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Finding optimal intervals using computational geometry
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Abstract. We consider a sct Y of data. Each data p has a key key(p) and real values u;(p) (i = 0,1,2,.., h).
We assume key(p) is an integer in [1.n]. For an iuterval I = [s.#], let u;(I) = 2y pier vilp). We consider
some conditions and objective function related to w;{I), and find the optimal interval I. Intuitively, this is a
modification of the formulation of mathematical programming (e.g. LP) to functions on intervals of discrete
data. We propose efficient geometric algorithms, and discuss its application to data mining. We also consider

its two-dimensional extension in application to image processing.
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[4 1: Optimal interval finding problems



1 Introduction

Suppose we have a set 17 of n data. cach of which has a primary integral key key() in [0, N] and numerical
values u;() fori = 0,1,2,..,h. If u;(p) > 0 (vesp. wi(p) < 0) for each p € Y7, we say u; is positive (resp. negative)
monotone. Without loss of generality, we assume N = n unless specifically declared. For an interval I = [s,t],
let ui(I) = Xy ppmer wilp)-

A basic operation in data base searching is the interval searching, which is formulated as follows: *For a
given interval I, compute u«;(I).” This can be trivially done in O(n) time. Moreover, after preprocessing the
data in O(nlogn) time, the interval scarching can be done in O(logn) time [7]. In this paper, we consider
reversal problems of the interval scarching:

Optimal-Interv:ﬂ Finding (OIF): “Given real numbers K; (i=1,2...,h), compute the interval 7 maximizing
ug(I) under the condition that w; () > L for i =1,2,.., b7

LP-type OIF “Under costraints fi(I) = a}u;(I) + ... + alup(I) > Ky (I = 1.2,..,m and N >> m >> h),
maximize wq(I).”

Ratio Optimizing Interval Finding (ROIF): “Compute the interval I maximizing w;(I)/uo(I) under the
condition that ug(I) > K and ug is positive monotone”

Generalized Ratio Optimizing Interval Finding (GROIF): “Compute the interval I maximizing u; (I)/uo (I}
under the condition that u;(I) > I; for i =0.1,2,3,...,h and kp > 0"

Functions ug(I) in OIF and w{I)/ue{I) in ROIF and GROIF are called the objective functions, while the
other u; (i = 1,2, .., k) are called the conditional functions.

Since there are at most O(N?) intervals, it is trivial to give O(N?) time solution for each of problems, and
easy to improve it to O(N?). Our aim is to design better algorithms when h is a small constant. We give an
O(N log" N) time and O(N) space solution of OIF. If the objective function ug is monotone, the time complexity
is reduced to O{N log"~! N) time. If cach of the condition functions is (positive or negative) monotone, OIF
can be solved in O(N) time. LP-type OIF can be solved in O(m*/2 N log"*? N) time and space. ROIF can
be solved in O(N) time and space. GRIOF can be solved in O(N log"*?) time and O(N log"*1) space..

We also consider the following two dimensional version in O(n) time. Suppose that each data p has a
secondary key key’(p), which is an integer in {1,.., N} (here, we do not assume n =-O(N)). We consider the
N x N grid G. Then, KEY (p) = (key(p). key'(p)) is a lattice point in G.

Optimal Region Finding (ORF): “Find the connected & monotone region R so that Z(R) = ZKEY(p)GR wo(p)

is maximized.”

2 Applications

Data mining.

Imagine a database containing data of n customers. For each customer, key(p) is his/her age, and uo(p) is
the number of game softwares which he/she buys a year. A game company want to make a series of new game
software, and want to optimize the target customers. For the purpose, a planner wants to find the age interval
attaining the maximum software purchase under the condition that at least 0.5 software per customer is bought
in average. We define u,(p) = wo(p) — 0.5 for all p. Then, the problem is formulated as:

“Find an interval maximizing uo(I) under the condition that u;(J) > 07, which is an OIF problem, where the
objective function ug is (positive) monotone.

Suppose that he wants to find an age-interval containing at least 10,000 customers, and maximize the profit
ratio, assuming that the expence is propotional to the number of customers. Then, defining u(p) = 1 for all p,
we want to solve

“Find an interval maximizing uy(I)/uz(I) under the condition that up(I) > 10,000,” which is an ROIF problem.



