7o T) X A 46—2
(1995. 7. 20)

Properties of NLC Graph Languages
squeezed with Bipartite Graphs

Dong Hoon Lee

Department of Computer Sciences, Korea University
Seochang 208, Chochiwon, Yongi-gun, Chung-Nam, 339-700, KOREA
e-mail: donghlee@kusccgx.korea.ac.kr

Abstract: For a graph grammar G and a graph-theoretical property 3, let L,(G) be the
language L(G) squeezed with 9, i.e., Ly(G) = L(G) N L(¢). This paper presents results on
language-theoretic properties (such as closure, membership, and other decision properties) of
NLC, B-NLC, and NU-NLC languages squeezed with bipartite graphs. It turns out that the
family of NLC languages is not closed under squeezing with bipartite graphs. We also show
that for each NLC (B-NLC) grammar G, the language squeezed with bipartite graphs, Ly;,(G),
is in PSPACE (NP) and there is an NLC (B-NLC) grammar G’ such that L,;,(G") is PSAPCE-
complete (NP-complete). We further show that for each NU-NLC grammar G, the set of all
complete bipartite graphs in L(G) is in NSPACE(log n).

Properties of NLC Graph Languages
squeezed with Bipartite Graphs

Dong Hoon Lee

Department of Computer Sciences, Korea University
Seochang 208, Chochiwon, Yongi-gun, Chung-Nam, 339-700, KOREA
e-mail: donghlee@kusccgx.korea.ac.kr

TII7XEG L7 7 TERUUEPICOVT, Ly(G) ¥y THEME NS E L(G), +%bb
Ly(G) = LG)NL(Y) ThB LT 5. AXTH 287 77 TEME N7 NLC, B-NLC, NU-
NLC SFEOMAE, FBRPL TOMORENME L LOSHERROMEY R L. 2hICE 5
NLC SFEOKRIZ 2 MY 7 71X BEMICOVTRAL TRV Edibrd. /0, & NLC(B-
NLCO)XE Gz, 287 5 7 TIEME N B Lyy(G) i PSPACE(NP) T& Y, Ly,(G")
* PSPACE-524& (NP-5£4) T& % NLC(B-NLC) X G'#HtET 5 = L R L, &51c% NU-
I;L_CTSCE GROVTLG) DHDETOEL 287 5 7 DKAE NSPACE(logn) Th 5 & &
R

1 Introduction

Graph grammars describe graphs by replacing a
graph by a graph in a derivation step. Within the
theory of graph grammars, we are usually interested
in describing a set of graphs with a certain graph-
theoretical property ¥ (such as planarity, connected-
pess, bounded degreeness, and so on) by a grammar
G, so that we can decide whether or not an arbitrary
graph possesses the property i by solving the mem-
bership problem for G. From a language-theoretical
point of view, we are also interested in whether or not
a grammar G generates a graph with the property v,
finitely many such graphs, only such graphs. We refer
to [4, 8-10, 21] for various applications and approaches
of the theory of graph grammars.

One particular graph-grammar mode] studied in-
tensively during the past decade is the node-label-
controlled (NLC) grammars [16-18}, where in one step
a single node is replaced by a graph and the embed-
ding of the introduced graph into the existing graph
is based on node labels only. Many variations of NLC
grammars have been studied in the literature. Ex-
amples are boundary NLC (B-NLC) grammars [23-
25] in which no two nonterminal nodes are allowed to
be adjacent in any sentential form and neighborhood-
uniform NLC (NU-NLC) grammars [19] in which each
node of the right-hand side of a production is con-
nected either to all neighbors of the replaced node or
to none.

