7 o Iy
(1995. 11. 17)

d-Separated Paths in Hypercubes and Star Graphs

Qian-Ping Gu and Shietung Peng
Department of Computer Software, The University of Aizu
Aizu-Wakamatsu, Fukushima, 965-80 Japan
e-mail: {qian/s-peng}@u-aizu.ac.jp

Abstarct: In this paper, we consider a gen-
eralized node disjoint paths problem: d-separated
paths problem. In a graph G, given two distinct
nodes s and t, two paths P and Q, connecting s
and t, are d-separated if dg_{(,)(u,v) > d for
any u € P — {s,t} and v € Q — {s,t}, where
de_(s,}(u,v) is the distance between u and v in
the reduced graph G — {s,t}. d-separated paths
problem is to find as many d-separated paths be-
tween 8 and t as possible. In this paper, we give
the following results on d-separated paths problems
on n-dimensional hypercubes H,, and star graphs
Gn. Given s andt in H,, there are at least (n—2)
2-separated paths between s and t. (n — 2) is the
mazimum number of 2-separated paths between s
andt for d(s,t) > 4. Moreover, (n—2) 2-separated
paths of length at most min{d(s,t)+2, n+ 1} for
d(s,t) < n and of length n for d(s,t) = n be-
tween s and t can be constructed in O(n?) opti-
mal time. For d > 3, d-separated paths in H,
do not exist. Given s andt in G,,, there are ez-
actly (n— 1) d-separated paths between s and t for
1<d <3. (n—1) 3-separated paths of length at
most min{d(s,t) + 4,d(G,) + 2} between s and t
can be constructed in O(n?) optimal time, where
d(G,) = [ﬂ"z—_llj For d > 5, d-separated paths
in G, do not exist.

Key words: Interconnection networks, node dis-
joint paths, graph algorithms,

1. Introduction

Finding disjoint paths (refer node disjoint paths
in this paper) in interconnection networks is one
of the fundamental issues in design and implemen-
tation of parallel and distributed computing sys-
tems [9, 8, 2, 15, 16, 18, 14, 4, 6. Finding multiple
disjoint paths is also one of major approaches to
solve fault tolerant routing problem. For exam-
ple, given two nodes s and ¢ in a graph, k disjoint
paths between s and t guarantee the routing path
s — t exists in the presence of up to k—1 arbitrary

OThis research was partially supported by The Founding
of Group Research Projects at The University of Aizu

faulty nodes. For a specific routing problem, we
say a graph can tolerate ! faulty nodes if given at
most [arbitrary faulty nodes, the required routing
path exists for the routing problem. In the case of
more than [faulty nodes, if the routing path does
not always exist, what are the conditions for the
existence of the routing path? This problem has
been attracting much attention and several ap-
proaches such as forbidden faulty set, cluster fault
tolerant routing, and so on have been developed
[12, 10, 5, 7.

Recently, fault tolerant routing was studied for
the case that faulty nodes can be covered by sub-
graphs of small diameters [5, 7]. It has been shown
that several important interconnection networks
such as hypercubes, star graphs, and so on, can
tolerate ! arbitrary faulty clusters of small diam-
eters rather than [arbitrary faulty nodes, where
a faulty cluster is a connected subgraph such that
all its nodes are faulty [5, 7]. In practice, pro-
cessors of an interconnection network often fail in
a cluster-like manner. For example, two routing
jobs, one is between nodes s, and ¢; and the other
is between s, and t5, are performed simultane-
ously in a graph. The nodes in the routing path
between s; and ¢, can be viewed as faulty nodes
by the routing between s, and t3, and vice versa.

To develop a new approach for solving fault
tolerant routing, in this paper, we study a gener-
alized disjoint paths problem, d-separated paths
problem: In a graph G, given two distinct nodes
s and ¢, two paths P and Q, connecting s and t,
are d-separated if dc_i,,t}(u, v) > d for any u €
P —{s,t} and v € Q ~ {s,t}, where dg_(,,)(u,v)
is the distance between u and v in the reduced
graph G — {s,t}. d-separated paths problem is to
find as many d-separated paths between s and ¢ as
possible. When d = 1, d-separated paths problem
becomes conventional node-to-node disjoint paths
problem. For two nodes s and ¢, k d-separated
paths between s and ¢ guarantee the routing path
s — t exists if the faulty nodes can be covered by
at most k —1 subgraphs of diameter at most d—1,
even though the total number of faulty nodes are

X L 48— 8

far beyond k — 1. Therefore, d-separated paths
with a larger d would make the communication
between s and ¢t more reliable.

