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The rectangular drawing of a plane graph G is a drawing of G such that each edge is drawn as
a horizontal or vertical line segment and each face is drawn as a rectangle. To represent such
a drawing on a screen having finite resolution needs integer-valued vertex coordinates, i.e., a
grid drawing. In this paper we give a simple linear time algorithm to find a rectangular grid
drawing of G if it exists. We also give upper bounds on the sum of required width and height:
W+ H < %,and on area: Wx H < '1‘—;, where n is the number of vertices in G. These bounds
are best possible, and hold for any area-efficient rectangular grid drawing.
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1 Introduction

Recently automatic drawing of graphs has created intense interest due to its broad application
to represent various concepts and objects in software, computer architecture, networks, VLSI
circuits, etc [BETT94]. One important criteria of a graph drawing is that it should be easily
understandable and good looking [CON85]. In this paper we consider the rectangular drawing
of a plane graph, where each edge of the graph is drawn as a horizontal or vertical line segment
with no bend and each face of the graph is drawn as a rectangle (See Fig. 1). Our input
graph has four vertices of degree 2 on its outer face and all other vertices have degree 3. It
is not always possible to draw such a graph in this way. C. Thomassen obtained a necessary
and sufficient condition for such a plane graph to have a rectangular drawing [T84]. He used
induction in the proof, which yields an algorithm for rectangular drawing based on divide
and conquer strategy. In his method a lot of complex conditional checks are needed to find
a “partitioning path” for dividing a graph G into two or more subgraphs. A straightforward
implementation of his method leads to an O(n?) time algorithm using a suitable data structure.
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Figure 1: An example of a rectangular drawing of a plane graph.

'On the other hand, K. Kozminski and E. Kinnen [KK84] established a necessary and suf-
ficient condition for the existence of a rectangular dual of a plane graph, that is a rectangular
drawing of the dual graph of a given plane graph, and gave an O(n?) algorithm to obtain it.
Since a rectangular dual has beautiful applications on VLSI floorplan, much attention has been
paid to [KK84]. Based on the characterization of [KK84], J. Bhasker and S. Sahni [BS88] and
X. He [H93] respectively developed linear time algorithms to find a rectangular dual of a plane
graph. Recently G. Kant and X. He [KH94] presented two more linear time algorithms. The
algorithm in [BS88] is fairly complicated and consists of two steps: (1) constructing a “regular
edge labeling” of G and (2) constructing the rectangular dual using that labeling. X. He [H93]
simplified step (2), but used the complicated algorithm in [BS88] for step (1). Two methods
for simplifying step (1) are given in [KH94). The first one finds a regular edge labeling using
“edge contraction and edge expansion techniques” and is indeed not a simple method. The
second one finds a “canonical ordering” of the given graph in linear time and then obtains a
regular edge labeling from the canonical ordering in linear time.

The two works, [T84] and [KK84], were completely independent. Since there exists a
linear time algorithm to find the dual graph of a plane graph, algorithms in [BS88], [H93] and
[KH94] can be used to find a rectangular drawing of a given plane graph and also Thomassen’s



characterization can be applied to VLSI floorplan problems.

A rectangular drawing in which each vertex is located at a grid point is called a rectangular
grid drawing. It is a very challenging problem to draw a plane graph on a grid of the minimum
size. In recent years, several published works are devoted to this field [Sc90, CN94]; for example,
any plane graph with n vertices has a straight line drawing on a grid of area W x I < (n— 1)?,
where W is the width and H is the height of the grid.

In this paper we simplify the Thomassen’s conditions-to check and also reduce the amount
of such checks, and give a simple algorithm to find a rectangular drawing of a plane graph in
linear time. Our algorithm is. completely different from those of [BS88], [H93] and [KH94], and
is simpler than them: we need not to find any regular edge labeling or a canonical ordering,
and our algorithm finds a rectangular drawing directly using a simple depth-first search. Fur-
thermore our algorithm finds a rectangular grzd drawing. We also give upper bounds on the
sizes of rectangular grid drawings: W x H < 3z and W + H < %. The bounds on grid sizes
are interesting in a sense that they are best possible and hold for any area-efficient rectangular
grid drawing of a plane graph.

This paper is organized as follows. Section 2 introduces some definitions and lemmas needed
by our algorithm. A rectangular drawing algorithm is given in Section 3. Our bounds on grid
sizes are described in Section 4. Finally we put our discussions and some open problems in
Section 5.

2 Preliminaries

In this section we introduce some definitions and lemmas used in our algorithm.