For a graph-theoretical property ¢, let L(¥) be
the set of all graphs satisfying % and, for a graph
grammar G, let Ly (G) be the language L(G) squeezed
with ¥, i.e., Ly(G) = L(G) N L(¢) [17). Properties
of squeezed graph languages have been studied much
in the literature. Janssens and Rozenberg [18] stud-
ied decision problems of various squeezed NLC lan-
guages. Rozenberg and Welzl [23] showed that, for
a B-NLC grammar G and a positive integer k, the
membership in L(G) of connected graphs of maximal
degree at most k can be decided in polynomial time.
Rozenberg and Welzl [24] further studied the closure
properties of B-NLC languages squeezed with various
classes of graphs. Courcelle [5] extended many of the
results in [24) by showing that, for a confluent NLC
grammar G (in which derived graphs are invariant un-
der the order of applications of production rules) and
a graph-theoretical property expressxble in monadic
second-order logic, a grammar G’ of the same type
as G such that L(G') = Ly(G) can be effectively con-
structed and the decision problems “Ly.(G) = 87" and

“L(G) = Ly(G)?” are decidable. (Confluent NLC
grammars include, e.g., B-NLC and NU-NLC gram-
mars. Graphs expressible in monadic second-order
logic include, e.g., trees, connected graphs, planar
graphs, bipartite graphs, and cyclic graphs.) Engel-
friet and Leih {12, 13] showed that the membership
problem for Lin-eNCE (B-eNCE) grammars generat-
ing connected graphs of bounded degree is in NLOG
(LOGCFL). Lautemann [22] showed that the mem-
bership problem for hyperedge replacement svstems
generating connected graphs of bounded degree is in
LOGCFL. (A hyperedge replacement system gener-
ates hypergraphs by replacing a hyperedge by a hy-
pergraph.) Aalbersberg et al. {1] considered various
restrictions on regular DNLC grammars and on graph
languages generated by them with the goal of classi-
fying the membership complexity.

We present results on the properties of node re-
placement graph languages (in particular, NLC, B-
NLC, and Lin-NLC languages) squeezed with bipar-
tite graphs. The paper is organized as follows. Sec-
tion 2 contains basic_definitions on graphs and NLC
graph grammars. Section 3 discusses closure proper-
ties. It is known that the family of B-NLC languages is
closed under squeezing with (the properties of being)
bipartite graphs [5]. We show that the family of NLC
languages is not closed under squeezing with bipartite
graphs. Section 4 discusses membership complexity
and undecidability results for other decision problems.
We show that, for each NLC grammar G, Lip(G) is in
PSPACE (NP) and there is an NLC (B-NLC) gram-
mar G such that Lb,,.(G') is PSAPCE-complete (NP-
comp]ete) We further show that for each NU-NLC
grammar G, the set of all complete bipartite graphs
in L(G) is in NSPACE(logn). Our NLOG result is
not covered by other efficient recognition algorithms
shown in the literature since NU-NLC grammars can
generate degree-unbounded bipartite graphs.

2 Preliminaries

The definitions relating to graph-grammar theory
are mostly from [16). In the sequel, the empty set is
denoted by @ and, for a finite set A, the cardinality of
A is denoted by #A. For a string z, the length of z is
denoted by |z|.

A (node-labeled undirected) graph is a system H =
(V,E, L, ¢), where V is a finite set of nodes, E is a set
of two-element subsets of V (the set of edges), L is a fi-
nite set of node labels, and ¢: V — T is a node-labeling

function. For convenience, the different. components of
H are denoted by Vi, Ey, Ty, and ¢gy. H is called a
graph over T; the set of all graphs over T is denoted
by GRE.

Let H be a graph. Two nodes v,w in H are
neighbors (or adjacent) if v,w € Ey. The degree
of a node v in H is the number of nodes adjacent to
v. H is degree-bounded if each node of H is of de-
gree at most k, for some fixed k > 0. A node in H
is a leaf if it is adjacent to exactly one node. A se-
quence p = (v1,v2,...,0),7 2> 2, of distinct nodes in
Vg is a path (of length r — 1) between v; and v, if
v; and v;41 are neighbors for each i = 1,2,...,r - 1.
If p is a path of length at least two, then a sequence
(v1,---,Vr,vr41) is & eycle if v, and vpy; are neigh-
bors and v1 = vr4y. H is connected if there is a
path between each pair of nodes in H; otherwise, H is
disconnected. H is a tree if it is a connected and does
pot contain a cycle. H is a chain if it is a tree with
two leaves. H is a bipartite graph if its node set can
be partitioned into V; and V; so that Eg C Vi x Va3
H is a complete bipartiile graph if for each v; € V} and
for each vy € V2, (v1,v2) € Ey. H is a discrete graph
if Vg # 0 and Eg = 0. H is the emply graph, denoted
by A, if Vg = 0.

