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ABSTRACT

Recently, researchers have begun studying adaptive approaches to the
diagnosable system. Hakimi et al. [4,6] assume that each unit is capable
of testing every other units, with the tests being conducted one at a
time in such a way that the choice of the next test to be performed
depends on the results of the previous tests, rather than on a
preselected pattern of test studied earlier. Hakimi and Nakajima [6]
proposed an algorithm which identifies a fault-free wunit after
application of at most 2t-1 tests. Then they used the fault-free unit as
a tester to identify all the fault units, thus using at most n+*2t-2 tests
to identify all the faulty units in a ¢ diagnosable system with n units.
But in general, it is not true in practice. To the best of our knowledge,
there does not exist any result related to the adaptive diagnosis problem
when the PMC model representation of the system is not a completely
connected digraph. In this paper, we will investigate the application of
adaptive diagnosis approach to a D(n,t,X) system which belongs to the PMC
model.
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1. Introduction

In the area of fault-tolerant computing, fault diagnosis plays an
important role. Modeling a system as a number of interconnected
subsystems or units having the feature of mutual testing has received
considerable attention [1-9] from the diagnosis point of view.

The most well-studied model to represent a diagnosable system S is
the model introduced by Preparata et al.[1] (henceforth referred to as
the PMC model), in which the system is represented by n units and on the
assumption that the fault is detected at the unit level, each unit is
tested by several other units of the system.

This model can be represented by a digraph G = (V,E) where V is a set
of nodes, |V] = n, each node representing a unit and E is the set of
edges, each edge (u(i),u(j)) is labeled with a(i,j) to represent the
result of testing : a(i,j) = 0 if u(i) evaluates u(j) to be fault-free
and a(i,j) = 1 if u(i) evaluates u(j) faulty. In the PMC model, if u(i)
is fault-free, a(i,j) reflects the .correct status of u(j): however, if
u(i) is faulty, a(i,j) might be 0 or 1 irrespective of whether u(j) is
faulty or not.

A set of all a(i,j)’s is said to be a syndrome of S. S is called
t-diagnosable if for every syndrome, the faulty units can be uniquely
identified so long as the number of faulty units does not exceed t. Given
a system in terms of the digraph G, the necessary and sufficient
conditions to find if the system is t-diagnosable were presented in [10]
and a polynomial time algorithm to verify if a system is t-diagnosable
was presented in [11] based on different characterization.

A system S belongs to the class of D(n,t,X) systems [2,5] iff there
exists some set X = {x(1),x(2),...,x(t)} of positive integers such that n
> 2t+1 and n 2 2x(i)+1, 1 s i s t and E = {(u(i),u(j)) : i-j (wod n) €
X}. Chwa and Hakimi [2] have shown the characterization of ‘t/t
diagnosable systems and a class of t diagnosable system, denoted by
D(n, t,X). An algorithm to identify all faulty units in O(|E]) is also
given in [2]. '

A new approach for diagnosing the faulty units in a system has
received attention in recent days. This is referred to as the adaptive
approach. According to this approach, since all the test results might
not be necessary to find the faulty units, tests are conducted as seem
necessary. Informally it can be described as follows. To start with, some
tests are carried out in steps and at each step what results are to be
carried out depends on the results obtained so far. The number of steps
needed and the total number of tests to be conducted depend on the
testing feature of the different units. The t-adaptive diagnosis problem
for a system is as follows. Given a system(modeled as the PMC model for
example), assuming that the number of faulty units is at most t, how to
conduct the tests adaptively and on the basis of the test results, how to
identify the faulty units using fewest number of steps and fewest number
of total tests?

Hakimi and Schmeichel [4] assume that each unit is capable of



testing every other unit, with the tests being conducted one at a time
in such a way that the choice of the next test to be performed depends
on the results of the previous tests, rather than on a preselected
pattern of tests studied in earlier papers. Hakimi and Nakajima [6]
proposed that one adaptively chooses the tests and obtains their results
until one can identify a fault-free unit. Then one uses this unit as a
tester to identify all the faulty units, thus using at most n+2t-2 tests
to identify all units. Blecher [9] improved this bound by using a
different procedure to find a fault-free unit in at most 2t-1 tests
which enables one to identify the status of all units in at most n+t-1
tests. Schmeichel et al. [7] presented an adaptive algorithm as
proceeding in “round”. Informally, a round of testing is a set of tests
where for each tests the testing and tested units are distinct. A
parallel algorithm which identifies the faulty units within O(logn/t)
round of testing, and which uses at most 4n tests was presented [7].

All the results available in the literature [4-8] for the adaptive
diagnosis problem assume a simplified model of the system. They assume
that in the system, every unit is capable of testing every other unit of
the system. In short, representing the system in PMC model, every node
has an outgoing edge to every other node of the system. Evidently this
is far from a practical situatiuon. To the best of our knowledge, there
does not exist any result related to the adaptive diagnosis problem when
the PMC model representation of the system is not a completely connected
digraph. This paper presents a first attempt to solve this problem in
this direction. We assume that the system is represented as a D(n,t,X)
system and present an adaptive diagnosis algorithm which finds all the
faulty units in O(t) rounds needing at most nt tests.