These two are typical examples of of data mining, which is a general concept for rule (association rule)
finding problems from a data base. Efficient query methods of the optimal intervals are crucial for such data
mining systems. (In the above example. "age™ is up to 100 or so, but in other applications, N may become
much larger). ‘

Next, we consider a data. where key(p) and key'(p) are age and income of the customer p, respectively. We
define (for instance) wug(p) = t(p) — 2w if p has t(p) computers and w is the average number of computers a
customer has. Then, the solution of ORF gives the age-income region in which customers are tend to be heavy
computer-users.

All of OIF (for h = 1 and a monotone objective function), ROIF, and ORF have been already implemented
as data mining functions, and tested on real data base [6].

Image segmentation, Suppose the data 1™ corresponds to the set of pixels in NV x N pixel grid. Each pixel
p has a gray level g(p). We define key(p) and key’(p) corresponding to the coordinates of the pixel, and
ug(p) = g(p) — « for a suitable coustant a. The solution of ORF of the above Y is called a focused image

associated with a, and plays a key role in image segmentation [3].

3 Algorithms for interval finding

3.1 Programming Pearls

A very easy case of OIF can be found in the “Programming Pearls” (column of J. Bentley in C. ACM [4]),
in which the problem is used as an example to demonstrate how algorithm design techniques are important to
write an efficient program. »

Problem PP: “Compute the interval I maximizing wo(I)”

Bentley showed four algorithms. whose time complexities are O(N?), O(N?), O(Nlog N), and O(N), re-
spectively. The lincar time algorithm scans the data with respect to the key. For each i, MarEndHere(i) =
max,<; to([s,2]) and MaxSofar(i) = max,<r<i uo([s,#]). Then, MaxSofar(N) is our answer.

We have relations that MarEndHere(i + 1) = max{0, MarEndHere(i) + ug({i})} and
MazSofar(i + 1) = max{MarEndHere(i + 1), MaxrSofar(i)}. Thus, a simple dynamic programming gives
O(N) time solation. Unfortunately, this method does not work if we generalize Problem PP to OIF.

3.2 Monotonically-conditioned interval finding

We give a solution of OIF when conditional functions are monotone, based on a fast matrix scarching

algorithm. First, we note that «;(J) (¢ = 0.1..., /) can be queried in constant time by giving some preprocessing:
Lemma 1 After O(n) preprocessing. we can query wi(I) for each given I in O(1) time.

Proof: We computes u;([0,s]) for all s in O(n) time, and store them in tables. Then, we can compute
ui((s,t]) = ui([0, t]) — ui([0, 8]) in O(1) time. o

A function f(I) is “convex” if f(I)+ f(I') £ fIUI')+ f(INT') for every pairof T and I' if INI' # .
u;(I) are convex (mo{roover', the equality holds instead of the inequality above).

For each s, we define firsti(s) (resp. lasti(s)) to be the minimum (resp. maximum) index t such that
ui([s,#]) > K;. If there is no such index, we define last;(s) = first;(s) = N + 1. Based on the following lemma,
which is immediate consequence of the monotonicity, we can compute first;(s) and last;(s) for s = 1,2,..,N
in O(N) time.

Lemma 2 For eachi=1,2,...h. firsti(s) > first;(s') and last;(s) > last;(s') if s > &,



For each s, opt(s) is the index such that first;(s) < opt(s) < last;(s) and wo([s, opt(s)]) > wuo([s,t]) for every
first(s) <t < last(s). The solution of OIF is max=y 2, ,~ to([s, opt(s)]).

Lemma 3 The indices opt(s) (s = 1.2,...N) can be computed in O(N) time. Moreover, it can be computed in
O(log N) time using O(N) processors in. CREW model.

Proof: Because of the convexity, we can apply fast matrix searching method in a Monge matriz 1, 2J. u}

Theorem 1 OIF can be solved in O(N) tirne if all conditional functions are monotone. Also, it can be computed
in O(log N) time using O(N) processors.

3.3 Optimal interval finding

The non-monotonicity of the condition functions gives a drastic change on the solution. Since each data p
bas h +1 values u;(p) together with the key key(p), it can be considered as a point in b + 2-dimensional space.
So, we consider the OIF as a computational-geometric problem. However, we cousider a different point set from
{(key(p), uo(p), ..., un(p)) : p € Y} in order to apply techniques of computational geometry. ;

Let us consider a set § = {¢; : i = 1,2,..N} of points in & 4 2-dimensional space defined by ¢; =
@0, a0, M My = (0, i]). 1) ([0, ). s un([0.4]), 6).