Let G = (V, E) be a graph with vertex set V and edge set E. V(G) denotes the set of
vertices of G, and E(G) denotes the set of edges of G. The union G = G' U G" of two graphs
G' and G" is a graph G = (V(G') U V(G"), E(G') U E(G")). A graph 15 planar if it can be
embedded in the plane so that no two edges intersect geometrically except at a vertex to which
they are both incident. A plane graph is a planar graph with a fixed embedding. A plane
graph divides the plane into connected regions called faces. We regard the contour of a face as
a clockwise cycle formed by the edges on the boundary of the face. We denote the contour of
the outer face of graph G by C,(G) or simply C,. In our input graph G all vertices have degree
3 except four vertices of degree 2 on C,(G). These four corner vertices divide C, into four
paths, which we call the N-path Py, E-path Pg, S-path Ps, and W-path Py . We will draw Py
and Ps on two horizontal straight line segments and Pg and Py on two vertical line segments
(See Fig. 1). For E' C E(G), G — E' denotes a graph obtained from G by deleting all the edges
in E'. A connected component of G — E(C,) is called a C,-component. We have the following
Lemma.

Lemma 2.1 Let Hy,Hs,...,H, be the C,-components of a plane graph G and G; = G —
Ujzi E(H;). Then G has a rectangular drawing with a fized rectangular embeddmg of Co(G) if
and only if G; has a rectangular drawing with a fized rectangular embedding of C, (G )=C (G)
for each i, 1 < i< p.

Note that the graph G; mentioned in Lemma 2.1 may have some vertices of degree 2 in addition
to the four vertices of degree 2 of G. In the remaining of this section, because of Lemma 2.1,
we may assume that G has exactly one C,-component as one in Fig. 1.

For a cycle C in G we denote by G(C) the plane subgraph of G inside C (including C). An
edge incident to a vertex on a cycle C and located outside C is called a leg of the cycle C. We
have the following lemmas.

Lemma 2.2 G has no rectangular drawing if the C,-component has a cycle with less than four
legs. O



An inner face of G is called a boundary face if its contour contains an edge on C,. The
maximal (directed) path on the contour of a boundary face connecting two vertices on C,
without passing through any edge on C, is called a boundary path. Note that the direction of
a boundary path is the same as the contour of the face, and hence is clockwise. A boundary
path starting at a vertex u and ending at a vertex v is called a boundary N*-pathif u € V(Py),
a boundary *N-path if v € V(Pn), and a boundary NN-path if u € V(Pyn) and v € V(Pn).
Similarly we define boundary E*-, *E-, NE-, WW-paths eic.

Let P = wov1,v192,...,0-19 be a (simple) path in G. A cycle C is attached to P if P
does not contain any vertices in the proper inside of C and the intersection of C and P is a
single subpath of P: v;vi1,Viy10it2, ...,vj—17;. We call v; the tail vertez of C for P, and v;
the head vertez. Denote by Q.(C) the clockwise subpath on C from v; to v; and by Q.(C) the
counterclockwise one. A leg of C is called a clockwise leg for P if it is incident to a vertex in
V(Q<(C)) — {vi,v;}. Denote by n.(C) the number of clockwise legs of C for P. Similarly we
define counterclockwise leg and denote the number of counterclockwise legs by n..(C) of cycle C
for P. Cycle C is called a clockwise cycle for P if Q.(C) is a subpath of P. A cycle C is called
a clockwise critical cycle for P if C is a clockwise cycle and n.(C) < 1. A clockwise critical
cycle C is mazimal if E(C) is not located inside any other clockwise critical cycle. Similarly
we define the terms above for counterclockwise case. We have the following two lemmas.

Lemma 2.3 G has no rectangular drawing if G has a critical cycle for path Py, Pg,Ps or
Pyw. (]

Lemma 2.4 G has no rectangular drawing if G has an attached cycle C with n..(C) = 0 for
path P = Py + Pg, Pg + Ps, Ps + Pw, or Py + Py. a

We call the C,-component as ones mentioned in Lemmas 2.2, 2.3.and 2.4 a bad component.
In particular, we call the C,-component of a graph mentioned in Lemma 2.4 a bad corner. We
now have the following theorem on the necessary and sufficient condition for a graph to have
a rectangular drawing.

Theorem 2.5 Let G be a plane graph having four vertices of degree 2 on the contour C, of
the outer face and let all other vertices of G have degree 3. Let C, be divided into four paths
Py, Pg, Ps and Py by the four vertices of degree 2. Then G has a rectangular drawing for the
fized rectangular embedding of C, by P, Pg, Ps and Pw if and only if G has no bad component.

o

The necessity of Theorem 2.5 is immediate from Lemmas 2.2, 2.3 and 2.4. By the end of this
section we will be able to prove its sufficiency constructively. In the remaining of this section we
assume that G has no bad component, that is, G satisfies the necessary and sufficient condition.