A graph language is any subset of GRg, where T
is an alphabet of node labels. For a graph-theoretical
property v, the set of all graphs in GRy satisfying ¢
is denoted by Ly(%), or simply by L(v) if the under-
lying alphabet ¥ is understood.

A node-label-controlled (NLC) grammar [16] is a
system G = (L,A, P,C,S), where T is an alphabet
of node labels, A C T is an alphabet of {erminal node
labels (the labels in — A are nonterminal node la-
bels), P is a finite set of productions of the form (X,Y)
where X eL—-AandY € Gg, Cisasubsetof Tx T
(the embedding relation), and S € T — A is the inilial
nonlerminal.

A production 7 = (X,Y) of and NLC grammar
G = (%,A,P,C,S) is applied to a node v of a graph
H € GRg, with ¢g(v) = X, as follows. We replace
the node v and all of its incident edges in H by (an
isomorphic copy of) the graph Y and add an edge be-
tween a node z in Y and a (former) neighbor y of v
if and only if (¢y(z),dx(y)) € C. This results in a
graph K € GRy and we write H =>(, ») K (or simply
H = K). A graph H € GRy such that S =" H is
called a sentential form of G. The set of all sentential

forms of G is denoted by I(G). The language gener-
ated by G is L(G) = I(G)NGRa.

An NLC grammar G is a boundary NLC (B-NLC)
grammar [23] if no two nonterminal nodes are adjacent
in the right-hand side of any of its productions. G is a
linear NLC (Lin-NLC) grammar [11] if the right-hand
side of each production contains at most one nonter-
minal node. A graph language L is an NLC (B-NLC,
or Lin-NLC) language if there is an NLC (B-NLC, or
Lin-NLC) grammar G-such that L = L(G). The Lin-
NLC class is a proper subclass of the B-NLC class [12],
which is in turn a proper subclass of the NLC class
[23). Each NLC (B-NLC, or Lin-NLC) language not
containing A can be generated by an NLC (B-NLC,
or Lin-NLC) grammar with no A — production (i.e.,
a2 production whose right-hand side is A) [7, 14]. We
shall assume throughout this paper that each gram-
mar is in such a normal form unless stated otherwise.

Let G be a graph grammar of any type and let ¥
be a graph-theoretical property. The language L(G)
squeezed with v, denoted by Ly(G), is the set L(G) N
L(v). In particular, the set of all bipartite graphs in
L(G) is denoted by Lyip(G).

3 Closure Properties

Let ¢ be a graph-theoretical property. A family
of graph languages is closed under squeezing with ¢ if
each of its languages, when squeezed with ¢, is again
in the family.

Closure under squeezing has been considered of-
ten in the literature. Rozenberg and Welzl [24]
showed that B-NLC languages are eflectively closed
under squeezing with several graph-theoretical prop-
erties, such as connectedness, k-colorableness, and
nonplanarity. Courcelle [5] presented several meta-
theorems on this property. In particular, B-NLC
languages are effectively closed under squeezing with
graph-theoretical properties that can be expressed in
monadic second-order logic. As the property of a
graph being a bipartite graph can be expressed in
monadic second-order logic [6], the closure result in
[5) yields the following theorem:

Theorem 3.1. The family of B-NLC languages is ef-
fectively closed under squeezing with bipariiie graphs.

Theorem 3.2. The family of NLC languages is not

closed under squeezing with bipartite graphs.

Proof. We shall define an NLC grammar G such that
Liip(Go) is not an NLC language. In fact, each bipar-
tite graph in L(Gp) is a complete bipartite graph, and
so, the proof works also for complete bipartite graphs.