Hypercubes and star graphs are interesting in-
terconnection networks for parallel computation
and communication. A number of efficient algo-
rithms for disjoint paths problems and fault toler-
ant routings in hypercubes and star graphs have
been proposed [18, 3, 13, 11, 17, 5, 7]. It is pre-
viously known that for s and t in n-dimensional
hypercubes H,, there are n disjoint paths between
s and ¢ of length at most min{d(s,t) + 2,n + 1}
for d(s,t) < n and of length n for d(s,t) = n
{18]. For s and t in n-dimensional star graphs
G, there are n — 1 disjoint paths of length at
most min{d(s,t) + 4,d(G,) + 1} between s and ¢
[13, 3, 11, 17}, where d(G.) = |22 | is the di-
ameter of G,,. The bounds on the lengths of dis-
joint paths given in [18, 13, 3, 11, 17] are optimal.
In this paper, we investigate d-separated paths
problem in H,, and G,. Given distinct nodes s
and t in H,,, we prove that there are at least (n—2)
2-separated paths between s and ¢t. We also show
that (n—2) is the maximum number of 2-separated
paths between s and t for d(s,t) > 4. We give an
algorithm which, given s and ¢ in H,, constructs
(n—2) 2-separated paths between s and ¢ of length
at most min{d(s,t) + 2,n + 1} for d(s,t) < n
and of length n for d(s,t) = n in O(n?) optimal
time. In fact our algorithm can construct n dis-
joint paths between s and t with a subset of (n—2)
paths are 2-separated. Since the distance between
two arbitrary neighbors of s in the reduced graph
H, — {s,t} is 2, for d > 3, d-separated paths in
H, do not exist. Given s and ¢ in G,, we show
that there are (n— 1) 3-separated paths between s
and t. Since G, is (n—1)-connected, (n—1) is the
maximum number of d-separated paths between s
and ¢ for 1 < d < 3. We also give an algorithm for
constructing (n — 1) 3-separated paths of length
at most min{d(s,t)+4,d(Gn,)+ 2} between s and
t in O(n?) optimal time. For any two neighbors
u and v of a node s in Gn, dg,_{s}(u,v) = 4.
Thus, for d > 5, d-separated paths in G, do not
exist. The d-separated paths given in this paper
for hypercubes and star graphs enhance the fault
tolerant properties of hypercubes and star graphs.

The rest of this paper is organized into three
sections. d-separated paths in hypercubes and
star graphs are discussed in Sections 2 and 3, re-
spectively. Some concluding remarks and open
problems are given in the last section.

2. d-Separated Paths in Hypercubes

A path in a graph G is a sequence of edges

of the form (s;,52)(s2,83)...(8k—1,3%), i € G,
1<4i<k,ands; #sj,i# j. The length
of a path is the number of edges in the path.
We sometimes denote the path from s; to sx by
81 — 8. For a path P = (s1,82)...(Sk—1,3%), We
also use P to denote the set {sy,..., s} of nodes
that appear in path P if there is no confusion
arises. Given two nodes s,t € G, d(s,t) denotes
the distance between s and ¢, i.e., the length of the
shortest path connecting s and ¢, in graph G, and
dg—{s,1}(3,t) denotes the distance between s and
t in the reduced graph G — {s,t}. The diameter
of G is defined as d(G) = max{d(s,t)|s,t € G}.
In this paper, < n >= {1,2,...,n}. For sets A
and B, we will use A — B to denote the set C =
{z|x € A and z ¢ B}. Given two nodes s and ¢
in a graph G, paths P and Q between s and ¢ are
called d-separated if for any nodes u € P — {s,t}
and v € Q — {s,t}, dg_{5,}(1,v) > d. Wecall a
set of paths d-separated if any two paths of the
set are d-separated. For d = 1, d-separated paths
are called disjoint paths.

An n-dimensional hypercube H, is an undi-
rected graph on node set {0,1}" such that there
is an edge between u € H,, and v € H, iff u and v
differ exactly in one bit position. H, is node and
edge symmetric, is n-connected, and has diameter
d(H,) =n.

We will adopt the following notations in the
discussion of this section. For a node s =
@183 ...an € H,, s(), 1 < i < n, denotes the
node a; ...a;_1G;a;y1 ...an, where @; is the logi-
cal negation of a;. Similarly, slinianix) denotes
the node b; ...b,, where b;; = a3;, 1 < j <k,
and by = q; for I €< n > —{i1,...,%}. Given
two nodes s and t in H, and k disjoint paths
Py,..., P, between s and t, these k paths pass
through k neighbors s(1),... s0%) of s and k
neighbors £071), ... 1) of t. We call the set
S = {i1y.oyix} (T = {j1,..-,J&}) the port-set
of s (t) through which paths Pi,..., P pass.

For any two neighbors v and v of a node s
in Hy,, obviously dy,_(,(u,v) = 2. Thus, d-
separated paths for d > 3 do not exist in H,,. For
d = 1, d-separated paths in H,, were enumerated
in [18]. Now, we find 2-separated paths in H,.

Theorem 1 Given two nodes s and t in H,, with
d(s,t) = n > 4, (n—2) 2-separated paths of length
n between s and t can be found in O(n?) time.