II. An adaptive Diagnosis Algorithm for D(n,t,X) system

Given positive integers n and t and a set of integers X such that n
> 2t+1 and X = {x(1),x(2),...,x(t)} and x(1) < x(2) < " < x(t)
where n = 2x(t)+1, a D(n,t,X) system is a system with n nodes and
represented by the PMC model with the set of nodes given by
{u(0),u(l), ",ul(n-1)} and the set of directed edges is given as follows.
(u(i),u(j)) is an edge iff (i-j) mod n € X. Such a system has been shown
to be t-diagnosable [2].

Formally, a round of testing is defined as a set YEE such that if
(ula),u(B)), (u{y),u(8))eY, then a,B,7, 6 are all distinct. It is simple to
see that all the tests given by the edges in a round can be conducted in
parallel. For each x(i)eX, we define a partition on the set of nodes as
follows. Two nodes u(j) and u(k) belong to the same block of (i) iff |
j/x(i)} = lk/x(i)]. Let b(ai) denote the ath block of (i), 0 < a < |
n/x(i)]-1, such that if u(j)eb(ai), then a = Lj/x(i)]. Let p(i) = [n/x(i)
1-1. Note that if n is not a multiple of x(i) then b(p(i),i) has fewer
than x(i) nodes in it. Also since n = 2x(t)+l, there are at least three
blocks in each z(i). In the following, given any x(i), we will denote by
b(ai)—b(Bi) the following set of edges.

(j-k) mod n = x(i

b(ai) — b(Bi) = {(u(j),u(k)) | )
) € b(ai) and u(k) € b(8i

and
u(J )}



From the construction of the blocks of the partition, it is simple to
see that for some given i, all the tests given by b(ai)—b{(Bi) are a
round of testing. Our diagnosis algorithm has two steps. In the first
step, we define how the tests are conducted in an adaptive fashion. In
the second step, we define how the test results are used to identify the
faulty units.

Step 1 : This step is composed of t phases and each phase is composed of
three rounds. Each phase is conducted for a distinct element of X. Each
node u(j) is assumed to have a tag bit called TAG(j) and two counters
called CO(j) and Cl1(j). When a set of tests are requested to be
conducted, the test (u(j),u(k)) in the set is carried out if the TAG(J)
bit is 0 and is not carried out if the TAG(j) is 1. If a test (u(j),u(k))
is carried out then the counter CO(k) is incremented if the test result
was 0, otherwise the counter Cl(k) is incremented.

Phase 1 : Initially all TAG bits, CO and Cl are zeros. If p(t) is even
then conduct the tests given by round El, E2, and E3 for i=t in three
rounds of testing. If p(t) is odd then conduct the tests given by rounds
01, 02 and 03 for i=t in three rounds of testing. In either case, for
each test (u(j),u(k)) carried out in any round, the test result is
assigned to be the new value of TAG(k). After all the rounds are
completed in this phase, the test result obtained for each test
(u(d),u(k)) might be used to modify CO(k) or Cl(k). If TAG(j)=0 after all
rounds are completed then the counter CO(k) (or Cl(k) ) is incremented if
the test result of (u(j),u(k)) was O (respectively, 1). If, however,
TAG(j)=1 then, neither CO(k) nor Cl(k) is modified.

El = { b(1i)—b(0i),b(3i)—b(2i),...,b{(p(i)-1)i)—b((p(i)-2)i) }

E2 = { b(2i)—b(1i),b(4i)—b(3i),...,b(p(i)i)—b((p(i)-1)i,)
b(0i)—b((p(i)-1)i) }

E3 = { b(0i)—b(p(i)i) }

01 = { b(1i)=b(0i),b(3i)=b(2i),...,b(p(i)i)=b((p(i)-1)i) }

02 = { b(2i)—b(1i),b(4i)—b(3i),...,b((p(i)=1)i)—=b((p(i)-2)i),
b(0i)—b(p(i)i) }

03 = { b(0i)—b((p(i)-1)i }

Phases 2 through t : For the jth phase, 2sjst, if p(j-1) is even then
conduct the tests given by rounds El, E2 and E3 for i = j-1 in three
rounds of testing. If p(j-1) is odd then conduct the tests given by
rounds 01, 02 and 03 for i = j-1 in three rounds of testing. If a test
(u(j),u(k)) was carried out then, CO(k) (or Cl(k) ) is incremented if the
test result was 0 (respectively, 1). If TAG(j)=0 then CO(k) and Ci(k) is
modi fied.

