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Routing a Permutation in the Hypercube by Two Sets of
Edge-Disjoint Paths

Qian-Ping Gu*

Abstarct: Consider a hypercube regarded as a
directed graph, with one edge in each direction be-
tween each pair of adjacent nodes. We show that
any permutation on the hypercube can be parti-
tioned into two partial permutations of the same
size 50 that each of them can be routed by edge-
disjoint directed paths. This result implies that
the hypercube can be made rearrangeable by vir-
tually duplicating each edge through time-sharing
(or through the use of two wavelengths in the case
of optical connection), rather than by physically
adding edges as in previous approaches. When
our goal is to route as many source-destination
pairs of the given permutation as possible by edge-
disjoint paths, our result gives a 2-approzimate so-
lution which improves previous ones.

Keywords: Permutation routing, edge-disjoint
paths, algorithm, circuit-switched networks.

1 Introduction

Over years, the Boolean n-cube, or hypercube,
has been one of the popular topologies for multi-
processor systems.” Several commercial machines
with hypercube topology have been built and a
huge amount of research work, both theoretical
and practical, has been done on various aspects
of the hypercube. One of the most challeng-
ing open problems in the theory of interconnec-
tion networks is the rearrangeability of the hyper-
cube. Let G be a directed graph with the set
of input nodes I C V(G) and the set of out-
put nodes O C V(G), |I| = |0]. We say G
is rearrangeable if for any one-to-one mapping p
from I onto O, we can construct edge-disjoint
directed paths in G, one from each v to p(v).
In this paper, we concentrate on the case where
I = 0 = V(G) and hence p in. the above definition
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is a permutation. There has been a great deal of
work on the rearrangeability of various networks
(3, 6, 9, 11, 12, 13, 15, 16, 17]. Szymanski |16]
studied the rearrangeability of the n-dimensional
hypercube H,, and conjectured that H, is rear-
rangeable for every n. Here, and throughout the
paper, we regard H,, as a directed graph with one
edge for each direction between each pair of adja-
cent nodes. He proved his conjecture for n < 3 but
left it open for n > 4. In fact, he gave a stronger
conjecture that H, is rearrangeable even if each
input-output pair is required to be routed by a
shortest path; a counterexample was later found
by Lubiw [11] to this version of the conjecture.

The rearrangeability of a network is closely re-
lated to the circuit-switched routing capability of
the network [16, 10]. Circuit-switched routing is
one of the common routing models and are used to
support simultaneous communications across mul-
tiprocessor parallel and telecommunication sys-
tems. In this routing model, a path is dedicated
to each source-destination pair of the communi-
cation request and the data is pipelined through
the path. This is in contrast to to packet-switched
routing where each packet sequentially traverses a
path from its source to destination and occupies
each edge of the path one by one. The collec-
tion of paths in circuit switched routing must be
edge-disjoint so as to allow parallel data transfer
between every source destination pair. If we want
to deal with any set of source-destination pairs
specified by a permutation, rearrangeability is the
property we are asking for.

An encouraging fact has long been known: it
follows from the classic fouting method of Bene[3]
(see also Lubiw[11] and Leighton’s textbook(10])
that the hypercube is rearrangeable if each edge
is doubled, i.e., each adjacent pair of nodes has
two directed edges in each direction. In fact, such
a doubled hypercube can provide edge-disjoint
paths for two arbitrary permutations simultane-
ously.

Call a directed graph k-rearrangeable! if any

!Lubiw[11] used the term 2-rearrangeable in a different
meaning: G is 2-rearrangeable in her sense if the graph in
which each edge of G is doubled is rearrangeable.
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permutation can be partitioned into k partial per-
mutations so that each of them can be routed by
edge-disjoint paths. Our main result is that the
hypercube is 2-rearrangeable. Despite the super-
ficial similarity of this result to the above men-
tioned rearrangeability of the doubled hypercube
(both are a factor of 2 away from the true rear-
rangeability, in a loose sense), we remark that our
result is by no means an obvious consequence of
the Benes routing method, although we do build
on it.