A point g = (2(, ., 2"+ 1)) dominates other point ¢ = (2@, .., 2P +DYif 20 > 2 for cachi = 0,1,..., h+
1. We say a point ¢ is dominated by a sct A of points if there exists a point ¢’ € 4 dominating ¢. A point g; of
S is a maximal (resp. minimal) point of S if there is no other point ¢; of S dominating (resp. dominated by)
gj, for = 1,2, .., h. The set of maximal (resp. minimal) points of S is called the maxima (resp. minima).

From a point ¢ in the space, let F(¢) be the unique point of S (if exists) which has the maximum 2f!)-
coordinate value among the points dominating g. It is easy to see that if there is a point of S dominating ¢,
F(q) exists, and it is in the maxima of S. We define K = (0, &'}, K, ..., K3, 0), and g+ K is the point associated
with the vector sum of ¢ and K.

Lemma 4 If I = (s,t} is the solution of the OIF, ¢, is a minimal point, q; is a mazimal point, and q =
F(¢s + K).

So, it is sufficient to compute F(g, + K) for all s = 1,2,.., N in order to solve OIF. Although it is not easy
to compute F(g) for each ¢ in polylogarithmic time using a linear space data structure, we have an efficient
algorithm to compute F(q) for all ¢ € S together.

Lemma 5 F(g,) for all s = 1,2,..,N can be computed in O(N log" N) time and O(N) space.

Proof: For simplicity, we assume that N = 2™ for an integer m. We sort the list q1,¢2,...,qn (originally
sorted with respect to the h + 2-th coordinate) into a sorted list gy,..., gv with respect to the first-coordinate
(corresoonding to v = ug). We define Sy, 4 = {241,020 L4202 G200 141y }-

Then, we can compute F(g, + K) for s = 1,2,..,N as follows: Let S+ K = {¢ + K : ¢ € S}. First, we
compute the subset U(1) consisting points of S+ K whose projection images by pr are dominated by pr(S; m—1).
We define U(2) = § — U(1) (set difference). Then, F(z) for z € U(1) is in Sj ;n—1, whereas that for = € U(2) is
in So,m-1, if there exists a point of § dominating =.

We next compute the subset U(1.1) consisting of points of U/} whose projection images are dominated by
pr(S3,m—2), and define U(1,2) = U(1)—U(1,1). Similarly, we compute the subset U(2,1) consisting of points of
U(2) whose projection images are dominated by Pr(Si,m-2), and define U(2,2) = U(2) — U(2,1). We continue
this operation until we compute Ufe,....,e,,) for all e; € {1,2}. Then, F(z) for a point z in Uler,...,en) is

grm+1 where M = .27 465272 4 4 ¢, if it dominates = (otherwise, no point of S dominates z).



It is known that for point sets 4 and B in R? (d > 2) of total size M, respectively, we can find the subset
consisting of points of A dominated by DB in ()(1\1’10g"’_2 M) time [5, 7] and linear space, if the point sets
are sorted with respect to a coordinate, (this operation is called filtering in [7]. and used as a subroutine
of computing maxima of a point set). In parallel model, the operation can be done in O(log M) time using
O(M 1og?~% M) processors.

Hence, U(1) can be computed in ()(.’\"log"" N) time, and for each fixed ! < m =log N, U(ey,ez..cner-1,1)
can be computed from U(ey.ez,....e1_1) in O((2™H1 4+ |U(ey, €2, .., e1-1)]) log" ™! N) time.

Since Ee;e(1,2} {U(er,e2, ..., 121)| = N, the time complexity of our algoithm is O(N log" N), and the space
complexity of the algorithm is O{V). ]

The above method is named group ray shooting, which is a multidimensional divide & conquer algorithm.
.(0)

When the objective function » = ug is monotone, then, i < j if and only if 2;"' < .'r;"). Thus, we can ignore

the last coodinate of ¢;. Hence, we have the following:

Theorem 2 OIF with h conditional functions can be solved in O(N log" N) time and O(N) space. Moreover,
it can be solved in O(log? N) time using O(N log" ™! N') processors. If the objective function is monotone, the
sequential time complexity and the processor number in parallel computation can be reduced by o factor of log N.