Let 7 = {ao,a1,a2} and 7 = {bo, by, b2} be alpha-
bets of node labels. Let f be a mapping on nonnega-
tive integers, defined by f(k) = k¥ mod 3, k¥ > 0. For
each 1 > 0, let T; be the complete binary tree of depth
i such that

1. for each j, 0 < j < i, all nodes at the level j (the
root is at the level 0) are labeled by a;(;) and

2. all nodes at the bottom level (the level i) are la-
beled by bj(.').

For each i > 0, let B; be a bipartite graph obtained
from T; by deleting all edges, adding a node labeled by
#, and finally establishing an edge between the new
node and every other node. So B; has 2+! nodes. The
tree T3 and the bipartite graph B3 are shown in Fig.
1 and Fig. 2, respectively.

b b b b

Fig. 1. The graph T5. Fig. 2. The graph B,

Let Lo = {B;|i > 0}. For each NLC grammar G,
there is a context-free string grammar G such that
L(G') = {aa|n = #Vy for some H € L(G)} [14,
Lemmal6). Note that #Vg, = 2°+1 for each i > 0.
Clearly, the set {a?*'}i > 0} is not a context-free
string language. Therefore, Ly is not an NLC lan-
guage. We shall show, however, that there is an NLC
grammar Go such that Ly:(Go) is exactly Lo.

For each k € {0,1,2}, let (k) = (k+1) mod 3 and
p(k) = (k + 2) mod 3. Let 7,71,72 be the graphs
shown in Fig. 3. Let Gp = (T, A, P.C, S), where

T = {S.#Jurur U{4;|i=012},
A = 1un U{#),
P o= {(S #e—e)) U (A, m), (Ai,o?)]i = 0,1,2),
C = SxIT={(ai,a)), (@i, Ao(i)), {bi) bi), (Ai, ap0iy)
|1=0.1,2}.

S = o5

ao as a2

[- *- - ®
I P AR

Fig. 3. The graph o, 71, and 7..

For each 1 > 0, let B,f be the graph obtained from
B; by replacing the label by(;) of each leaf by the non-
terminal A;(;y and by adding edges between leaves to
make the subgraph of B; induced by the leaves of B;
a complete graph. For example, B; is shown in Fig.
4.)

Fig. 4. The graph B;.

ClaimL Lo g Lb.',,(GQ).

Proof of CIairln. 1. We first show, by an induction on
i > 0, that B; € I{Go). The induction basis is obvi-
ously true. Assume that B,f € I(Go) for all i < n.
’
Then, B, ,y can be obtained by applying the pro-
duction (Ajn),7s(n)) to each node in B,'., labeled by
Aj(n)- Appropriate connections between nodes in the
new graph are guaranteed due to the embedding rela-
tion C. Note that, in any intermediate graph between

B, and B;x+1’ each nonterminal node is adjacent to
all other nonterminal nodes and to all terminal nodes
at the same level. Now, each B;, i > 0, can be derived
from B; by applying the production (A;q,e*®) to
each node in B; labeled by Aji)- Again, appropriate
connections between nodes are guaranteed by the em-
bedding relation C. So, Claim 1 holds.

Claim2. Lyip(Go) C Lo.

Proof of Claim 2. Let X € Lb,-,,(Go). Let D =
(Xo,X1,...,X1), where Xg = o5 and X; = X, be a
derivation for X in Go. We first show that X, = B;
for each i > 0 such that 2° < t. This will be done by
an induction on i. The induction basis is clearly true.
Assume that X, = B; for all i < n.-We need to prove
that, if 27! < 1, then Xpas = 19,’,,,1 Let 2+ < 1.
By the induction hypothejls Xo= = B There are 2"
nonterminal nod& in B We claim t.hat in the sub-
derivation Xa~ =2 Xz-.n of D, the 2" productions
used are exactly the production (Ay(n),Ys(n)) applied
to each nonterminal node of B),. (This claim yields
Xonr = B:,_H, as shown in the proof of Claim 1.)
Suppose to the contrary that the claim were not true.
Then there are two cases:

1. the production (Aj(n), **#(») is applied to some
nonterminal node of B, or

2. the production (Asn+1)r Yo(n1)) or
(A7(n+1)» #bs(»+1)) is applied to a node created by
the application of (A;(n), ¥s(n)) to a node of B.,.