To see the strength of our result in a practical
sense, consider the following approach of “virtu-
ally” realizing the rearrangeability of the hyper-
cube without physically doubling the edges, by
time-sharing for example. We partition the con-
tinuous time into unit intervals, alternately col-
ored blue and red. We let each physical edge serve
as a blue virtual edge in a blue time interval and
as a red virtual edge in a red time interval. Our
result allows us to partition any given permuta-
tion into a blue partial permutation and a red
partial permutation so that each partial permu-
tation can be routed using the edges of its color,
making the “virtually doubled” hypercube rear-
rangeable. Note that the Bene$ routing itself is
not sufficient for this type of virtual doubling, be-
cause a path provided by the Benes routing on the
virtually doubled hypercube may contain both red
and blue edges and hence may not be functional
as the whole path at any given time. Similarly,
our result implies the rearrangeability of an opti-
cally connected hypercube with 2 wavelengths (in
the “general switch model” of Aggarwal et al[1]),
whereas the direct application of the Benes rout-
ing suffers from a similar problem and needs O(n)
wavelengths. Aumann and Rabani improved the
upper bound of O(n) to constant 16, where they
model the hypercube as an undirected graph [2].

Our result also has an important application
on the problem of determining (or approximating)
the maximum number of distinguished node pairs
in a graph that can be simultaneously connected
via edge-disjoint paths. This problem has recently
been brought into focus in the context of admis-
sion control in high-speed networks and of rout-
ing in all-optical networks [1, 14, 8, 7, 2]. An a-
approrimation algorithm for such a maximization
problem is guaranteed to connect at least m/a of
the given pairs by edge-disjoint paths, where m is
the maximum number of pairs (from the given set
of pairs) that can be connected by edge-disjoint
paths. Kleinberg and Tardos[7] give a constant-
approximation algorithm for a class of graphs that
includes the 2-dimensional mesh. Our result im-

mediately implies an efficient 2-approximation al-
gorithm for this problem on H,. (The direct
application of Bene§ routing gives a (2n — 1)-
approximation.)

Choi and Somani [6] recently made a signifi-
cant progress in a related direction, by construct-
ing a rearrangeable hypercube with considerably
smaller number of edges than the doubled hyper-
cube: they only need to double the edges in one
fixed dimension. Their method directly implies
that the hypercube is 4-rearrangeable. The result
of Aumann and Rabani mentioned before uses a
similar idea [2]. We borrow the innovative use by
Choi and Somani of the Benes routing as one of
the key ingredients in our result.

The rest of this paper is divided into three
sections. Section 2 gives basic definitions. Sec-
tion 3 starts with the description of the routing
methods on which our result builds and then de-
scribes our routing method that establishes the
2-rearrangeability of the hypercube. We conclude
the paper with some remarks in Section 4.

2 Definitions

In this paper, the n-dimensional hypercube, de-
noted by H,, is the directed graph on node set
V(H,) = {0,1}" such that there is an edge from
u € V(H,) to v € V(H,) if and only if z and v
differ exactly in one bit position. Figure 1 shows
H;. If u and v differ only in the ith bit position,
1 < i < n, then we say the edge from u to v (and
from v to u) is in dimension 7. For n > 1, the
0-subcube of H,,, denoted by H2_,, is defined to
be the subgraph of H,, induced by the set of nodes
whose first bit is 0. Define similarly the 1-subcube
of H,. Thus, H_, and H}_, are both isomor-
phic to H,_; and are connected to each other by
edges of H, in dimension 1. :

The following projection mappings will be used
frequently. Mapping 7 : V(H,) — V(Hn—,) is de-
fined by n(ajaz...0,) = a3 ...ayn, i.e., it removes
the first bit of the n-tuple identifying the node.
Mapping x; : V(H,) - V(Hi_,),i= 0,1, is de-
fined by m(a1as...a,) = ia2...@an, i-e., it fixes
the first bit of the n-tuple to <.

A routing request on a directed graph G is a
multi-set R of ordered pairs of nodes of G. For
each pair (u,v) in a routing request, u is called
the source and v the destination of the pair. A
routing request R is said to be h-k if each node
appears in R at most h times as a source and at
most k times as a destination. A routing request
on G is called a partial permutation if it is 1-1;



Figure 1: A 3-dimensional hypercube Hj.

a permutation if it is 1-1 and has exactly [V (G)]
pairs.

