7 o =2 Y X A AT—12
(1995. 9. 21)

S A % e AR DOWT

Antonio Hernandez Barrera

IN=YNES: i ey

S THIAERBEITE L SEESA R L VT, £AF PEJIORESNIEA
WO OH~BHTELNEI) pEPRETAMEYEX L, RI—RMEHEG T2
bbb, PEQPEEORMSATOBE) L PLQHLY YT VOREIIDW
TTATY X L%5 25, BEMEATO L 213 O(n?m?) Bl O(nm) &L= TL 7
Y= 7LDk &ix O(nm log nm) B, O(nm) EETHEL, 2IT. nidQ

The Polygon Containment Decision Problem

Antonio Hernandez Barrera

Department of Mathematics, Faculty of Science, Hiroshima University

e-mai:rbm02@math.sci.hiroshima-u.ac.jp

We investigate here the problem of deciding whether a polygon P can be trans-
lated to fit inside another polygon @ without constructing the whole feasible region.
We present algorithms for the general case, i.e. P and Q being any simple poly-
gons, and for the rectilinear one. We obtain O(n*m?) and O(nm log nm) time
complexities, respectively, where n is the number of vertices of @ and m is the

number of vertices of P. Both solutions use O(nm) space.

1 Introduction

The polygon containment problem is the
problem of deciding whether a given poly-
gon P can be moved to fit inside another
given polygon @. For more than ten years
this problem has been studied and several
results have been given by [2], [3], [4] and
[9]. There, algorithms for different cases of
polygon shapes and motions have been con-
sidered but all of them are concerned with
finding the whole feasible region of P inside
Q.

Some results concerning the polygon con-
tainment problem without constructing the
whole boundary of the feasible placements
appear in [6], where in the case under trans-
lation, a family of decision algorithms for
monotone polygons is presented. Specifi-
cally, the authors give algorithms for prob-
lems in which (1) both polygons are recti-
linearly convex, (2) both polygons are rec-
tilinearly 2-concave and (3) both polygons
are monotone. Using a plane-sweep-like ap-
proach, their algorithms terminate when the
first feasible placement is found, if one ex-
ists.

In this paper we extend the results in [6]
to the case where P and @ are any simple
polygons and to the case where P and () are
rectilinear polygons. Indeed, our results are
still valid even if both P and @ have holes
and consist of several disjoint polygons. We
present algorithms with a worst-case time
complexity of O(n?m?) for the simple casec
and of O(nm log nm) for the rectilinear one,
where m and n are the numbers of the ver-
tices of P and @, respectively. The space is

O(nm).

In the rectilinear case, the complexity of
our algorithm is lower than the time neces-
sary to construct the feasible region, since
this one may have O(n?*m?) vertices.

2 Preliminaries

Suppose that P and @ are polygons, P can
translate while @ is fixed in the plane. A
position of P in the plane is uniquely de-
termined by the position of a specific point
of P. This point is called the reference
point. A wvalid or feasible placement is a
placement of the polygon P, that is, the
reference point, such that P is contained in
Q. A feasible region is the set of all feasible
placements of P which is denoted here by
C(P, Q). In general, C(P, Q) may consist of
a finite number of polygons, line segments
and points. We consider that the boundary
of P can “touch” the boundary of (). Hence,
C(P,Q) is a closed sct since the points
in the boundary of C(P, Q) correspond to
positions of the reference point where the
boundaries of both polygons share at least
one point.

We denote CH(P) the convex hull of
polygon P and O(P, @) the sct of locations
that make P to intersect (. For conve-
nience, we consider O(P, Q) to be an open
set. ANB, AUB and A — B have the usual
interpretations: intersection, union and the
set of elements which belong to A but not
to B.

A polygon P is simple if its edges are non-
intersecting. P is rectilinear if it is simple
and the edges of its boundary are either ver-

tical or horizontal. A hole of the union of a
set of (open) regions in the plane, is a con-
nected bounded component of the comple-
ment of the union of the regions.

3 The general case

Suppose we are given P and @, any two sim-
ple polygons with m and n edges, respec-

* tively. The problem of computing the feasi-
ble region of P inside @) has been attacked in
[2] where a solution is given to the case un-
der translation using O(n?m?log mn) time.
This solution is nearly optimal as the feasi-
ble region may have Q(n?m?) vertices in the
worst case ([3]). The method can be gener-
alized in case rotations are also allowed to
obtain a O(r*m®log mn) time complexity
algorithm. There is also another solution
for the case under translation:

Proposition 3.1 Suppose that the concav-
ities of polygon Q (CH(Q) — Q) are de-
composed into conver parts Qi,..., Qi and
that polygon P is also decomposed into con-
vez parts Py, ..., P. The set of valid place-
ments is gwen by C(CH(P),CH(Q)) —
Uz’j O(Pi»Qj)~

Based on Proposition 3.1, Avnaim
and Boissonnat ([1]) developed an algo-
rithm for computing the feasible place-
ments with time complexity O(cqcp(epn +
cgm) log (cpn + cgm)). Here, c, denotes
the number of concave vertices of P plus
one and ¢, denotes the number of convex
vertices of) which are not vertices of the
convex hull of @ plus the number of edges

of the convex hull of @ which are not edges
of Q. In the worst case, ¢, = O(n) and
cp = O(m), so the time complexity becomes
again O(n?m?log nm).