Proof: To prove the theorem, we show the fol-
lowing statement: given s and ¢ in H, with
d(s,t) = n, where n > 4 and n # 5, and any
two integers p and gof < n >, (I < n—2) 2-
separated paths of length n between s and ¢ that

Figure 1: Partition H, into Hgo, Hoy, Hio, and
Hll.

pass through port-sets S =T C (< n > —{p,q})
(IS] =1) can be found. Since H, is node symmet-
ric, we can assume ¢ = 00...0 and s = 11...1.
The statement is proved by induction on n.

To show the induction base, without loss of gen-
erality, we assume p = n—1 and ¢ = n. Forn = 4,
we can find two 2-separated paths as:

P : t— 1000 — 1001 — 1011 — s
P, : t— 0100 — 0110 — 0111 — s.

Let n = 6. The argument for n = 4 above implies
the case of | = 2. For I = 3 and § = {1,2,3}, we
can find the three 2-separated paths as:

P :t — 100000 — 100100 — 110100
— 110101 — 110111 — s

Py,:t — 010000 — 010010 — 011010
— 011011 — 011111 —» s

Py:t — 001000 — 001001 — 101001
— 101011 — 101111 — s.

For I = 4, partition H, into 4 (n — 2)-dimensional
subcubes Hyg, Ho1, Hjo, and Hj;, such that the
two bits p and ¢ of the four subcubes are 00, 01,
10, and 11, respectively (see Figure 1). Obviously
t € Hoo, t'P € Hyg, t9 € Hoy, s € Hyy, s €
Hyp, and 59 € Hyp. We find two 2-separated
paths which pass through port-sets Sig = Tjo =
{1,2} and Hy,, and find two 2-separated paths
which pass through port-sets Sp; = To; = {3,4}

and Hy,. Obviously, the above four paths are 2-
separated.

Let n = 7, the argument for n = 6 implies the
statement if I < 4. For [= 5, we can construct
three 2-separated paths which pass through Hjo
and two 2-separated paths which pass through
Hy, (in the following paths P = 10 and @ = 01)
as:

1000000 — 10000P — 10001 P

Pt —

— 10011P — 11011P — 1101111 — s
Py:t — 0100000 — 01000P — 01001P

— 01101P — 11101P — 1110111 — s
Py:t — 0010000 — 00100P — 00110P

— 10110P — 11110P — 1111011 — s
Py:t — 0000100 — 00001Q — 01001Q

- 01011Q — 01111Q — 0111111 — s
Py:t — 0001000 — 00010Q — 10010Q

— 10011Q — 10111Q — 1011111 — s.

Assume the statement holds for k < n -1, k >
7, and we prove it for n. Let p and ¢ be any
two integers of < n >. Partition H,, into 4 (n —
2)-dimensional subcubes Hgg, Hor, Hyo, and Hy;
as we did above. Let I = [(n — 2)/2], S10 =
Tio be a subset of < n > —{p, q} with |Sio| =1,
and So; = To; = (< n > —{p,q}) — S1o. From
the induction hypothesis, we can construct ! 2-
separated paths between t(?) and s(9 of length
n — 2 that pass through port-sets S;g and Typ in
Hyp, and construct m = (n — 2 — 1) 2-separated
paths between (9 and s of length n — 2 that
pass through port-sets Sg; and Ty; in Hy;. After
this, for each path ¢P) — ¢(Pi) — () s(o),
disconnect (P from) and connect (P to t(‘),
and disconnect s{("9) from s(9) and connect s(ri+9)
to s(") (Figure 1). We get I 2-separated paths
Py,..., P of length n between s and t. Similarly,
we can get m 2-separated paths Q;,...,Qmn, m =
(n—2)—1 of length n, by reconstructing the paths
from (9 to s(®). For any path

Pt — ¢ o glip) glam) _, o(m) s,
i € T, and any path
Qj:t— 1), ¢lGa) _, gloms) _y () s,

J € Tor, we show that P; and Q; are 2-separated.
Since i,7; € Tjo = Sip and j, ri € Ty =
So1, t® #£ t(9) and s # s, From this,
d(tD,¢1)) = 2 and d(s(™),s(™)) = 2. Let u be
any node in the subpath t(»?) — (97} and v be
any node in t(»9) — ¢(P73), Since there is no edge
between subcubes Ho; and Hyg, d(u,v) > 2. Sim-
ilarly, we can show that for any u € P; — {s,t}

and v € Q; — {s,t}, dy, _(s,3{(u,v) > 2. Thus,
the statement holds.

To show the theorem, we still need to prove
it for n = 5. In fact, this has been done in the
proof of the statement for n =7 and l = 5. It is
easy to see that the above proof implies a recursive
algorithm which constructs the (n—2) 2-separated
paths. It takes O(n) time in each recursive step
and O(n?) time in total to find the paths. O

In addition to the (n — 2) 2-separated paths
given in Theorem 1, two more disjoint paths be-
tween s and ¢ can be found. These paths will be
used in constructing 2-separated paths for the case
of d(s,t) < n.