Given a routing request R on G, a routing of R
is a multi-set P of directed paths of G that con-
tains exactly one path from u to v for each pair
(u¢,v) € R. The congestion of an edge e in routing
P is the number of paths of P that contain e. The
congestion of a routing P is the maximum conges-
tion over all edges. A routing P with congestion 1
is said to be edge-disjoint. We say that a directed
graph G is k-rearrangeable if any 1-1 routing re-
quest on G can be partitioned into & routing re-
quests each of which has an edge-disjoint routing.
We say G is rearrangeable if it is 1-rearrangeable.

3 Routing methods: old, recent
and new

3.1 Benes routing

The classical routing method of Benes[3], when
applied to the hypercube, gives a routing with
congestion 2 of an arbitrary 2-2 routing request.
According to Lubiw([11], this application of the
method of Benes to the hypercube is folklore.
Since our routing result builds on this scheme, we
describe it in some detail here.

We first extend the projection mappings ,
m, and m; to a routing request R by letting
m(R) = {(w(u),n(v)) | (v,v) € R}, and similarly
for 7;. Here, the set notation must be interpreted
as that for a multi-set, so that (w(u),w(v)) and
(w(u'),w(v")) are distinct elements of w(R) even
if they are identical, as long as (u,v) and (u/,v')
are distinct elements of R. The following simple
lemma is central to the application of the method
of Benes to the hypercube.

Lemma 1 Any 2-2 routing request on H, can be
partitioned into two 1-1 routing requests on H,.

Proof: We may regard a routing request on
H, as the set of edges in a bipartite multigraph
between two copies of V(H,). It is well-known
that the edge set of a bipartite multigraph with
maximum degree 2 can be partitioned into two
matchings (see, for example, Berge[4], Chapter 12,
Theorem 2). 0O

Given a 2-2 routing request R on H,, a Benes
routing of R is recursively constructed as follows.
If n = 0, in which case R must consist of at most
two occurrences of the pair (vg,vs) where vg is
the unique node of Hy, the routing is unique and
trivial: it contains at most two occurrences of an
empty path from vy to vo. Suppose n > 1. Using
Lemma 1, partition R into two 1-1 routing re-
quests Ry and R;. The idea is to route the pairs
in Ry through the 0-subcube of H, and the pairs
in Ry through the 1-subcube. For this purpose,
recursively obtain a Benes routing P; of the pro-
jection m;(R;), ¢ = 0,1, noting that it is a 2-2
routing request on H:_,. In our routing of R,
each pair (u,v) € R is given the following path.
Suppose (u,v) € R;. The path for (u,v) consists
of three parts, the prefiz, recursive part, and suf-
fiz. The prefix is empty if » = m;(u); otherwise it
is an edge in dimension 1 from u to 7;(z). The re-
cursive part is the path from m;(u) to m;(v) in the
subcube H: ; given by P;. The suffix is empty
if v = m;(v); otherwise it is an edge in dimension
1 from 7;(v) to v. We note that a Benes routing
of given R is not unique in general, due to the
freedom of choice in partitioning R into Ry and
R;.

Figure 2 shows a Bene3 routing of the following
2-2 routing request R on Hj.

R = {(00,10),(00,01),(01,11),(01,10),
(10,00), (10,00), (11,01),(11,11)}

The routing is diagramed in the form of the Benes
network: each row corresponds to a hypercube
node, a diagonal line segment corresponds to a
hypercube edge while a horizontal line segment
indicates that the path stays on the same node,
and the boxes by dotted lines correspond to the
subproblems generated by the recursive process.
Each path of a Benes routing consists of two
parts: the forward part that consists of the edges
included as the prefix (in all the recursive steps)
and the backward part that consists of the edges
included as the suffix. We call the node at which
the forward part connects to the backward part
the intermediate destination of the path. The in-
termediate destination of a path appears in the



central column in the Bene§ network representa-
tion. The following theorem is intuitively clear
from the above example and easy to prove by in-
duction.

Theorem 2 Let P be any Benes routing of any
2-2 routing request on H,. Then, each edge of
H, appears in the forward part of at most one
path of P and in the backward part of at most one
path of P. Thus, the congestion of P is at most
2. Moreover, each node of H, is the intermediate
destination of at most two paths of P.

