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K-Opt Algorithm for Multiple Alignment
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The multiple alignment of the sequences of DNA and proteins is applied to various important
fields in bioscience. Due to its importance, there have been proposed many algorithms, and yet
new techniques to resolve difficulties in solving large-scale problems are required. This paper
proposes a k-group alignment algorithm for multiple alignment as a practical method. It is
demonstrated that the k-group alignment can be implemented so as to run in a rcasonable time
and space under standard computing environments. This is established by generalizing the A*
search approach for multiple alignment devised by Ikeda and Imai [8].

1 Introduction DP became feasible when the length n is not so
large. But, it is impractical to apply this method
directly to a little larger dimensional problem
because n? becomes cnormous then. For large
d, approximate algorithms dividing d sequences
into two groups and applying 2-dimensional DP
between the two groups have been used (Berger,
Munson [2], Gotoh [4]). The resultant align-
ment is improved gradually by iteration of divid-
ing and aligning. Another method for multiple
alignment is a tree-based (iterative) algorithm
[6], and in it 2-dimensional DP is also used. In
connection with these algorithms, Hirosawa ct
al. [5] employed 3-dimensional DP as the basis
for an initial aligniment to the subsequent itera-
tive algorithm.

The A* algorithm reduces search space with-
out lack of optimality of the result alignment.
There were proposed some methods of reducing

The multiple sequence alignment is the problem
to find the alignment of multiple sequences with
highest score due to a given scoring criteria be-
tween characters. The solution of this problem
for multiple sequences of DNA and proteins rep-
resents the similarity among them and is applied
to various important fields such as the prediction
of three dimensional structure of proteins and
the inference of phylogenetic tree in molecular
biology.

The method based on Dynamic Programming
(DP) is a well-known approach for multiple sc-
quence alignment problem. It searches all ver-
tices in the grid-like acyclic graph, and has O(n4)
time and space complexity for d sequences of
length at most n. This approach is effective for
small dimension of two or three. In fact, with
the increase of computing power, 3-dimensional



the search space in multiple alignment (Carrillo
and Lipman [3], Spouge [9], ctc.), but the A* al-
gorithm with upper bounding operation would
be the best method to derive an optimal align-
ment 7, 8] (see also [9]). Araki et al. {1] proposed
to use an A* algorithin for 2-dimensional DP in
the Berger-Munson iterative algorithm. They
use an cstimate derived from a score table which
can reduce the scarch space in the 2-dimensional
case. The cstimate for A* multiple alignment in
Ikeda and Imai [8] was demonstrated to be very
powerful, and in this respect generalizing the A*
algorithm in [8] to k-group alignment is rather
natural.

This paper investigates a k-group alignient
algorithm for multiple alignment. In the k-group
alignment problem, d scquences are given with
k disjoint groups of them, each being internally
aligned, and a best alignment among these k
groups should be found with only inserting a
gap simultaneously in the same position for the
alignment of each group. First, it is shown that
the same approach in [8] can be applied to the
group alignment problem. Several ways of ap-
plying A* search to this problem are discussed.
Then, its connection with the standard iterative
improvement algorithm is described. Through
computational cxperiments, it is demonstrated
that the k-group alignment can be performed
for k = 3,4,5 in a practical time depending on
the problem size, and this produces better align-
ments. For example, for 21 sequences of length
about 450, 5-group alignment can be performed
fast enough. About the alignment quality, 3-
group alignment yields better solutions compared
with 2-group DP almost with a little additional
time. 4- and 5-group alignment methods can
find better solutions in most cases but require
more time. The practicality of k-group align-
ment is thus shown, and further investigation of
elaborating this with other methods and enhanc-
ing itself should be done.