Lemma 2 For two distinct nodes s and t in H,,
with d(s,t) = n > 4, n disjoint paths, among them
(n — 2) paths are 2-separated, of length n can be
constructed in O(n?) time.

Proof Sketch: For n < 5, the lemma can be
proved by an enumerate argument. For n > 6, let
S =T =<n>—{p,q}. From Theorem 1, we can
find (n —2) 2-separated paths which pass through
port-sets S and T. Partition H,, into 4 (n — 2)-
dimensional subcubes Hyg, Ho1, Hyo, and Hy; as
in Theorem 1. The two additional disjoint paths
can be constructed as follows. One path P starts
from ¢ to t{P) which is in Hyo and the other path Q
starts from ¢ to t(9) which is in Hpy. Since Hyg has
I < (n — 2) — 2 2-separated paths constructed by
Theorem 1, by an inductive argument, we can find
two disjoint paths between t®and 59 in H,, that
are disjoint with the ! 2-separated paths. Choose
one of the two paths, we get path P. Similarly,
path @ can be obtained. O

Theorem 3 For two arbitrary nodes s and t in
H, with d(s,t) = k, (n — 2) 2-separated paths,
among them k — 2 are of length d(s,t) and n — k
are of length d(s,t) + 2, can be found in O(n?)
time.

Proof: Without loss of generality, we assume that
t = 00...0 and the first k bits and the last n — k
bits of s are 1 and 0, respectively. Let Hj be
the k-dimensional subcube obtained by fixing the
last n — k bits of H, into 0. Then s,t € Hy, (see
Figure 2). From Theorem 1, we can find (k —
2) 2-separated paths between s and ¢ of length
k in Hi. From Lemma 2, we can find a path P
of length k that is disjoint with the (k — 2) 2-
separated path. Let H,(:), E+1 <i<mn, be the
k-dimensional subcube obtained by fixing the last
n—k bits except the ith bit to 0 and fixing the ith
bit to 1. Then t(, s() ¢ H,(c') and d(s(), 1) = &
(Figure 2). We map path P in H) into H,(:) as

Figure 2: Partition H,, into H} and H,(:).

follows: for each node u in P, we change the ith
bit of u from 0 to 1. Then, we get a path P;
of length k between s and t®) in H,(:). Since
P is disjoint with the (k — 2) 2-separated paths
in Hy, P; is 2-separated with these & — 2 paths.
Obviously, paths P; and Pj, k+1 < 4,7 < n and
i # j, are 2-separated. The length of the path P;
isk+2. 0

We have proved that for any s,t € H,, n dis-
joint paths, among them n—2 are 2-separated can
be found. Now, we show that (n — 2) is the max-
imum number of 2-separated paths between any
two nodes s and ¢ of H, with d(s,t) > 4.

Theorem 4 For two nodes s and t in H, with
d(s,t) > 4, let P be any set of 2-separated paths
between s and t. Then |P| < n —2.

Proof: We first show the case of d(s,t) = n. As-
sume there is a set P.= {Py,..., P}, m 2 n—1,
of 2-separated paths between s and ¢. Further-
more, we assume path P; passes through neighbor
t() of t, 1 <1 < m. The next node connected to
() in P; can not be t{%9) for any 1 < j < m, since
d(t(43),#(9)) = 1 and P; and P; are 2-separated.
Thus, m < n— 1. Assume m = n — 1. Then
D, 1<i<n- 1, must be connected to t(i™).
The next node connected to t{»™ must be {57
for some j with j # i,n (notice that d(s,t) > 4).
However, d(t(i’"'j),t(j’")) = 1, a contradiction to
P; and P; are 2-separated. Thus, |P| < n —2.
Now prove the general case of d(s,t) = k. Let

H,, be the k-dimensional subcube which contains
s and ¢. Then, from the above argument, we can
have at most (k — 2) 2-separated paths between s
and t in Hj. Since s has n — k neighbors which
are not in H;, we can have at most (n — k) 2-
separated paths outside Hj. Let t(and #(9 be
the two neighbors that have not been used by the
(n — 2) 2-separated paths. Then obviously, there
is a node u in one of the (n—2) 2-separated paths
such that d(u,t®)) =1foranyi€<n>. O

3. d-Separated Paths in Star Graphs

An n-dimensional star graph is a graph G,,, where
the nodes of G, are in a 1-1 correspondence
with the permutations [p1,p2...,pn] of the set
< n >= {1,2,...,n}. Two nodes of G, are
connected by an edge if and only if the permu-
tation of one node can be obtained from the other
by interchanging the first symbol p; with the ith
symbol p;, 2 < i < n. This interchange of the
symbols in position 1 with position ¢ is called a
transposition. For node s = [py,pz,...,pn], s¥
denotes the node [Ph P2y:+«yPi—-15P1sPit1ye e+ apn]$
obtained by transposition i on s. G, has n! nodes,
and n! x ﬁﬂ_;ll edges. It has uniform node degree
n—1 and diameter d(G,) = [ﬂnz——llj G, is node
and edge symmetric and is (n — 1)-connected.