Consider the first case. Let the production
(Ag(ny» #b1(n)) be applied to a nonterminal node of B,;
call this node v after being (rewritten and) relabeled
by by(n). As 27! <, there is at least one nontermi-
nal node of B,, to which the production (4;(ny, 71(n))
is applied. Let w be any node labeled by aj,
introduced by such a rewriting. As (bs(n), Asn)),
(ar(n), A1(m), (By(n) ag(m)), 20d (ay(n), by(n)) are all
in C, the nodes v and w are adjacent in Xyn41. As
(bs(n), #) and (ay(n), #) are in C, v, w and o# make
a cycle of length three. As the nodes in this cycle are
labeled by terminals, no edge in the cycle can be re-
moved in the subsequent derivation steps. So, X is
not a bipartite graph, a contradiction.

Now, consider the second case. Namely, a node
(say v) at the level n + 1, labeled by Aj(ny1), is
rewritten before a node (say w) at the level n, la-
beled by Ajn), is rewritten. Clearly, v and w are

neighbors. The node » will be relabeled by aj(n41y
or byng1y by the rewriting: call it T after being rela-
beled. The node T is adjacent to w before w is rewrit-
ten, since (ag(n41y. Asny) and (byns1), Agny) are in
C. Later, when w is rewritten, it is relabeled by aj(n)
or byny; call this new terminal node w. Note that
(asmys @gna1))s (3sen1 bpinan))s (byin), @s(ng1y), and
(byny, by(n41y) are all in C. That is, the nodes @ and
0 are adjacent in Xaa41. For the same reason as in the
first case, 7, W, and o# are in a cycle of length three
that cannot be removed in the subsequent derivation
steps. So, X is not a bipartite graph, a contradiction.

Let m be the maximum mteger such that 2™ < 1.
Then, X;~ = B,,. The graph B,, contains 2™ nonter-
minal nodes: In going from X2m to Xy, we must apply
the production (As(m), o10m) exactly 2,, times, once
for each nonterminal node of B!, since, otherwise, m
would not be the maximum integer such that 2™ < 1.
(Note that X; does not contain nonterminal nodes.)
The reader can easily check that the graph X;(= X)
is By, and so, X € Lg. This completes the proof of
Claim 2. &

4 Decision Problems
4.1 Membership problems

We consider the membership problem for graph lan-
guages squeezed with bipartite graphs, i.e., the ques-
tion “X € Ly;ip(G)?”, where X is a graph and G is
a (fixed) graph grammar. We shall assume that the
input graph X is given by its adjacency list, encoded
into a string. Our goal in this section is to determine
the upper and lower bounds of this problem for NLC
grammars and their restrictions and develop efficient
recognition algorithms when possible.

Lemma 4.1. Let T be an alphabel.
bipartite graphs in GRyg ts in NLOG.

The set of all

Proof. Let X be an arbitrary graph in GRs. A cy-
cle of odd length in X, if any, can be guessed on log
space. As NLOG is closed under complementation
[15], nonexistence of cycle of odd length in X can also
be tested on log space. &

Theorem 4.2. For every NLC grammar G, L;,.,,(G)
is in PSPAC'E There is an NLC grammar G such
that Lb,,.(G) is PSPACE-complete.