In this section, we show how to solve the
detection problem using O(n?m?) time and
O(nm) space.

Let %' be the number of edges of
C(CH(P),CH(Q)). Consider the sup-
porting line of edge e¢; for each e; in
the boundary of C(CH(P),CH(Q)). Let
h; be the halfplanc which the interior of

C(CH(P),CH(Q)) is not in.

Theorem 3.2 P can be placed inside Q iff
Uk_, UL, O(P;, Q;) U UL h; has a hole.

The algorithm that determines whether P
fits inside () proceeds in four steps:

Algorithm S

Step 1 Compute CH(Q), CH(P) and
C(CH(P),CH(Q));
Step 2 Obtain a de-

composition of CH(Q)— Q into convex
parts @1, ..., @k and a decomposition of
P into convex parts P, ..., P;

Step 3 Compute O(P;,Q;)

Vi1 <0 <
L1<j <k *

Step 4 Determine whether U§=1 Ui,
O(P;,Q;)U Uf-’_;lhi has a hole, where A;
and k' are as above;

The correctness of Algorithm S follows in-
mediately. Let us analyze its performance
time. Step 1 takes O(n + m) time be-
cause the convex hull of a polygon can be

1_

computed in linear time ([14]) and the set
of translations that fit a convex m-gon in-
side another convex n-gon is a convex poly-
gon, with at most n edges, that can be
determined in O(n + m) ([4]). To trian-
gulate a simple polygon is to partition it
into triangles without adding new vertices.
It is possible to obtain such a decomposi-
tion, into a number of triangles which is
less than twice the number of edges of the
polygon, using O(u log u) time, where u is
the number of edges of the polygon ([11]).
On the other hand, notice that CH(Q) - Q
is a set of disjoint polygons, with at most
n edges, that can be computed in linear
time. Therefore, Step 2 can be performed
in O(n log n + m log m) yielding k < 2n
and | < 2m convex parts. It is casy to see
that O(P;,Q;) is a convex polygon with at
most six vertices which can be computed in
constant time so Step 3 takes O(mn) time.

A solution to the problem of determining
whether the union of the set of convex poly-
gons of Step 4 has a hole can be based on
computing the arrangement of the support-
ing lines of the polygon edges. Once the ar-
rangement has been obtained we can mark
the cells (vertices, edges and regions) con-
tained in some polygon using constant time
per cell. There is a hole if and only if there
is at least one unmarked cell. The arrange-
ment of N lines in the plane can be com-
puted in O(N?) time ([8]). In our case, the
set of lines would have size O(kl + k") which
is O(nm). Step 4 then takes O(n?m?).

In summary, the detection problem can

be solved in O(n?m?). The storage is also
O(n*m?) since the arrangement will be con-

structed cntirely. Indeed, using this ap-
proach we can compute all the unmarked
edges what allows us to have a description
of the whole feasible region. In this way,
we obtain an algorithm with better perfor-
mance time than the ones in [1] and [2].

However, our goal is to solve the detec-
tion problemn and we demonstrate now that
there is a way to solve it without having to
construct the whole arrangement. The so-
lution uses the topological sweep described
in [7].

In the topological sweep the arrangement
is swept by a line that is not necessarily
straight. In the process cach cell is visited
once and the clementary steps (an elemen-
tary step is performed when the topologi-
cal line sweeps past a vertex) along a given
line are performed from left to right. The
scheme uses quadratic time but only linear
space is necessary if the cells are examined
as they are built and discarded inmediately
afterwards.

Let us associate to cach line ! of the
arrangement a counter c(l) to store the
number of polygons currently covering I.
Clearly, ¢(l) changes only if a vertex on !
is reached. Thus, ¢({) = 0 means that the
points on ! inmediately to the right of a
vertex where an elementary step has been
performed at are not inside any polygon,
¢(l) = 1 means that those points are inte-
rior to onc polygon and so on. For each line
I ¢(l) can be updated during the sweep like
follows.