2 A* Algorithm for Multiple
Alignment

The multiple alignment problem can be solved
by finding the shortest path on some directed
acyclic graph as follows. Suppose that Sy de-
notes the k-th sequence of length ny = O(n)
and d denotes the dimension, the number of se-
quences. Then in the directed acyclic graph G =
(V, E) such that V = {(z),...,z4) | 7; = 0,1,
<ot and E=Ugegnya{(v,v+e) |v,vtee€

V, e # 0}, a path from the vertex s = (0,...,0)
to the vertex t = (ny,...,nq) corresponds to an
alignment of sequences. In case of d > 2, the
sum of all scores for pairwise sequence align-
ments is used as the score for the multiple se-
quence alignment in general. This corresponds
to defining cach edge length in G as the sum of
all corresponding edge length in the graphs for
pairwise alignments. Let G;j = (V;5, Ej;) denote
the graph for the alignment of S; and S; (i < j),
that is, Vij = {vi; = (zi, ;) | v = (z1,...,2q) €
V} and Eyj = {(uij,vi;) | (u,v) € B, ui; # vij}.
Then the length of edge (u,v) in E is defined
as lu,v) = 1 cicj<al(tij, vij) where I{uij, vij)
denotes the length of edge (uij, vi5) in graph Gy;
and is defined from the score table between char-
acters. Thus, the multiple alignment problem
can be formulated as a shortest path problem
on G. The shortest path on such a graph can
be computed by dynamic programming in a di-
rect way, but its complexity ©(n?) is intractably
large for large d.

The A* algorithm can find a shortest path
without secarching the whole graph if good cs-
timates on the shortest path length from each
vertex to ¢ are at hand. Ikeda and Imai [8] show
a method of obtaining such good estimators by
computing pairwise 2-dimensional (‘21) subprob-
lems for d sequences. For the case d > 2 (the
2-group alignment in the sequel can be handled
similarly), it uses the following estimator h:

Z L*(vy5, t,'j).

1<i<j<d

h(v) =

where L*(u,v) denotec the shortest path length
from u to v. This estimator uses the shortest
path length in the pairwise alignment problem
as the estimate for the length of the path cor-
responding to the shortest path in the multiple
alignment problem by making use of relations of
G and Gj;;. In higher dimensional problem, nec-
cssary time and space for solving pairwise prob-
lems is negligible. It is clear that each estimate
h(v) does not exceed the actual shortest path
length from v to ¢, and morecover h is dual feasi-
ble, i.e., for any edge (u,v) in E,

Yo (ug,vi5) + L vij, ti5)
1<i<j<d

> Z L*(uij,tij) = h(u)

1<i<j<d

l(u,v) + h(v) =

Hence the A* algorithm using this estimator is
reduced to the following simple one.



1. For arbitrary pair of ¢ and j satisfying 1 <
i < j < d, apply DP to graph Gj; from vertex
t;; and calculate L*(vij, tij) for any vi; in V5.

2. Apply the Dijkstra method to graph G from
vertex s with the length of edge (u,v) mod-
ified as I(u,v) + h(v) — h(s) where h(v) =
Yi<icj<a L™ (vij, tij)-

3 Group Alignment and Its
Use in Iterative Algorithms

3.1 k-Group Alignment

Since the multiple alignment problemn becomes
hard to solve when d is large, as a subproblem,
the group alignment is considered. Originally,
in the group alignment, d sequences are divided
into two groups, say d’ sequences and d — d’ se-
quences (0 < d’ < d), and then fixing the align-
ment in each group, it solves a 2-dimensional
alignment problem between two groups. In this
2-dimensional problem, since the alignment in
each group is fixed, when a gap is inserted into
a group, it is simultanecously inserted in the same
position. Sce Figure 1.
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Figure 1: (a) Aligning seven sequences by a 2-
group alignment for {Thc} and others, (b) an
obtained alignment

For general k > 2 (k < d), the k-group
alignment problem can be defined similarly. In
this problem, d sequences are given as k dis-
joint groups, and each group is associated with
some alignment of sequences in the group. In a
typical case, for an alignment of d sequences, k
aligned groups can be obtained simply by divid-
ing this alignment into k groups (and remov-
ing trivial gaps inside each group alignment).
Then, the k-group alignment problem finds a
best-score alignment of d sequences under a con-
dition that, in each group, each column of its
alignment should be fixed. Hence, when a gap is
inserted into a sequence in some group, the same
gap should be inserted in the same position in

every sequence in the group. In this case, a k-
dimensional grid-like graph is used to solve the
k-group alignment problem, as in the original -
dimensional alignment problem. See an example
of k = 2 and d = 7 in Figure 1. Since the score
function is defined to be the sum of scores of all
pairs, the A* approach can be directly extended
to this k-group alignment problem by virtue of
the principle of optimality.