Since star graphs are node symmetric, in node-
to-node routing, node ¢ can be assumed to have
the identity permutation I = [1,2,...,n]. Since
the label of any node in G, is a permutation of
<n >, 8= [p1,p2,...,Pn] can be viewed as a
set of cyclically ordered sets of digits (¢1 62 ... 1)
such that the position of ¢; in I is occupied by
i1 (Py; = dj41) for 1 <5 <1 —1 and the posi-
tion of ¢ in I is occupied by ¢, (pg, = ¢1). For ex-
ample, s = [4,2,5,1, 3] can be expressed by cycli-
cally ordered sets (41)(2)(53). We will call a cycle
set a cycle and the cyclically order sets cycle form.
The maximum number of cycles in a permutation
of n elements is n and the minimum number is 1.
When a cycle (¢) has only one digit 7 it is the case
i = p;. In this paper, II = {m,..., 7} is used to
express the cycle form, and 7; = (¢]¢7 ... qﬂj) is a
cycle. The number of digits in a cycle 7; is called
the length of cycle, denoted as |7;|. Given a cycle
form, cycles can appear in any order in the form,
and within a cycle any cyclic shift of the sequences
of digits does not change the permutation pre-
sented by the cycle form. For example, (134)(52),
(341)(25), and (52)(413) present the same node

[3,5,4,1,2]. For cycle m; = (¢i¢5... 47,), i)

o MEMEARRS L
denotes the cycle (¢]¢7,, ... By 91 - - 81_1)- For
convenience, we denote the cycle which contains

merge-then-reduce(s); '

for (0 < i < k) do swap(¢i, $it1);

/* merge two cycles (m;m;—1...7) and (miy1)
into one cycle (mip ;... mg). */

/* Let (mgmp—y ... 7) be denoted by =1.*/
for (1< < [m]) do swap(¢}, ¢,);

Figure 3: A merge-then-reduce subroutine.

1 as m = (47...¢),,) With ¢], | = 1. Obviously,
the first (leftmost) digit ¢9 = p;. Given a node s,
the cycle (i) of length 1 with 7 # 1 will be omit-
ted from the cycle form for s. Let p(s) be the
number of cycles of length at least 2 in the cycle
form of s, and let m(s) be the total number of
digits in the u(s) cycles. Then, it was shown in
[13] that d(s,I) = p(s) + m(s) — 2 if |wo| > 2,
d(s,I) = p(s) + m(s) otherwise.

It was shown in [1] that a shortest path between
s = [p1,p2,...,Pn] and I can be found by the fol-
lowing rules (referred as shortest path rules):
(1) If p; = 1, swap(pi,p;) for some p; # i, and
2 Ifpp =14, 2 < i < n, swap(p,p:) or
swap(p1,p;), p; # J and p; & m. _
In rule (1), swap(p1,pi), pi € w; with p; = ¢},
merges the cycles mp = (1) and =; into the cy-
cle (Tf;»k)l). In rule (2), swap(p,p:) reduces the
length of cycle mo by 1, and swap(pi1,p;), p; € 7
with i # 0 and p; = ¢}, merges cycles m and
m; into one cycle (7r1(»k)1ro). Following the short-
est path rules, we now give a subroutine, merge-
then-reduce, which finds a shortest path from
s = my...m, to I (see Figure 3). Obviously,
the length of the path constructed by Subrou-
tine merge-then-reduce is (Z?:o) — 1 + k.
Notice that, given an s(), either d(s(),I) =
d(s,I) + 1 or d(s),I) = d(s,I) —1. An s9
with d(s(),I) = d(s,I) — 1 can be obtained only
by the the shortest path rules. An important
property of the path between s = mg...mt, where
™o = (¢?"'¢fﬂo|—2¢?fo!;ll)’ and I found by sub-
routine merge-then-reduce is that all the nodes
except I and its neighbor in the path has the cy-
cle form ("'¢fﬂo|—2¢?ﬂ’o|~1 1).... So, if we can find d-
separated paths from s to nodes v = (...zy1)... and
v = (..'y'l)... such that d((zyl),(z'y'1)) > d,
then the paths from u to I and the path from v to
I found by subroutine merge-then-reduce are d-
separated. The next lemma gives the conditions
which guarantee d((zyl1), (z'y'1)) > 3.

Lemma 5 Given two nodes s = (¢...¢ 1)

and t = (... 84 DI in Gn, with ¢ # dv,
then d(s,t) > 2 and d(s,t) = 2 if and only if
I=MIand{(l =0 =1orl =1 =2 and
{¢1,¢2} = {¢1,¢2}).