Proof. For each NLC grammar G, L(G) is in
PSPACE[3]). Luip(G) € PSPACE from this and
Lemma 4.1. It is known in [2] that there is a context-
sensitive string grammar for which the membership
problem is PSPACE-complete. Let G, be such a gram-
mar. There exists an algorithm which constricts an
NLC grammar G such that every connected graph .Y
derived by Gy is a "chain graph” of the form

where a; # # for all i, 1 < i < n, such that
{W(X)|X is a connected graph in L(Go)] = L(G}),
where W(X) = a1az---an [17]. We can easily trans-
form an input instance w of L(G}) into a chain graph
X, an instance of Ly;ip(Go). Clearly, w € L(Gy) if and
only if X € Lyip(Go). &

Theorem 4.3. For every B-NLC grammar G
Liip(G) is in NP. There is a Lin-NLC grammar G
such that Lyip(G') is NP-complete.

Proof. For each B-NLC grammar G, L(G) € NP [23].
Lyip(G) € NP from this and Lemma 4.1. In [1, Theo-
rem 3.5(2)], a so-called regular directed NLC grammar
G’ was constructed, where L(G’) contains bipartite
graphs only and L(E'-) is NP-complete. By removing
edge directions from the right-hand sides of the pro-
ductions of G, we can obtain a Lin-NLC grammar G’
satisfying the second statement of the theorem. &

An NLC grammar G = (Z,A,PC,S) is a
neighborhood-uniform NLC (NU-NLC) grammar [19]
if, for each d € T, either d XX C C (d is a connecting
label) or (d xT)NC = 0@ (d is a disconnecting label).

The set of all complete bipartite graphs over an
alphbet A can be generated by an NU-NLC grammar.

Consider the NU-NLC grammar G = (X,A,P,C,S)
such that

T = {5 A B} U A,

P = {(S, A e—e?), (4% o4), (B,Be o),

(A, «7) (B,) | 0 € A},
C = IxZXL.
A typical derivation in G is shown in Fig. 5, where

o; € A for each i € {1, 2,...,k}. Starting with the
last sentential form in this derivation, each A4-labeled

node can just disappear or can he rewritien by using
a process similar to the one as shown in Fig. 5. It
should not be difficult to see that L(G) is the set of
all complete bipartite graphs in GRa.

1

al at

Qi
~

FIG. 5. A typical derivation in G.

NU-NLC grammars are confluent and, as a result,
NU-NLC grammars have many nice combinatorial and
language-theoretical properties [5, 17, 19]. (NU-NLC
grammars are called context-free NLC grammars in
{17).) In particular, many decision problems, which
are undecidable for NLC grammars, are decidable for
NU-NLC grammars.

We consider NU-NLC languages squeezed with
complete bipartite graphs, and present their efficient
recognition algorithms. (Our consideration of this
class has been motivated by the NP-completeness re-
sult stated in Theorem 4.3.) In general, complete bi-
partite graphs is degree-unbounded. Thus, our results
have merits compared with other efficient recognition
algorithms for squeezed graph languages, that mostly
contain graphs of bounded degree only [1, 12, 13, 22,
23]. Our results are in the style of the results in [1],
i.e., efficient recognition has been obtained by impos-
ing structural restrictions (NU) on NLC grammars.

Theorem 4.4. For each NU-NLC grammar G, the
set of all complete bipartite graphs in L(G), denoted
by Lepip(G), is in NSPACE(logn).

Proof. Let G = (E, A, P, C, S) be an NU-
NLC grammar. Suppose that X € Lip(G) and let

= (Xo, X1,...,Xn),Xo = o5, be a derivation for
X in G. It is obvious that an odd cycle in any senten-
tial form cannot disappear in further derivation. So,
each X; is bipartite. We show that each X; is a com-
plete bipartite graph. For each Xj, let V;} and V;? be

the partition of Vx,. Let v; € V! and vy € V;? be
nodes such that (vy, v2) is an edge of .X; (note that
each X; is connected because X, is connected). Sup-
pose to the contrary that there is a node vz such that
(v1, va), (v2, v3) € Ex,. For each j € {1,2,3), let u;
be a node in X, such that u; = »; if v; is a terminal
node or u; is a node generated from v; if vj is a non-
terminal node. Then, u3 is adjacent to none of vy and
ua in X,,. This is a contradiction to the fact that X,
is a complete bipartite graph and hence u3 is adjacent.
to u; or uy. This proves the claim.