There may be considered several types of
A* search algorithm for k-group alignment. We
here only mention one. For each pair of groups,
compute the score of 2-group alignment between
the two groups, and make the summation of
those scores as a lower-bound estimator in solv-
ing the k-group alignment problem. Here, even
when solving 2-group alignment problems be-
tween general two groups, we can make usc of
the scores of all-pairs of sequences computed in
the preprocessing stage to solve it by the A*
search.

3.2 [Iterative improvement

The standard randomized iterative improvement
method proposed by Berger and Munson [2] pro-
ceeds as follows:

1. Construct an initial alignment by a method;
2. Divide d sequences into two groups randomly;
3. Remove trivial gaps in each group;
4.

Solve the 2-group alignment to obtain a new
alignment;

5. If the score dccreases, update the current
alignment to the new one;

6. If a stopping condition is met, stop; other-
wise return to step 2;

In the step 2 above, all the sequences are
divided into two groups randomly. There is a
method of dividing them into a group of one
sequence and a group consisting of the other d—1
sequences. This partition is called a restricted
partition in [6]. Also in that case, instead of
using randomization, one scquence for a group
of a single element may be changed in a round-
robin fashion. There are many other methods
(see [6])-

It is rather natural to extend the iterative
algorithm in a way that in step 2 it divides the
sequences into k groups for k£ > 2. We call such
itcrative algorithm the k-opt iterative algorithm.
The A* algorithm for group alignments can be
utilized in the k-opt algorithm. There can be



considered two methods of dividing d sequences
into k groups, by directly generalizing the above-
mentioned existing methods for k& = 2.
k-random-grouping: This mecthod divides d
sequences randomly into k groups so that no
group becomes empty. This will be denoted by
RA(k) in the computational results below.
k-restricted-grouping: This method divides
them into k — 1 groups consisting of a single
sequence and another group consisting of the
other sequences where each sequence in the for-
mer k — 1 groups is chosen randomly. This will
be denoted by RI(k) in the next section.

In [5], the latter method with k = 2 was used
to derive a best-first itcrative improvement algo-
rithn, and it was observed that the restricted-
grouping stratcgy produces favorably nice solu-
tions compared with the random-grouping one.
When the A* is used in the iterative method with

the restricted-grouping strategy, solving (kgl)

subproblems out of (;) can be dispensed with.

4 Computational Results

In order to investigate the actual efficiency of
this approach, experiments aligning actual se-
quences of proteins have been performed. Our
implementation is designed to evaluate several
strategies in a system, and is coded in such a
general setting. This causes in some places re-
dundant computation which can be avoided by
cleverly using the information obtained in the
preprocessing stage. This point should be re-
marked especially in observing timing results in
the computational results. For example, the fol-
lowing points can be improved further from the
current code.

(a) When the A* is used in the iterative im-
provement method with the restricted-grouping,
solving (kgl) subproblems out of (’;) can be dis-
pensed with. However, in the current imple-
mentation, these subproblems are solved from
scratch every time.

(b) Even when solving 2-group alignment prob-
lems between general two groups, we can make
use of the scores of all-pairs of sequences con-
puted in the preprocessing stage to solve it by A*
search. However, we do not incorporate this in
the code. Instead, a kind of lazy 2-dimensional
DP algorithm is implemented. Here, “lazy” exe-
cution may be done in many ways. For example,
in the beginning only a fraction of DP table is
computed, say in a constant-bandwidth region,

and values of other elements are computed when
necessary.

(c) In the experiment, the lincar gap system is
used instead of the affine gap system (sec be-
low). To obtain more meaningful alignments,
the affine gap system is regarded as a better one,
and performing the experiment with the affine
gap system is important. For k-dimensional DP
alignments, it is known that with the affine gap
system it takes morc time compared with the
case of the linear gap system as k increases. This
point should be actually tested, which is left
as future work. Concerning the performance of
our A* approach, we suspect that changing the
alignment cost system from the simple pairwise
sum of 2-alignments to the weighted sum may
affect more.

Concerning the score matrix, the PAM-250
matrix has been used in assigning edge length
with each sign of score reversed. The linear gap
system ax for the gap of length « is used (extend-
ing the current system to the affine gap system
azx + b for the gap of length =z would be practi-
cally important work). With regard to the gap
penalty, the minimum value in the PAM-250 ma-
trix, a = —8, has been adopted. All the experi-
ments were done on SPARCStation 20 with 128
megabytes memory.