Proof: For nodes s = (¢;...41)II and t =
(@) ... T with ¢; # ¢}, let s = [p1,...,Pn)
and t = [q1,...,¢s). Thenp; #1, ¢ #1,and 1
appears in different positions of [py,...,p,] and
{g1,...,qn]. Therefore, at least two swaps are
needed to move 1 from the position in [p1,...,pn]
to the position in [g1,...,¢n], ie., d(s,t) > 2.
For s = (¢ 1)II and ¢t = (¢ 1)II, s — (1)II —
(¢21)II = ¢t is a path between s and t. For s =
($1421)I1 and ¢ = (d2¢1 1)II, 5 — (1)(d1¢2)II —
(¢2¢11)II = t is a path between s and t. There-
fore, for s = (¢1 ... 1)L and t = (¢} ... ¢} 1)IT'
with ¢y # ¢, d(s,t) =2if =M and (I=1'=1
orl=10=2 and {¢l)¢2} = {¢’1,¢;})' NOW,
we prove d(s,t) > 3 if the condition: II = II' or
(I=V=1lorl=10=2and {¢1,$:} = {&],¥5}),
does not hold. Let t = (¢ ... ¢}, 1)II' with TL £ IT'
and v = (¢} ... ¢, 1)II. Then, obviously, d(s,t) >
d(s,u) > 2. Assume s = (1) and t = (¢;¢,1),
¢; # ¢2. Then obviously d(s,t) = 3. Assume
s = (¢id11) and t = (¢;621), &: # ¢1, &; # b2,
and {¢;,¢1} # {¢j.#2}. Then d(s,t) = 3 if
¢; = ¢3 or ¢; = ¢ and d(s,t) = 4 otherwise.
Similarly, we can show d(s,t) > 3 if Il > 3 and
U!'>2o0rl>20rl'">3. 0

Now, we give two algorithms which find (n—1)
3-separated paths of length at most d(G,)+ 2 be-
tween s = {py,p2,...,Pn) and I in G,. The key
point in the algorithms is to find n—1 3-separated
paths s — u;, where u; = (..z;;1)I; and for
i#j, v #y; and {z, 0} # {z,5;}. (**)
Once u; is found, and then (n — 1) 3-separated
paths can be found by applying merge-then-
reduce subroutine on u;. The first algorithm,
given in Figure 4, deals with the case of o] = 1
(mo = (1)) and the second algorithm, given in Fig-
ure 5, solves the case of |mp| > 2.

Lemma 6 Any non-trivial path from a node s to
itself in G, has the even length at least 6.

Proof: Obviously, any non-trivial path from s to
itself in G, has an even length. For node s €
Gny 8 — 80 — slid) —y (i) —y glidid)
s(b3idd) y GGdddid) = 5 2 <i# j < n isa
non-trivial path of the minimum length. O

Lemma 7 Given s = momy ... with |m;| > 2,
0< i<k, and there exists a j # 1 with p; = j
in the permutation [py,...,p,] of s, then d(s,I) <
d(Gn) —2, end d(s,I) = d(G,,) — 2 if and only if
k+1=|278].

Proof: First, assume n = 2[. The longest dis-
tance from s to I occurs when s contains [— 2
cycles of length 2 and one cycle of length 3. Since
d(s,I) = p(s) + m(s) — 2 for |me| < 2, d(s,I) =
3l—4. Therefore, d(G,)—2 = (31-2)-2 = d(s,I).
Next, assume n = 2] + 1. The longest distance
from s to I occurs when s contains [cycles of
length 2, In this case, we have d(s,I) = 3l — 2.
Therefore, d(Gn) —2 =31 -2 =d(s,I). O

Theorem 8 Given s = momy ... T, with |mg] =1
in G, Algorithm I generates (n — 1) 3-separated
paths of length at most min{d(s,t) + 2, d(Gn)}
from s to I in O(n?) time.

Proof: Let
P:s— (M) mipye. = u, = (@) Mig10 — I
and ’
Q:is—uy = (7r§2)1)1r1... = (Pipil)... = I

be two paths from s to I generated by Algorithm
I. From Lemma 6, for any two neighbors u and v
of a node s in Gn, dg,_{s}(u,v) = 4. Therefore,
to prove P and Q are 3-separated it is enough to
show that, for any node v € P — {s,s;,I;, I} and
v € Q — {s,s;,I;,I}, where s;,s; are neighbors of
s and I;, I; are neighbors of I, d(u,v) > 3. Since
u contains cycle (...¢51) with ¢{ does not belong
this cycle, and v contains cycle (...¢i¢i1), from
Lemma 5, d(u,v) > 3. Therefore, P and Q are
3-separated. Let

Q3= (mi)Tjipr.. — uj, = (¢'§1)7I’j+x... — I,
j #i. Then the node u has the cycle (...¢5 ! ¢31)
and node v has the cycle (...¢§+l¢§1) From
Lemma 5, d(u,v) > 3 and P and Q are 3-
separated. Similarly, we can show any two of
the n — 1 paths constructed in Algorithm I are
3-separated.