Remark. If 4 =1 and the objective function is monotone, the above theorem claims O{N) time solution,
which cannot be obtained by using group ray shooting naively. In this case, we construct the 2-dimensional

maxima of sorted point set in linear time, compute F(z) by using it, and solve OIF in linear time.

3.4 LP-type OIF

Because of space limitation, we omit details of the LP-type OIF problem. Based on modified orthogonal
range searching method [8, 7], we have the following theorem:

Theorem 3 If h is a small constant, and h << m << N, LP-type OIF can be solved in O(m /2 N log"+? N)
time and space. If the objective function is monotone, the complezitics can be reduced by a factor of log N.
Moreover, if b = 2 and the objective function is monotone, the problem can be solved in O(mN log? N} time
and O(mN log N) space.

3.5 Algorithm for ROIF

We use a point set S = {g; = (uo([0,7]).«;([0,7]))} in a plane. Note that we use the symbols ¢; and S for
different ones from the previous section. For I = {s,t], u;(I)/uo(I) = (y; — y:)/(x1 — ¥5) is the slope of the
segment between g and g;. For cach point ¢;, let SE(i)={gj:v;—a; > L}. Let UConv(Sk(t)) be the upper
convex hull (upper chain of the convex hull) of $F.(i). We also consider a point set (i) = {gj 1 ¢; < x;}and its
lower convex hull LConu(S(i)). Let slope(i) be the slope of the common tangent line line(i) of LConv(S(i))
and UConv(Sk(i)). o

Lemma 6 If I = (s,t] is the solution of RIOF, q, is a vertez of UConv(Sk(s)), and g.q, is « common tangent
segment to convex chains LConv(S(s)) and UConv(Sk(s)). Moreover, slope of qsq, is max;{slope(i)}.

Thus, it suffices to compute the maximu of slope(i), together with its associated common t-ahgeuf segment.
Let us consider a dynamic algorithm which updates LConv(S(#)), UConv(Sk (i), and line(i) in an on-line

fashion by increasing 7 from 1 to V. We omit the proof of the following lemma in this version:
Lemma 7 The updating time is O(1) amortized time for each i.

Theorem 4 The ROIF can be solved in O(N') time.



3.6 Algorithm for GROIF

Let ¢ = (uo([0,4])s s un([0,])), prilqs) = (uo([0,4]), ur([0,4])), § = {qi : ¢ = 1,2,.., N}, and S(< i) =
{~<I-‘,qi+1a---~<IN}- :

We also define ¢; + K = (uo([0,7]) + Ko,.c.o up([0,4]) + Kn). Let W(s,m) = {q; € S(< m) : ¢, +
K is dominated by ¢;}. We consider a (/ + 1)-dimensional dynamic orthogonal range scarch data structure
with O(N log"*t! N) space, which stores principal subsets of S(< m), so that W(s,m) is reborted as a union
of O(log"'H N) principal subsets. The data structure is based on range search tree [8]. (Note that the above
preformance is worse by a log N factor in both space and time complexity than that of counting query model
of Willard [8], since we must store a principal subset and a secondary structure shown below in each nodes of
the range search tree.)

For each principal subset A, we precompute 2-dimensional upper convex hull of pra(4), so that we can
compute the tangent from pra(gs) to pry(A) in O(log N) time. If we decrement mn by one, the subset can be
updated in O(log"*2 N) time.

For each s, we query W (s, s); then. we can compute the interval I(s) = [s, opt(s)] which maximize wy (I)/uo(I)
in O(log"*? N) time. Thus, we have the following lemma:

Theorem 5 GROIF can be solved in O(N log"t? N) time and O(N log"*t! N} space.

4 Optimal region finding problem

Here, we do not assume the data size n to be O(N); Ou the contrary, n can be as large as N2, In
his “Programming Pearls”, Bentley posed a two-dimensional extension of Problem PP, which is, “compute a
rectangle region R of the grid G so that ZKEY( PIER v(p) is maximized”. Unfortunately, the current best
algorithm for solving this problem needs O(N?) time, which is O(n'-%) even if n = N2. Our ORF problem is

another way of extending Problem PP to a two-dimensional problem.

Theorem 6 ORF can be solved in O(n) time.

Proof: An O(N?) time solution is given in [3] (as a subroutine of an image segmentation algorithm), and it
is easy to modify it to be O(n) time. o
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