4.1 Case with High Similarity

In this experiment, elongation factor TU (EF-
TU) and elongation factor la (EF-1a) are used
as in [8]. The number of sequences is 21, and the
length of each sequence is about 450. The best
alignment found by the experiment is 294813
with length 482.

As an initial alignment, we adopted a solu-
tion of the A algorithm in [7, 8] with parame-
ter 81/80. The score of this initial alignment is
294201. By using a tree-based DP, better initial
solutions can be obtained, but those solutions
are processed by group DP, while the solution
by the A algorithm is not. Starting with the so-
lution by the A algorithm, the alignment score
is improved fast initially. We tested 10 series of
100 iterations with using different random num-
bers. Both of the k-random-grouping RA(k) and
k-restricted-grouping RI(k) arc examined. Some
of computational results arc given in Figure 2.
Box plots are used, and a box plot comprises
these clements: 1) a box with 1a) a central line
showing the median, 1b) a lower line showing
the first quartile, 1c) an upper line showing the
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third quartile; 2) 2 lines extending from the cen-
tral box of max- imal length 3/2 the interquar-
tile range but not extending past the range of
the data; 3) outliers, points that lie outside the
extent of the previous clements.

For smaller k such as 2 and 3, the k-random-
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Figure 2: Computational results for EF-1a: (a)
A box plot of final scores after 100 iterations (10
series), (b) A box plot of running times for the
estimator precomputation (“P” in short; in the
left side) and A* scarch (“S” and in the right
side) per step in the computation of typical se-
ries in (c¢), (¢) Score improvement processes of
typical scries such that its final score attains the
median score among the first three trials for each
k and strategy.

Time (s)

grouping mecthod RA(%) tends to produce worse
solutions than the k-restricted-grouping method
RI(k). For large & such as 4 and 5, this ten-
dency becomes less clear. In these experiments,
the 3-restricted grouping method may be said to
be the best one in regard to both computation
time and solution quality. About the solution
quality, the 3-restricted grouping produces bet-
ter solutions than 2-restricted grouping, as seen
in Figure 2(a) and cven if we use the scores of the
2-restricted grouping with 200 itcrations, results
arc almost samne. Here, it should be stressed
that this speed of 3-group alignment is achicved
by the use of A*. It is also observed that, even
for k = 4,5, k-alignment problem can be solved
in a reasonable time cven for this rather large-
scale problem. Concerning the effect of A*, for
k = 3 (and 4), its estimates are nice enough
to reduce the search space drastically. In fact,
the A* scarch takes much less time than the
precomputation of estimator in this case (Fig-
ure 2(b)). For k = 5, the estimates becone less



effective, and sometimes the A* scarch space be-
comes large, although it is still manageable.

4.2 Observations on Computational
Results

Although the above-mentioned results are still
preliminary ones, the following may be observed.
(a) We have tested two methods of dividing d
sequences into k groups. It is observed that
the k-restricted-grouping method tends to pro-
duce much better-score alignments than the k-
random-grouping method on the average.
(b) As k becomes larger, the k-opt algorithm
takes more time, but produces on the average
better aligninent results. Although for k = 4,5
it takes definitely larger time compared with 2-
and 3-group alignments, by these results it is
verified that 4-(and 5- when the similarity is
high)group alignments can be practically used
to polish up an almost final alignment further.
(c) The A* search greatly reduces the running
time required by DP. In fact, in these experi-
ments, 3-group alignments can be solved in time
by a small constant factor of the running time of
standard 2-dimensional DP. Furthermore, their
solution quality is definitely better than that of
2-group methods.
(d) Related to a widely known fact concern-
ing k-opt local scarch algorithms for combina-
torial problems, there are so many local optima
in such combinatorial problems, and there do
exist many local optima for 2-group alignments
which are not local optima for 3- and higher or-
der group alignments. By increasing k, it takes
more time to check the local optimality of cur-
rent solution, but this is not a big problem since
3- and higher order group alignments can pro-
duce better solution than 2-grouping method in
reasonable additional time and checking the lo-
cal optimality is less important in this respect.
Thus, this paper proposed the use of k-group
alignment for & > 3, and showed its power via
computational experiments. Yet, as is noted
above, there still are many points which can be
improved further in the current code, and devel-
oping a refined systemn would be very interesting
as future work.
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