Obviously, Algorithm I finds the above n — 1
paths in O(n?) time. The length of the paths
found in Step 1 and Step 2 of Algorithm II are
at most d(s,J) and d(s,I) + 2, respectively, since
only one move in Step 2 does not follow the short-
est paths rules. However, Step 2 is executed only
if there is a p; # j in the permutation of s, which,
from Lemma 7, implies d(s,I) < d(G,)—2. Thus,
the lemma holds. O

Theorem 9 Given s = momy ... 7, with |me| > 2
in Gn, Algorithm II generates (n — 1) 3-separated
paths of length at most min{d(s,t)+4,d(G,) +2}
from s to I in O(n?) time.

Proof: Let P:s — u; = (¢7...¢%_ L)m..mx —
Tand Q : s — uj; = (d)‘l’...d)g_ll)m.“rk — I,
where 2 < i < j < |ml|, be any two paths
constructed in Step 1 of Case 2. For any node
v € {u —» I} - {L;;I} and v € {u; — I} —
{I;, I}, u contains cycle (...¢?_,1) and v contains
(?.1.-03_11). From Lemma 5, d(u,v) > 3. For
3 < i < |mp|—1, the nodes in the paths {s — u;}—
{u;} contain cycles (¢%... ‘I’”ol_:ll)(qﬁ? 20
i < ¢. Since ¢? is removed first in the reduc-
tion of (¢?... fnl_ll) to (1), from |m;} < |mjl,
for v € {s - u;} and v € {s — u;} with i < j,
d(u,v) > 3, if u # s, v # s,-and u and v are not
neighbors of s. Similarly, we can show that any
two of the n — 1 paths constructed in Algorithm
II are 3-separated.

The length of the paths found in Step 1, Step
2, and Step 3 of Algorithm II is at most d(s, I),
d(s,I) + 2, and d(s,I) + 4, respectively. Step 3
is executed if there is a p; = j. From Lemma 7,
d(s,I) < d(G,) — 2, and thus, the lemma holds.
-, .

4. Conclusional Remarks

There are many interesting open problems in
this new subject, especially, d-separated paths
in hypercubes and star graphs. We have shown
3-separated paths in G, and G,, do not have
d-separated paths for d > 5. How many 4-
separated paths are there in G,? Another open
problem is that given k arbitrary 2-separated (3-
separated) paths in H, (G,), how many addi-
tional 2-separated paths (3-separated paths) can
be found? Investigating d-separated paths in
other graphs or interconnection networks is surely
worth further research attention.

References

[1] S. B. Akers, D. Harel, and B. Krishnamurthy.
The star graph: an attractive alternative to-the
n-cube. In Proc. Inthernational Conference on
Parallel Processing, pages 393-400, 1987.

[2] J. C. Bermond. Interconnection networks. Dis-
crete Math., Special issue, 1992.

[3] K. Day and A. Tripathi. A comparative study
of topological properties of hypercubes and star
graphs. IEEE Trans. on Parallel and Distributed
Systems, 5(1):31-38, 1994.

M. Dietzfelbinger, S. Madhavapeddy, and 1. H.
Sudborough. Three disjoint path paradigms in
star networks. In Proc. IEEE Symposium on Par-
allel and Distributed Processing, pages 400-406,
1991.

(4

[5] Q. Gu and S. Peng. k-pairwise cluster fault toler-
ant routing in hypercubes. In Proc. of the 5th In-
ternational Symposium on Algorithms and Com-
putation ISAAC’94, pages 345-353, 1994.

[6] Q. Gu and S. Peng. An efficient algorithm for
k-pairwise node disjoint path problem in hyper-
cubes. In Proc. of the 7th IEEE Symposium on
Parallel and Distributed Processing (SPDP’95),
page To appear, 1995. :

[7] Q. Gu and S. Peng. Node-to-node cluster fault
tolerant routing in star graphs. Information Pro-
cessing Letters, To appear.

[8] D. F. Hsu. Interconnection networks and algo-
rithms. Networks, Special issue, 1993.

D. F. Hsu. On container with width and length
in graphs, groups, and networks. [EICE Trans.
on Fundamental of Electronics, Information, and
Computer Sciences, E77-A(4):668-680, 1994.

[10] S. Hu and C. Yang. Fault tolerance on star
graphs. In Proc. of the First: International
Symposium on Parallel Algorithms/Architectures
Synthesis (pAs’95), pages 176-182, 1995.

[11] Z. Jovanovic and J. Misic. Fault tolerance of the
star graph interconnection network. Information
Processing Lelters, 49:145-150, 1994.