3.2 Choi-Somani routing

The routing method of Choi and Somani[6],
given any 1-1 routing request, constructs a rout-
ing in which every edge except in dimension 1 has
congestion at most 1 and every edge in dimension
1 has congestion at most 2. Roughly speaking,
their method deals with the 1-1 routing request
on H, as a 2-2 routing request on H,_; and use
the Benes routing. To avoid the congestion of 2 on
every edge, their key idea is to map the forward
part of the Bene$ routing paths to the 0-subcube
of H, and the backward part to the 1-subcube.
More formally, let (u,v) be a pair in the given 1-1
routing request R on H,, and let p denote the path
from 7(u) to m(v), given by a Benes routing of the
2-2 routing request 7(R) on H,_;. Let p; and p,
be the forward and the backward parts of p, re-
spectively, and v, be the intermediate destination
of p. Then, the path for (u,v) in the Choi-Somani
routing of R consists of five parts, the prefiz, for-
ward part, bridge, backward part, and suffiz. The
prefix is empty if u is in H2_,; otherwise it is the
edge from u to mo(u). The forward part is the iso-
morphic image of py in H)_,, from mo(u) to Ov,.
The bridge is the edge from 0v, to lv,. The back-
ward part is the isomorphic image of py in H}_,,
from 1v, to m;(v). Finally, the suffix is empty if
visin H}_,; otherwise it is the edge from m;(v)
to v.

The following theorem is a straightforward con-
sequence of the properties of a Benes routing
(Theorem 2) and the fact on a Choi-Somani rout-
ing that (1) each edge from H}._, to H2_, is used
at most once as a prefix and at most once as a
suffix and (2) each edge from HY_, to H}_ | is
used at most twice as a bridge.

Theorem 3 In any Choi-Somani routing of any
1-1 routing request on H.,, the congestion of each
edge in dimension 1 is at most 2 and the conges-

tion of each edge in other dimensions is at most
1.

3.3 2-rearrangeability of the hyper-
cube

A straightforward consequence of the Choi-
Somani routing method is that the hypercube is
4-rearrangeable. To see this, suppose a 1-1 rout-
ing request R on H,, is given and partition R into
R[0] and R[1], where R[i] denotes the collection
of pairs whose sources are in the i-subcube of H,,,
i =0,1. Consider a Choi-Somani routing of R[0].
Since each path starts in H2_,, the congestion of
each edge from H._, to HZ_, in this routing is
at most 1. The edges in the reverse direction, i.e.,
from HJ_, to H._, may have congestion 2, but
we can easily partition R[0] into two subsets so
that the congestion is 1 for each subset. Similarly,
R[1] can be partitioned into two subsets (using a
Choi-Somani routing in which the roles of the two
subcubes are interchanged) each of which has an
edge-disjoint routing. Thus, we have a partition
of R into 4 subsets, each of which can be routed
by edge-disjoint paths.

Here is the idea for our result. When we apply
the Choi-Somani routing method to R[0] in the
above method, it uses a Bene$ routing, which is
designed for a general 2-2 routing request, to deals
with w(R[0]) on H,_;. However, m(R|0]) is in fact
a 1-2 routing request. Our approach is to design
a variant of the Benes routing method specialized
for 1-2 routing requests and to substitute it in
the Choi-Somani scheme. By doing so, we hope
to exploit the special property to obtain a routing
of R[0] with congestion 1.

The following lemma, similar to Lemma 1, is
the key to such a variant of the Benes routing
method.

Lemma 4 Any 1-2 routing request R on H, can
be partitioned into two routing requests Ry and R,
so that w(R;) for each i is a 1-2 routing request
on H, ;.

Proof: Given a 1-2 routing request R on
H, construct a bipartite multi-graph G g between
V(Hp—1) and V(H,) by drawing an edge between
7(u) and v for each pair (u,v) € R. Then, the
maximum degree of G is 2 and therefore the edge
set of Gg can be partitioned into two matchings.
Since the pairs in R are in one-to-one correspon-
dence with the edges of G, this partition induces
a partition of R into two subsets Ry and R;. For
each node w of H,_,, there is at most one pair
(%,v) in Ry such that 7(x) = w and at most two
pairs (u,v) such that 7(v) = w, because Ry cor-
responds to a matching of Gr. Therefore, m(Ry)
is a 1-2 routing request. Similarly, 7(R;) is also
a 1-2 routing request. O



Given a 1-2 routing request R on H,, a 1-2
Benes routing of R is recursively constructed as
follows. The construction is similar to the one for
a Bene$ routing described previously. The base
case n = 0 is trivial. Suppose n > 1. Using
Lemma 4, partition R into two routing requests
Ry and R; so that 7(R;) is a 1-2 routing request
for ¢ = 0,1. Recursively obtain a 1-2 Benes rout-
ing P; of my(R;), i = 0,1, on Hi_ ;. The path
for each (u,v) € R consists of the prefix, recursive
part, and suffix, exactly in the same way as before.
We list their description again for the convenience
of the reader. Suppose (u,v) € R;. The prefix is
empty if u is in H}_,; otherwise it is an edge in
dimension 1 from u to m;(u). The recursive part
is the path from m;(«) to m;(v) in H:_; given by
P;. The suffix is empty if v is in H._,; otherwise
it is an edge in dimension 1 from m;(v) to v.