Initially let ¢(l) = 1, for I is covered,
at z = —oo, only by the complement of
C(CH(P),CH(Q)). Supposc that an ele-

a(l)

(a) Line 1 enters a polygon

(b) Line 1 abandons a polygon

Figure 1: Updating c(1)

mentary step is going to be performed at a
vertex on I. The value of ¢(!} is modified in
this way: c(l) = ¢(I) + 1 if line | enters a
polygon or c(l)=c(1)-1 if line 1 abandouns a
polygon. Sec Figure 1. Notice that deter-
mining whether a line enters or abandons a
polygon at a vertex can be done in O(1).

It is clear that an cdge of the arrange-
ment lying on I, is part of a hole if and
only if ¢(I) = 0 between the two vertices of
the edge. Thus, we can determine whether
polygon P fits inside ¢ by topologically
sweeping the arrangement and computing
the counter values. Observe that the algo-
rithm can stop whenever ¢{l) = 0 for some
line ! without scanning the rest of the ar-
rangement since the answer for the detec-
tion problem is already known. In summary,

Theorem 3.3 Let P and Q be two simple
polygons with m and n edges, respectively.
Determining whether P can be translated to
fit inside Q can be done, in the worst case,
in O(n*m?) time and O(nm) space.

Algorithm S can be applied even if both
P and @ have holes (P must fit inside @
but outside @’s holes) and consists of several
disjoint polygons, since Proposition 3.1 and
Theorem 3.2 still hold.

4 The rectilinear case

Suppose that P and @ are two rectilinear
polygons with m and n edges, respectively.
There is an O(n?m?) time complexity algo-
rithm in [1] for computing C'(P, @), which is
worst-case optimal since, as we have already
said, the feasible region may have Q(n%m?)
vertices. There, the authors raised the ques-
tion of whether the complexity of their algo-
rithm could be reduced in case we only want
to decide containment. In the following, we
prove that the answer to that question is
affirmative.

First, we recall some results which we
shall use in the sequel. Given a set S of pos-
sible overlapping intervals on a line, consider
the problem of maintaining efficiently, under
insertions and deletions in S, the union of
the intervals in S. This problem has been
considered first in [13] and later in [5], where
an improved solution is obtained by storing
the intervals in a red-black tree ([10]) suit-
ably augmented with additional pointers to
allow fast reporting and update. From [5]
we take this proposition:

Proposition 4.1 Given a set S of intervals
on a line, the ordered list of intervals in their
union can be reported in 6(k) time and in-
sertion/deletion of an interval can be done
in O(log n) time in the worst case, where k
18 the number of intervals in the union and
n is the number of intervals currently in S.
The scheme uses §(n) space.

As in Algorithm S, we base our solution
of the rectilinear case on Proposition 3.1
and Theorem 3.2 but, to take advantage
of the rectilinear nature of the input, we
design a different approach. The idea is
to make a sweep of the polygonal regions
Us; O(P:,Q;) and C(CH(P),CH(Q)) try-
ing to find a portion of the latter not covered
by the former. CH(Q) will not stand this
time for the convex hull of the polygon Q.
To keep working with rectilinear polygons,
instead of the convex hull we will compute
the rectilinearly convez hull which can be de-
fined as a rectilinearly convex polygon that
contains @) and has a minimal area [12].

Algorithm R

Step 1 Compute C(CH(P),CH(Q)) and
place rectangles along its boundary as
in Figure 2. Let them be hy, hqg, ..., Ay

Step 2 Decompose CH(Q) — @ into rect-
angles; say Qy,...,Q%

Step 3 Decompose P into rectangles; say
Pl) P2v KRR I)I

Step 4 Compute O(P;,Q;) Vi, j,1 < ¢ <
L1<j<k

C(CH(P),CH(Q))

Figure 2: The rectangles h; are shown

shaded

Step 5 Make a sweep of the abscissae of
the left and right edges of the O(P;, Q;)
and h rectangles, following the scheme
in Proposition 4.1, i.e. inserting ev-
ery left edge and deleting every right
edge when the corresponding abcissae
is reached. Check in each update if a
hole has appeared. If so, report that
the search finished satisfactorily and
stop.

Step 6 Report that there is not room in-
side @ for P (so far, all the rectangles
have been swept and no hole appeared)
and stop.

Computing CH(P) and CH(Q) is done
in O(m) and O(n), respectively ([12]).
C(CH(P),CH(Q)) is a rectilinearly convex
polygonal region, with at most mn bound-
ing edges, that is computed in O(nm log)

‘14

([3])- Thus, Step 1 takes O(nm log m).
CH(Q) — Q is, as in Algorithm S, deter-
mined in linear time. A simple partition-
ing of a rectilinear N-gon into rectangles is
to draw vertical lines at each concave ver-
tex. The number of rectangles obtained
in this way is upperly bounded by N/2.
Such a partitioning can be computed in
O(N log N) time by means of the plane
sweep method supported by a balanced tree.
Using this idea, O(n) and O(m) rectangles
can be computed in Step 2 and Step 3 to
yield O(n log n) and O(m log m), respec-
tively. This time O(P;, Q;) is a rectangle,
therefore, Step 4 takes O(mn) time.