It is simple to observe that if for some x(i) € X, n is multiple of
x(i) and p(i) is even then for that x(i), the corresponding phase needs
only two rounds. In general therefore, 3t rounds of testing are



sufficient to conduct all the tests mentioned above. Depending on the
test results of phase 1, some of the tests in phases 2 through t might
not be carried out based on the TAG bits. At worst the total number of

tests carried out is nt.

Step 2 : From the test results, each unit is identified as fault-free or
faulty as follows. If CO(j)zCl1(j) then u(j) is identified as a fault-free
unit, otherwise u(j) is identified as a faulty uint.

I11. Proof of Correctness of the Algorithm

We use the idea given in [2]. Let the digraph G=(V,E) represent a
D(n, t,X) system. It is assumed that the number of faulty units is at most
t. In [3], we have shown that the digraph G representing a D(n,t,X)
system has node connectivity t. Hence for every u(i) € V, from the test
results we can always determine whether u(i) is faulty or not if all test
results were available. We will see later on that some of the test
results do not contribute to the diagnosis process and this is why some
of the tests are not carried out in our algorithm.

Assuming X = {x(1),x(2),...,x(t)}, for any node u(i)eV, let us define
Va={u(i+x(1)), u(i+x(2)),..., u(i+x(t))} and Vb=
{u(i+x(l)+x(t)),u(i+x(22+x(t)),...,u(i+x(t)+x(t))} where all additions
are in modulo n. Let G'=(V',E') be a subgraph of G with respect to u(i)
such that V={u(i)} u Va u VW and E'={(u,u(i)) for all ueV.}u
{(u(i+x(j)+x(t)) u(i+x(j)) for all 1sjst}. It is simple to observe that
since n22x(t)+1, V.NVy=¢. Since G is a symmetric digraph, for each u(i)
the subgraph G=(V',E') is defined and all such graphs have the same
structure. Let Va(ala2) be the set of nodes of V, which when testing u(i)
produces a test result a2 and which when tested by nodes of V, produces a
test result al, where al,a2e{0,1}. Note that in G', each node of V, is
tested by only one node of V. Let Vp(ala2)=I"'V.(ala2) in G'=(V',E'). Note
that |Vy(ala2)|=|Va(ala2)|. Then the following result is given in [2].

Lemma 1 : u(i) is fault-free iff [V.(00)] = |V.(01)].

Proof : Suppose u(i) is faulty and |Va(00)]|z2]Va.(01)|. Then all nodes in
{u(i)}UVa(00) UV,(00) must be a subset of the faulty set F and at least
half of the vertices in Va.(10) UVa(11) UVy(10) UVy(11) must be faulty since
a test result 1 for the test (u(j),u(k)) implies either u(j) is faulty or
u(k) is faulty or possibly both. That is,
IFI 21+ 2|Va(00)| + 'Va(lo)l * lVa(ll)l

2 1 + [Va(00)] + [Va(01)] + [Va(10)] + [Va(11)] > t, which is a
contradiction.

From the above lemma, it follows directly that to find whether the
unit u(i) is faulty or not the set V.(1a2) does not contribute to the
determination. The proposed algorithm does not carry out the testing of
u(i) by those nodes of V, which are tested by the nodes of V, to produce a
test result 1. In the phase 1, all the tests (u(j+x(t)),u(j)) are carried
out for all possible j. If a test result happens to be 1 then for every
u(i) having V, containing u(j), the test result of (u(j),u(i)) is useless
for finding the faulty or fault-free status of u(i). Hence by setting the
TAG bit of u(j) to 1, the test is not conducted. After all the phases are



over, for any node u(i), CO(i) gives the value of [V4(00)| and CI(i)
gives the value of |V.(01)] and hence the inference made in the step 2
follows directly from the above lemma. The main purpose of arranging the
nodes in different partitions for different values x’s and to conduct the
testing according to the specified rounds is simply to ensure that for
any x(i)eX, the tests (u(j+x(i)),u(j)) for all j can be conducted in a
constant number of rounds.

IV. Conclusion

In [4-6] under assumptions of each unit being capable of testing
every other unit, an adaptive diagnosis algorithm was presented. Because
of the impracticality of this assumption, we considered a realistic
situation of a D(n, t,X) system to investigate the application of adaptive
approach to the diagnosis problem. An algorithm which identifies all the
faulty units in 3t rounds and O(nt) time was given in this paper.
Consider as an example, G to be any symmetric digraph having node
connectivity t and which has diameter at least 3. Then for every node
u(i) there exists a node u(B) such that there exist t node disjoint paths
from u(B) to u(i) and all these paths must be of length at least 3. Hence
for u(i), a subgraph similar to G' described above can be defined. It
seems a simple extension of the algorithm presented here can be applied
for this digraph G. In short, from the technique here, it is natural to
conjecture that an adaptive diagnosis algorithm similar to the one
presented here can be developed for a PMC model symmetric digraph having
diameter at least 3 and node connectivity t.
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