1,u;) in S(we can also start with a type III face). This
can be done in O(n) time since we need to enumerate every plane supporting e(u;-1, ;) and a
vertex v; of P. By Lemma 2, fo has two edges r(v;, %_17;) and r(v;,%7;). From r(v;, %7;),
we find the face on the boundary of PE(S, P) which shares the edge 7(vj,%;7;) with fo. Now,
the new face f; plays the role of fy to provide a new edge for constructing another face. This
process is repeated until fy is re-encountered.

In order to make sure that this idea works, we need to elaborate our sketch to provide a
correct advancing mechanism. In a general step, we need to find a face fry; which shares an
edge r(v;,W;v;) with a given face fi, which is computed in the previous step. There are two
cases depending on fi:



e case 1: f; is a type II face, and
e case 2: fi is a type III face.

In case 1, fi is contained in the type II plane supporting e(ui—1,u;) and v, and is bounded
by 7(vj, #;—1v;) and r(v;, %7;). Since fi41 shares r(v;, @v;) with fi, the plane Hiyy containing
fr41 must have both v; and u;. We can determine the Hyy, if we find a third point, which
is either a vertex of P or that of §. Clearly, this point is adjacent to either v; in P or u; in
S, i.e., one of v;_1, vj41, %i—1, and u;y;. Since S and P are both convex, any other choice
would generate a plane which cannot separate S and P on its opposite sides. u;_; cannot be
a choice since f; contains v;, u;_1, and u;. Therefore, there are three candidate vertices for
constructing fiy1, given r(v;, %v;).

In order to obtain an insight on the configuration of § and P. Let four half-planes Hy, Hy,
H3, and H3 be defined as follows:

e M = the plane containing the current plane f, i.e., the plane containing
r(v;, %;0;) and u;_q,

o H} = the plane containing r(v;,%v;) and v;_y,

¢ Hj = the plane containing r(v;, %;v;) and vj4q, and

e Hj3 = the plane containing r(v;,%;7;) and u;y;.

H;, s =1,2,3 are the candidates for Hyyq containing fiy;. Hy gives two half-spaces H,j”
and H, such that P C H,;" and § C H . The line containing r(v;, %;7;) divides Hy into two
half-planes, H*(u;,v;) and H~(u;,v;) such that f, C H*(u;,v;). Let the angle between Hj
and HJ, s = 1,2,3 be the convex dihedral angle determined by H~(u;,v;) and the half-plane
of H; lying in H,;". We show that Hyyy = H; for some s if and only if H} makes the smallest
angle with H; among all candidate planes.

Suppose that Hyyy = H; for some s. From Corollary 1, H} contains fr;; which shares
r(v;, %0;) with fi. If we rotate Hy about the line containing r(vj, @5;), then it should hit one
of v;_1, vj41, and u;y; before intersecting the interior of § and P, while separating § and P on
the opposite sides of Hy. If Hy hits one of the three points, Hy coincides with H*. Therefore,
H; makes the smallest angle with f.

Now, suppose that H; and Hy give the smallest angle for some s. If we rotate H* about
the line containing r(v;, %7;), H, intersects the interior of S or P. Clearly, H} is either a type
II or III plane, which has exactly one face such that r(vj, %;v;) is its one edge by Corollary 1.
This face is fry1, and thus our claim holds true.

Given Hy1, we can identify the new edges in it. There are three cases depending on Hyyg
to identify these edges:

¢ case 1(a): Hp4y contains v;_p,
e case 1(b): Hiyq contains vj41, and
o case 1(c): Hyyq contains u;yg.

In case 1(a), Hy4; contains a type III face fry1. By Lemma 3, the new edges are m(vj—1, TU;-1)
and e(v;-1,v;), as illustrated in Figure 5 (a). Since two faces sharing the other edge r(vj, Tv;)
have already found, r(v;_1,%7;21) is used for the next move, which is described in case 2.
By the symmetric argument, in case 1(b), fr4; is also a type III face contained in H3, and
7(vj+1, WV;41) is used for the next move to case 2 (see Figure 5 (b)). Finally, in case 1(c), frt1

—45—-



is a type II face, as illustrated in Figure 5 (c). From Lemma 2, 7(v;, %i410;) is the new edge.
With this edge, we repeat case 1.

Given a type II face fi and its edge r(v;, ;v;), it takes constant time to find fi41 sharing
(vj, %v;) and a new edge of fry, since we only consider three vertices, vj_1, vj41, and ¥iy1,
which are either adjacent to v; in P or to u; in S.

o) () )

Figure 5: Finding a face fi41 sharing an edge 7(v;, %v;) with a given type II face fr

In case 2, i.e., f is a type III face, we can also compute the next face fi41 sharing an edge
7(v;, Tiv;) with fk using a similar method in case 1.

With our advancing mechanism as building blocks, we can construct the boundary of
PE(S, P) from an initial type II face, stepping forward from a face of type II or IIl to a
face of type II or III, until we revisit the initial face. At each step, we can always determine
the unique face with a given edge. This face gives a new edge for the next move.