To make the plane sweep as described in
Step 5, we can sort the left and right edges of
the O(P;,Q;) and h rectangles by abcissac
in O(mn log mn). There are such O(mn)
edges, so inserting/deleting them takes, due
to Proposition 4.1, O(mn log mn) in to-
tal. Finally, to detect whether a hole has
appeared, we just need to report the list of
intervals in the union after an update has
been performed. Clearly, there is a hole if
and only if there is more than one interval in
the union. Also, by Proposition 4.1 the list
of intervals can be reported in O(k) where
k is the number of the intervals. Because
the algorithm will keep running only if there
is one interval, the detection step will take
O(1) always except possibly once, i.e. when
a hole appears. At that moment k could
be O(mn) in the worst case since there are
O(mn) rectangles and, at any fixed position
of the sweep line, each of them can only con-
tribute, at most, one interval to the union.

We have proven the following theorem

then:

Theorem 4.2 Suppose we are given P and
Q, two rectilinear polygons with m and n
edges, respectively. Determining whether P
can be translated to fit inside Q@ can be done
in O(mn log mn) time and O(nm) space.

As in Section 3, Theorem 4.2 still holds
even if both P and @ have holes and consist
of several disjoint polygous.

5 Discussion

We have given here algorithms for detecting
whether a given polygon P can be trans-
lated to fit inside another given polygon Q.
Specifically, we Lave solved the general (any
simple polygons P and @) and the rectilin-
ear case. In the rectilinear case, the time
complexity is lower than the time necessary
to compute the whole feasible region. To
the best of our knowledge there are not such
kinds of results in the casc of simpler shaped
polygons, namely convex, rectilinearly con-
vex, star polygons and so on. The ideas pre-
sented in this paper do not seem to work on
these cases. Indeed, for the polygon contain-
ment problem, the question of whether the
detection problem is “easier” than the com-
putation one is open in general. We have
shown in this paper that the answer for the
rectilinear case under translation is “yes”.

References

[1] F. Avnaim and J.D. Boissonnat. Simul-
tancous containment of several poly-

(2]

3]

[4]

(6]

7]

gons. In 3rd ACM Symposium on
Computational Geometry, pp. 242-250,
1987.

F. Avnaim and J.D. Boissounat. Poly-
gon placement under translation and
rotation. In STACS 88, Lecture Notes
in Computer Science 294, pp. 322-333,
1988.

B.S. Baker, S.J. Fortune, and S.R.
Mahaney. Polygon containment un-
der translation. Journal of Algorithms,
No. 7, pp- 532-548, 1986.

B. Chazelle. Advances in Computer Re-
search, Vol. 1, pp. 1-33. JAI Press Inc.,
1983.

S.W. Cheng and R. Janardan. Efficient
maintenance of the union of intervals
on a line, with applications. Journal of
Algorithms, No. 12, pp. 57-74, 1991.

J.S. Chiu and J.S. Wang. Monotone
polygon containment problems under
translation. Journal of Information
Processing, Vol. 13, No. 4, pp. 486-493,
1990.

H. Edelsbrunner and L.J. Guibas.
Topologically sweeping an arrange-
ment. Journal of Computer and System
Sciences, Vol. 38, pp. 165-194, 1989.

H. Edelsbrunner, J. O’Rourke, and
R. Seidel. Constructing. arrangements
of lines and hyperplanes with applica-
tions. SIAM Journal of Computing,
Vol. 15, No. 2, pp. 341-363, May 1986.

(9]

[10]

(1]

[12]

13]

(14]

S.J. Fortune. A fast algorithm for poly-
gon coutainment by translation. In 12-
th ICALP, Lecture Notes in Computer
Science 194, pp. 189-198, 1985.

L. Guibas and R. Sedgewick. A dichro-
matic framework for balanced trees.
In 19th Annual IEEE Symposium on
Foundations of Computer Science, pp.
8-21, 1978.

S. Hertel and K. Mehlhorn. Fast tri-
angulation of the plane with respect to
simple polygous. Information and Con-
trol, pp. 52-76, 1985.

T.M. Nicholl, D.T. Lecand Y.Z. Liao,
and C.K. Wong. On the X-Y convex
hull of a set of X-Y polygons. Dit,
No. 23, pp. 456471, 1983. '

M.H. Overmars. Dynamization of order
decomposable set problems. Journal of
Algorithms, No. 2, pp. 245-260, 1981.

F.P. Preparata and M.I. Shamos. Com-
putational Geometry, an Introduction,
pp. 160-165. Springer-Verlag, 1985.