Let Py = wov1,v1v2,...,Vp-19p and Ps = uguy, ujtz, reey Ug—1%g. We define that an NS-path
is a path starting at v; and ending at u; without pa,ssmg through any other vertex on C,.
An NS-path P divides graph G into two subgraphs G%, and GE, GW is the west part of G
including P, and G% is the east part of G. We fix the embedding of C,(G},) as a rectangle
with Py(= vov1, v1v2,...,vi—1%:), Pp(= P), P5(= wjujs1, uj41j42, .. uq_luq) Pjy(= Pw) by
drawing P as a straight line segment. Similarly we fix the embeddmg of Co(GE) as a rectangle.
We say that P is a good bipartition-path if neither G¥, nor GE has a bad component. Sumlarly
we define good SN-, WE- and EW-bipartition-paths. We have the following lemma.

Lemma 2.6 Any boundary NS-,SN-,EW- or WE-path P of G is a good bipartition-path. O

Thus we may assume that G' has none of boundary NS-, EW-, SN- and WE-paths. Then
the C,-component has at least one vertex on each of paths Py, Pg, Ps and Py. We say that
an NS- path P is westmost if (1) P starts at vy, (2) P ends at uy_q, and (3) the number of
edges in G¥;; is minimum. The west most NS-path is drawn in thick lines in Fig. 1. We have
the following two lemmas.



Lemma 2.7 If G has none of boundary NS-, EW-, SN- and WE-paths, then G has the west-
most NS-path. ]

Lemma 2.8 Assume that a cycle C in the C,-component has ezactly four legs dividing C into
four paths Pjy, Pg, P§ and Pyy,. If G has no bad component, then the subgraph G(C) of G inside
C has no bad component for any fized rectangular embedding of C by P}, Pk, P{ and Py, O

Let P be an NS-path, and let Cy,C3,...,Cy be cycles attached to P, each of which has
exactly one clockwise leg and exactly one counterclockwise leg. We construct two paths P, and
P, from P and Cy,C5,...,Cy as follows: P, = P14+ Q.(C1)+ P2+ Q(C2)+ -+ Qc(Ck)+ Py
and P.. = P + Qcc(cl) + P + Qcc(cz) +--+ Qcc(ck) + Pi41 where (1) Py, Py, -, Ppyy are
subpaths of P shared by P, and P (2) P; starts at the vertex vs € V(Py) N V(P) and ends
at the tail vertex of Cy; (3) for 2 < ¢ < k, P; is a subpath of P starting at the head vertex of
C;_1 and ending at the tail vertex of C;; and (4) P41 starts at the head vertex of Ci and ends
at the vertex u; € V(Ps) N V(P).

By Lemma 2.8 we can assume that none of G(C1),G(C3),...,G(Cy) has a bad component
for any fixed embedding of C,,Cs,...,Ck as in Fig. 2. One can observe that if GPcc has a
rectangular drawmg such that Pcc is drawn as a vertical line segment then it can be easily
modified to fit in the area for G s in Fig. 2 where P, is drawn as a zig-zag line. Similarly
if GPC has a rectangular dra,wmg such that P, is drawn as a vertical line segment, then it
can be easily modified to ﬁt in the area for GE in Fig. 2. Thus if we have rectangular
drawings of graphs GP°° G(Cl),G(Cz), ,G(Cy), then we can naturally patch them to
get a rectangular drawmg of G. We say that P, and P, are good NS-multipartition-paths if
neither G nor G has a bad component. Note that for each C;, 1 < i < k, there are two
alternative rectangular embeddings of C;. We can arbitrarily choose one of the 2% different
embeddings of cycles Cy,Cy,...,Ck. (See Fig. 2.) We have the following lemma.
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Figure 2: An example of the embedding of good multipartition-paths.

Lemma 2.9 If G has no bad component and has none of boundar;z) NS-, EW-, SN- and WE-
paths, then one can find good NS-multipartition-paths P, and P, from the westmost NS-path.
a

Using Lemmas 2.6, 2.7, 2.8 and 2.9, one can recursively find a rectangular drawing of
a given plane graph G if it has no bad component. Thus we have proved the sufficiency of
Theorem 2.5. One may also verify the correctness of our algorithm given in Section 3 using
these lemmas.