Let A be the set of all complete bipartite graphs in
GRg and let H be a graph in A. Let V), Vj be a
partition of nodes of H and let £ = {o,,...,0%}, for
k = #X. Then, H can be fully encoded up to isomor-
phism by a string u(H) € T*$T* defined by

P(H)-”: ‘72 "$o" 5T

where for each 1 < i < k, l;(r;) is the number of nodes
labeled o; in V4 (V3, respectively).

Let p be any efficient encoding function that trans-
forms a string p(H) € Z°$T* into another string of
nonnegative integers, defined by

p(p(H)) = hla---

Let L be the set of all strings of the form p(u(H)),
where there exist graphs H; € A,1 < i < n, such that
(1) H, is a single node labeled by S, (2) H; = Hiyy
for1<i<n-1,and (3) H, = H. It is not difficult
to see that Lg can be accepted by a nondeterministic
linear-bounded automaton, say M¢.

lgsrlrz Tk

Now, let X be an input graph. The membership of
X in Leip(G) can be tested by checking if there is a
partition (V#, V2) of the node set of X such that the
string p(p(X)) corresponding to it is in Lg. Such a
partition can be guessed on log space and the trans-
formation from X into p(p(X)) can be done on log
space. Run Mg on p(p(X)). This needs |p(u(X))]
space, which is log space with respect to the size of

X1 &
4.2 Other decision problmes
We consider language-theoretic decision problems

other than the membership problem, such as empti-
ness, finiteness, equivalence of graph languages

squeezed with bipartite graphs.

Theorem 4.5(Courcelle [5}). For a B-NLC gram-
mar G and a graph-theorclical property i expressible
in monadic second-order logic, the problem of whether
or not (1) Ly(G) = 8, (2) Ly(G) is finile, and (3)
Ly(G) is of boundcd degrec.

The problems of whether or not. L(G) is empty and
whether or not L(() is finite can be easily seen to he
decidable for an NLC-grammar by the known meth-
ods for context-free string grammars. The problem of
whether or not L(G)) is of bounded degree is decidable
for an NLC grammar G [20]. These problems are un-
decidable when squeezed with bipartite graphs.

Theorem 4.6. It is undecidable for an NLC gram-
mar G whether or not (1) Lyip(G) = 8, (2) Lyin(G) is
finite, and (3) Luip(G) is of bounded degree.

Proof. We reduce the problem of whether or not an
NLC language contains a discrete graph, which is un-
decidable 18], to the problems stated in the theorem.
(The proof for the result in [18] is quite complicated.)
Let G=(Z,A,P,C, S) be an NLC grammar. Let #,
be symbols not in S. Let G’ be an NLC grammar
defined by

G = (SU{##) au{#), P,

C U (SU{FE#) < {#).5),

where P’ = PU{(S, .—.-#.i) (F# .?) (#, o*)).
It is easy to see that L(G) contains a discrete graph
if and only if Lb,,.(G) # 0 if and only if Lb,r((‘) is

infinite if and only if Ly (G) is of unbounded degree.
&

References

[1]13.3. Aalbercberg, J. Engelfriet and G. Rozen-
berg, The complexity of regular DNLC graph

languages,” J. Compul. System Sci. Vol. 40,
376-40§ 1990. ? v PP

[2] R. V. Book, “Comparing complexity classes,” J.
Comput. System Sci. Vol. 9, pp. 213-229, 1974.

[3] F. J. Brandenberg, “On polynomial time graph
grammars,” STACS 88 (R. Cori and M. Wirsing,
Eds% Lecture Notes in Computer Science 294,
227-236, 1988.

[4] V. Claus, H. Ehrig, and G. Roazenberg (Eds.),
Graph Grammars and Their Application to Com-
puter Science and Biology, Lecture Notes in Com-
puter Science 73 (Springer-Verlag, Berlin, 1979).

[5] B. Courcelle, “An axiomatic definition of context-

free rewriting and its application to NLC graph

rammars,” Theoret. Compul. Sci. Vol. 53, pp.
41-181, 1987.