[12] ‘S. Latifi. Combinatorial analysis of the fault di-
ameter of the n-cube. IEEE Trans. on Comput-
ers, 42(1):27-33, 1993.

{13] S. Latifii. On the fault-diameter of the star

graph. Information Processing Letters, 46:143—
150, 1993.

[14] S. Madhavapeddy and 1. H. Sudborough. A topo-
logical property of hypercubes: Node disjoint
paths. In Proc. 2nd IEEE Symp. on Parallel and
Distributed Processing, pages 532-539, 1990.

[15] J. McHugh. Algorithmic Graph Theory. Prentice-
Hall Inc., 1990.

{16] M. A. Rabin. Efficient dispersal of information
for security, load balancing, and fault tolerance.
J. ACM, Vol. 36, No. 2:335-348, 1989.

{17] Y. Rouskov and P.K. Srimani. Fault diameter
of star graphs. Information Processing Letters,
48:234-251, 1993.

[18] Y. Saad and M. H. Shultz. Topological properties
of hypercubes. IEEE Trans. on Computers, C-37,
No. 7:867-872, 1988,

[9

Algorithm I
Input: A node s = mom; ... mx with |mo| = 1 in Gn.
Output: (n — 1) 3-separated paths from s to /.
begin /* Assume ! cycles x,...m, 0 <! < k, are of length 2.
To get paths s — u, = (...z,y,1)II. which satisfies (**), swap(l,db}) for every =; are needed.
However, if there are at least two x; with |m] =2 (I > 2),
special cares are needed before merge-then-reduce is executed. */
1. if(!<1) thenfor (1<i<kandl<j<|ml) do
swap(l,db:-) to get the path s — u;; = (xfj)l)rl e M Ty e Tk
else if (I = 2) then
{Find paths:

s = (ml)ma...me — uy, = ($31)m2... 7k
s — gy = (n!)l)n LI
3 = Uz, = (w:l)vrnra Tk,

5= (B)mims . me Uz, = (S21)m L.
for (3<i<kand1<;j<|m]) do
swap(l, ;) to get the path s — u;; = ICI 0 VEIDNT TIRT S

else /*1>3. %/
{for (1 <i<!-1)do {Find paths:
3 — (ﬂ’il)ﬂi+11h fe e MW 4200 W — Uy, = (¢;1)7r;.“ o My
s o up = (r}”l)n RS ZHEY STORRN A
Find paths:
s = (M) Mg T = wy = (1)
s u, = (w,ml)‘n B JARY TR
for({+1<i<kand1<j<|mn]) do
swap(1, ¢}) to get the path s — u;; = (T omia i T

for (1 <i<kandl<j<|n]) do merge-then-reduce(u;;);
2. for (each p; with p; = j) do
{swap(1,p;) to get s — uj = (j1)m ... mr; merge-then-reduce(u;); }
end.

Figurc 4: 3-separated paths Algorithm for |7g| = 1 in G,

Algorithm II
“Input: A node s = momy ... s With [ro] 2 2 in Ga.
Output: (n — 1) 3-separated paths from s to 1.
begin
1. if (|7o] = 2) then find s — (I)my7x2... 10 — ua = (M)72... 7
else swap(4},49) to get s — uz = (¢3...¢0, | 1)mi... 70
for (3 <i < |7o]) do
{swap(¢},¢?) to find 5 — (4’0 ¢|’.,1-1 1){(¢3 .. ¢._1)7\'1 - h;
for (1< 5 < frl)do vl o511/ rduce (6.8, to (1)
if (i < |7o]) then swap(1,4]) to find s — u; = (("1 L),
else {swap(1,¢3) to find s — u; = (43 .. ¢|,°| (B
if (|o| = 2) then find s — (#3¢31)m1 ... 7k — us = (1), ..

for (2 < i < |no]) do merge-then-reduce(;);
2. for(l<z<kand1<1<|1r.|)do
{swap(d)l,d;,) /* merge cycles mo and #; into one cycle (r(’)wo) */
if(i=1and j =1) then find s — u;y = (miwo)m2... 7
else {swap(1, ¢}) to find .
5= ()65 - B 1 @1+ 3518 e Blgim 1)L T i - T

if (j < |w;|) then swap(l,¢},) to find s — u;; = (¢;+\ ¢,—1¢\ Bing |1 B 1)L

else swap(1, ¢1) to find 5 — u;; = (¢1 ¢|w‘] \¢l ¢|:o| x¢|w, Lm ... 73}
merge-then-reduce(u;;);

3. for (each p; with p; = j) do
{swap(j, #?), swap(1, j), and swap(1,¢?) to find s — u; = (¢... Bieol—1F1)F1 .o 7k
merge-then-reduce(u;) };

end.

Figure 5: 3-separated paths Algorithm for |m| > 2 in G,.
—g2—

Tk