3

Drawing Algorithm

The following algorithm DRAW-GRAPH finds a rectangular drawing of a plane graph G if it
exists. We treat each C,-component independently as in Lemma 2.1. If there exists a boundary
NS-, SN-, WE-, or EW-path, we choose it as a good bipartition-path. Otherwise, we find the
westmost NS-path and then find good NS-multipartition-paths P and P, from the westmost
NS-path. The algorithm can be easily modified to check the existence of a rectangular drawing
in a plane graph G.
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Algorithm DRAW-GRAPH(G)
begin
draw the contour C,(G) of the outer face of G as a rectangle by two horizontal
line segments Py and Ps and two vertical line segments Pg and Py;
{ the directions of edges on C, are decided}

find all Cp-components Hq, He,- -+, Hp;
for each C,-component H; do
begin
G;=C,UH;;  {G; is the union of graphs C, and H;}
DRAW(H;,G;)
end
end.

Procedure DRAW(H,G)
{ H is the C,-component of graph G}
begin ‘
if H has a boundary NS-, EW-, SN-, or WE-path P
{P is a good bipartition-path}
then begin
assume without loss of generality that P is an NS-path;
draw all edges on P on a vertical line;
{the directions of edges are decided to be vertical}
if |[E(P)| > 2 then begin
let Fy, Fy, ..., Fy be the C,- components of Gf; for the fixed
rectangular embeddmg of cycle CO(G' ); {Giy is a cycle}
for each F; do DRAW(F,,C (GE)UF)
end
end
else begin {there exists the westmost NS-path P }
find the westmost NS-path P;
find good multipartition-paths P, and P from P;
if P, = P, then begin
draw all edges on P.on a vertlcal line segment;
let Gy = and G = GE be two resultlng subgraphs with fixed
rectangular embeddings of cycles Co(GW) and Co(G
for each G; do
begin
let Fy, Fy, ..., Fy be the Cy-components of G;;
for each F; do DRAW(F;,C,(G;) U F;)
end
end
else begin
draw all edges on P, and P, on zig-zag lines as in Fig. 2;
let Gy = Gy = GF,G3 = G(C1),-++,Gryz = G(Cy) be the



resulting subgr Pphs with fixed rectangular embeddings of cycles

CO(G ), Co(GE ), C1, -+, Chs

14 for each G; do

begin

let Fi, F3,...,Fy be the C;-components of Gij;

15 for each F; do DRAW(F;,C,o(Gi) U Fj)

end

end
end
end

The algorithm DRAW-GRAPH(G) only finds the directions of all edges in G for rectangular
drawing. From the directions one can determine the integer coordinates of vertices in G in
linear time. Let the coordinates of the south-west corner be (0,0), and let that of the north-
east corner be (W, H). Then our grid drawing is “area-efficient” in a sense that there is at least
one vertical line of z-coordinate i for each 7, 0 < ¢ < W and there is at least one horizontal line
of y-coordinate j for each j, 0 < j < H. We have a proof of the following Theorm on execution
time of the algorithm DRAW-GRAPH.

Theorem 3.1 The algorithm DRAW-GRAPH finds a rectangular drawing of a given plane

graph in linear time if it exists. a

4 Grid Area
In this section we prove the following theorem.

Theorem 4.1 The sizes of any area-efficient rectangular grid drawing D of G satisfy W+ H <
n/ZandWXHS%. o

Before giving a proof of Theorem 4.1, we present a lemma.

Lemma 4.2 Let G be a plane graph having four vertices of degree 2 on the contour C, of outer
face and let all other vertices have degree 3, and let f be the number of faces of G. Let D be any
rectangular drawing of G, and ! be the number of mazimal horizontal and vertical line segments

inD. Thenl= f+2. o

We are now ready to prove Theorem 5.1.
Proof of Theorem 4.1. From Lemma 4.2 we have

I=f+2. (1)
As our input graph has exactly four vertices of degree 2, we have

Z d(v) =3n—-4=2m, (2)

veV(G)
where n = |V] and m = |E|. Using (2) and Euler’s formula n — m 4+ f = 2, we have
n=2f. (3)

By (1) and (3) we have
[ = n/2 + 2. (4)



Let !5, be the number of maximal horizontal line segments and [, the number of maximal
vertical line segments in an area-efficient rectangular drawing D. Then we have H < I — 1,
and W < I, — 1. Therefore,

WH+HS L+l —2=1-2=n/2

This relation immediately implies the bound on area: W x H < -’1-'%. This completes proof of
Theorem 4.1. o

The above bounds are tight, because there are an infinite number of examples attaining the
bounds.

5 Conclusion

In this paper we presented a simple linear time algorithm to find a rectangular grid drawing
of a plane graph and also gave upper bounds on grid sizes. The bounds are tight and best
possible. Our work raises several interesting open problems:

(1) What is the necessary and sufficient condition to have a rectangular drawing of a plane
graph with vertices of degree less than or equal to 47

(2) What is the complexity of an optimal parallel algorithm for rectangular grid drawings?
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