[6] B. Courcelle, “Graph rewriting: an algebraic and
logic approach,” in Handbook of Theorctical Com-
puler Science (J. V. Leeuwen, Ed.), Vol. B, Chap.
5, Elsevier, Amsterdam, 1990.

[7] A. Ehrenfeucht, M. Main, and G. Rozenberg, “Re-
strictions on NLC graph grammars,” Theoret.
Comput. Sci. Vol. 31, pp. 211-223, 1984.

[8] H. Ehrig, H.-J. Kreowski and G. Rozenberg (Eds.),
Graph Grammars and Their Application o Com-
puter Science, Lecture Notes in Computer Science
532 (Springer-Verlag, Berlin, 1991).

[9] H. Ehrig, M. Nagl, and G. Rozenberg (Eds.),
Graph Grammars and Their Application to Com-
puler Science, Lecture Notes in Computer Science
153 (Springer-Verlag, Berlin, 1983).

[10] H. Ehrig, M. Nagl, G. Rozenberg, and A. Rosen-
feld (Eds.), Graph Grammars and Their Applica-
tion to Computer Science, Lecture Notes in Com-
puter Science 291 (Springer-Verlag, Berlin, 1987).

[11]J. Engelfriet and G. Leih, “Nonterminal Bounded
NLC graph grammars,” Theoret. Compul. Sci.
Vol. 59, pp. 309-315, 1988. -

[12]} J. Engelfriet and G. Leih, “Linear graph gram-
mars: power and complexity,” Inform. Comput.
Vol. 81, pp. 88-121, 1989.

[13) J. Engelfriet and G. Leih, “Complexity of bound-
ary graph languages,” Theoretical Informatics
and Applications Vol. 24, pp. 267-274, 1990.

[14] J. Engelfriet, G. Leih, and E. Welzl, “Boundary
graph grammars with dynamic edge relabeling,”
ngggomput. System Sci. Vol. 40, pp. 307-345,

[15] N. Immerman, “Nondeterministic space is closed

under complementation,” SIAM J. Comput. Vol.
17, pp. 935-938, 1988.

[16] D. Janssens and G. Rozenberg, “On the struc-
ture of node-label-controlled graph languages,”
Inform. Sei. Vol. 20, pp. 191-216, 1980.

[17] D. Janssens and G. Rozenberg, “Restrictions, ex-

tensions, and variations of NLC grammars,” In-
form. Sci. Vol. 20, pp. 217-244, 1980.

[18] D. Janssens and G. Rozenberg, “Decision prob-
lems for node label controlled graph grammars,”
J.gsg'ompui. System Sci. Vol. 22, pp. 144-177,
1981.

[19] D. Janssens and G. Rozenberg, “Neighborhood-
uniform NLC grammars,” Computer Vision,

Graphics, and Image Processing Vol. 35, pp. 131-
151, 1986.

[20] D. Janssens, G. Rozenberg, and E. Welzl, “The
bounded degree problem for NLC grammars is
decidable,” J. Comput. System Sci. Vol. 33, pp.
415-422, 1986.

[21] H.-J. Kreowski and G. Rozenberg, “On struc-
tured graph grammars. 1 and I1,” Inform. Sci.
Vol. 52, pp. 185-246. 1990.

[22] C. Lautemann, “The complexity of graph lan-
guages generated by hyperedge replacement,”

Acte Inform. Vol. 27, pp. 399-421, 1990.

[23] G. Rozenberg and E. Welzl, “Boundary NLC
graph grammars - Basic definitions, normal
forms, and complexity,” Inform. Control Vol. 69,
pp. 136-167, 1986.

[24] G. Rozenberg and E. Welzl, “Graph theoretic
closure properties of the family of boundary NLC
raph languages,” Acta Inform. Vol. 23, pp. 289-

09, 1986.
[25] G. Rozenberg and E. Welzl, “Combinatorial

properties of boundary NLC graph languages,”
Discrete Applied Math. Vol. 16, pp. 59-73, 1987.