The forward part, backward part, and interme-
diate destination of a path in a 1-2 Benes routing
are defined similarly as before. Figure 3 shows
a 1-2 Benes routing of the following 1-2 routing
request R on H,.

R = {(00,01),(01,11), (10, 00), (11,01)}

For a comparison, Figure 4 shows a general Benes
routing of the same 1-2 routing request R.

As is seen from the above example, an advan-
tage of a 1-2 Benes routing over a general Bene§
routing applied to a 1-2 routing request, is that
at most one path, rather than two, chooses each
node of H, as its intermediate destination.

Lemma 5 Let P be any 1-2 Benes routing of any
1-2 routing request on H,,. Then, each edge of H,,
appears in the forward part of at most one path of
P and in the backward part of at most one path of
P. Moreover, each node of H, is the intermediate
destination of at most one path of P.

Theorem 6 H, is 2-rearrangeable.

Proof: Let R be an arbitrary 1-1 routing re-
quest on H,,. Let R[], i = 0,1, denote the collec-
tion of pairs in R that have their source in the i-
subcube. Let Py be a 1-2 Benes routing of w(R[0])
on H,_;. Let (u,v) be a pair in R[0], let p be the
path from 7(u) to w(v) in Py, and let ps and p,
the forward and backward part of p respectively.
As in Choi-Somani routing, p; is mapped to the
isomorphic path p’f in H2_,, ps is mapped to the
isomorphic path p} in H._,, with a bridge edge
connecting the last node of p’; to the first node of
py: call the resulting path p’. The congestion of
each bridge edge is at most 1 due to Lemma 5.
The path from u to v is completed by adding a

suffix (i.e., an edge from H}_; to H2_,) to p/, if
necessary. Since no prefix is needed, we obtain a
routing of R|0] with congestion 1. By symmetry,
we can construct a routing with congestion 1 of
R[1]. O

Remark: The above description of the construc-
tion of our routing can readily be translated into
an efficient algorithm. Since the partition in
Lemma 4 can be computed in linear time (bi-
coloring the edge set of a bipartite graph with
maximum degree 2), the entire algorithm runs
in O(Nlog N) time, the same complexity as for
the Benes routing, where N = 2" is the number
of nodes of H,. See Waksman[17], Nassimi and
Sahnif12], and Carpinelli and Oruc|5] for algorith-
mic issues in Benes-type routing.

4 Concluding Remarks

Szymanski conjectured that the n-dimensional
hypercube H,, is rearrangeable for every n and
proved his conjecture for n < 3. We proved in
this paper that H, is 2-rearrangeable for all n,
i.e., every permutation on H, can be partitioned
into two partial permutations each of which can
be routed by edge-disjoint paths. However, the
conjecture of Szymanski is still open for n > 4
(although a rather brute force proof may work for
n = 4). Some directions of further rescarch in-
clude:

1. Find a special (yet general enough to be inter-
esting) class of permutations, every member
of which is routable by edge-disjoint paths.
One such example can be found in Sprague
and Tamaki[15].

2. Find some upper bound f on the size of the
1-1 routing request on H, such that any R
with |R| < f can be routed by edge-disjoint
paths. We conjecture that f = c|V(H,)|,
for some constant c, is such an upper bound.
Note that this is a weaker conjecture than
Szymanski’s but appears considerably harder
to prove than the constant-rearrangeability.

3. Our result implies a 2-approximation algo-
rithm for the problem of routing as many
pairs as possible from a given 1-1 routing re-
quest. Find a (14¢)-approximation algorithm
for some € < 1.
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Figure 2: A Benes routing for the 2-2 routing request on H,.
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Figure 4: A general Bene§ routing for the 1-2 routing request in H.