There are O(m + n) faces of type II or 1II since every type II or III face supports exactly
an edge of § or an edge of P. Our algorithm generates all of these faces and duplicates none
of them, Hence, the following result is immediate.

Theorem 1 In the 3D space, given a convez polygon P with n vertices and a convez area
source S with m vertices, PE(S, P) can be computed in O(n + m) time.

3 Computing the Umbra

An area light source S may generate a shadow volume for a scene polygon P such that the
visibility of the interior of the volume and § can be completely blocked by P. We call the
shadow volume the umbra of P from § and denote it by UM (S, P). In this section, we propose
an O(m + nlogn) time algorithm for computing UM(S, P).

Without loss of generality, we assume the following two conditions : S and P are not
coplanar, and the plane containing P does not intersect . If either of the above conditions is
not true, then UM(S, P) is empty. '

Nishita and Nakamae [NN85] proved that UM(S, P) is the intersection of the shadow
volumes with respect to all vertices of § (see Figure 6). Based on this observation, they were
able to compute UM (S, P) in O(mnlog mn) time.

Campbell [Cam91] characterized the bounding planes of UM(S, P). The bounding planes
consist of two types of planes : a plane containing P (called type A plane) and planes each of
which supports an edge of P and a vertex of S (called type B planes). He also showed that the
type B plane supporting an edge of P and a vertex-of § makes the largest angle with the plane
supporting § among all planes supporting the same edge in P and the vertices in §. Therefore,
it is true that P and § lie the same side of a type B plane.



Figure 7: Choosing a plane containing a boundary face of UM (S, P)

Campbell proved that UM(S, P) is the intersection of all half-spaces containing P with
respect to the bounding planes. To compute a type B plane, all planes supporting an edge of
P and the vertices of S are examined to determine the one that makes the largest angle with
the plane containing §. Therefore, it takes O(mn) to find all bounding planes of UM(S, P).

In order to obtain an algorithm of better time bound, we investigate the boundary of the
convex hull CH(S, P) of § and P. Excluding S and P, every face of CH(S, P) contains either
an edge of P and a vertex of § or vice versa. Therefore, the plane containing a face in CH (S, P),
which have an edge of P and a vertex of S, is a type B plane. If every type B plane contains
a face of CH(S, P), then all type B planes can be obtained by constructing CH(S, P).

Lemma 4 If a face of CH(S, P) has an edge of P and a vertex of §, then the plane containing
the face is of type B. Moreover, every type B plane contains a face of CH(S, P).

Now, we are ready to give our algorithm for constructing UM (S, P). First, we find the
convex hull of P and § using the merge step of the algorithm by Preparata and Hong [PH77]
in O(m+n) time. And then, we select the type B planes among the planes containing the faces
of the convex hull. For each plane H, let H* be the half-space containing P. Since UM(S, P)
is the intersection of all such half-spaces as H*, we finally compute the intersection of n + 1
half-spaces in O(nlogn) time using an algorithm of Preparata and Muller [PM79)]. Therefore,
the following theorem is obtained.

Theorem 2 In the 3D space, given a convex polygon P with n vertices and a convex area
source § with m vertices, UM(S, P) can be obtained in O(m + nlogn) time.

4 Concluding Remarks

Suppose that a convex polygon P with n vertices and a convex area light source S with m
vertices are given. We present two algorithms for computing the penumbra and the umbra of



P from S in O(m + n) and O(m + nlogn) time, respectively.

In general, the intersection of n half spaces in the 3D space is computed in ©(nlogn) time.
However, we can observe that the boundary faces of the umbra is ordered along the boundary
of P. Moreover, they can be computed in O(m + n) time, as illustrated in Section 3. It is an
interesting problem to compute the umbra in O(m + n) time.

References

[Cam91] A. T. Campbell. Modeling Global Diffuse Illumination for Image Synthesis. PhD

[Hec92]

[NN85]

[PH77)

[PM79]

[PY90]

Thesis, Dept. of Computer Sciences, Univ. of Texas at Austin, December 1991.

P. Heckbert. Discontinuity meshing for radiosity. In Third Eurographics Workshop
on Rendering, pages 203-226, May 1992.

T. Nishita and E. Nakamae. Continuous-tone representation of three-dimensional
objects taking account of shadow and interreflection. ACM Computer Graph-
ics(Proceedings of SIGGRAPH ’85), 19(3):23-30, 1985.

F. P. Preparata and S. J. Hong. Convex hulls of finite sets of points in two and three
dimensions. Communication of ACM, 2(20):87-93, 1977.

F. P. Preparata and D. E. Muller. Finding the intersection of n half-spaces in time
o(nlogn). Theoretical Computer Science, 8(1):45-55, 1979.

M. S. Paterson and F. F. Yao. Efficient binary partitions for hidden-surface removal
and solid modeling. Discrete Computational Geometry, 5:485-503, 1990.



