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This paper discusses the problems of largest similar substructures(in short, LSS) in rooted and
unordered trees(in short, R-trees) and those in unrooted and unordered trees(in short, trees). For
two R-trees(or trees) T, and Ty, LSS in Ty to T, is defined, and two algorithms for finding one
of the LSSs for R-trees and that for trees are proposed. The time and space complexities of both
algorithins are O7(m3N,N,) and Og(mN,N,), respectively, where m is the largest degree of a
vertex of T, and Ty, and N,(N,) is the number of vertices of T.(T3).



| Introduction

The similar structure search problem has arisen
from practical topics. For example, the study
of the relationship between the structures
of chemical compounds and their properties
is one of the most important problems in
chemistry[1], and several substructure search
systems have already been proposed[2]. How-
ever, the similar structure search problem has
not been studied mathematically for general
graphs except trees embedded in a plane[3].
As similarity measures between trees, sev-
eral distances for rooted and ordered trees(in
short, RO-trces)[4]~(7], those for trees embed-
ded in a plane[g], those for unordered trees[9]~
[11] have already been proposed. Recently, the
problem of largest similar substructures(in
short, LSS) in trees embedded in a plane was
discussed[3]. An object with tree structure is
not always embedded in a plane. However, the
computation of the Tai distance[4] between un-
ordered trees is NP-hard[12]. Furthermore, Tai
mapping is not appropriate to the evaluation

of a similarity between trees[10]. In this paper '

we use a maximal closest ancestor mapping to
discuss the problems of LSS in rooted and un-
ordered trees(in short, R-tree) and that in un-
rooted and unordered trees(in short, tree), and
propose two efficient algorithms for finding one
of the LSSs in R-trees and that in frees. Those
algorithms can be applied to structure-activity
studies and structure comparison problems.

2 Mappings

Let T = (V, E) be a tree, where V is the set
of vertices and E is the set of edges. In this
paper, all of the vertices in trees are labeled
and numbered. Let lab(x) and deg(x) denote
the label and the degree of vertex x, respec-
tively. mq(my) is the largest degree of a ver-
tex in tree To(Th), where T, = (Va,Eq) and
T, = (Vi, Ey). Vertex x with deg(x) = 1.s
called a leaf. If a trec has a root, we call it
an R-tree. Let To(u) = (Vo(u), Eqo(u)) be the
R-tree of T, with root .

Consider an R-tree. Let dep(x) denote the
depth of vertex x. If x is a root, dep(x) = 0. If
dep(x) # 0, the neighbour of x with depth
dep(x) — 1 is called the parent of r and de-

noted by pa(x). The root does not have its
parent. Let An(z) be the set of proper an-
cestors of x. Let An(z,z') = An(z') — An(x)

for # € An(a'), where “A — B” denotes that

removing all the elements in set B from set
A. If z is not a leaf, the neighbours of x with
depth dep(z) + 1 are called the children of
z. A leaf does not have children. Let Ch(x)
denote the set of children of z. For any ver-
tices x; and za(x; # ®2), if @1 ¢ An(zy)
and z3 ¢ An(z1), 21 and z are called to be
separated, and it is denoted by sep(z1,72). If
sep(x1,x2), let ccan(y,x2) be the closest com-
mon ancestor of #; and x.

Let Ty(u,z) = (Valu,z),Eq(u,2)) be
the subtree of T,(u) with root =z. Let
zi(i = 1,2,---,|Ch(z)]) denote a child
of r, and Fy(u,z) = (Va(u,%),Ea(n,7))
denote the forest that consists of trees
Ty (e, 21),Ta(ty 29), -+, Ta(u, Tjon(r))), Where
|A| indicates the number of elements of set A.

Consider a mapping from vertices of To(u)
to those of Ty(v). If ¢ maps to j, we write
(i,7), where i € V(u) and j € Vp(v). Let M
be the set of (i,5)s. If M satisfies the follow-
ing conditions, M is called a closest common
ancestor mapping(in short, CM) from Ty (u) to
Ty(v)[9]-

For any two pairs (i1,1), (¢2,J2) € M,

(al) 4y =14y iff j1=Js

(a2) i1 € An(iz) iff ji € An(G2),

(a3) if sep(i1,iz), then

(ccan(iy, iz), ccan(ji, j2)) € M.

Let M be a CM from T,(u) to Ty(w). If there is
no CM M’ from T,(u) to Ty(v) such that M’ =
{(i,7)} U M, M is called a maximal CM(in
short, MCM) from T;(u) to Ty(v)[11]. Let M
be a mapping between forests Fy(u,T) and
Fy(v,5). If M U {(x,y)} is an MCM from
T, (u,2) to Ty(v,y)s M is called an MCM from
F,(u,¥) to Fy(v,7).

If M satisfies (al) and (a2), M is called a
Tai mapping(in short, TM). Ref. [6] defined
a strongly structure preserving mapping(in
short, SSPM). SSPM can make more suitable
correspondences between the similar substruc-
tures of A and those of B than TM([10}, and CM
is a subclass of SSPM[9]. From the definitions
of CM and MCM, any MCM is a CM, but a CM



is not necessarily an MCM. To express a largest
similar substructure in R-trees(or trees), MCM
is better than CM and SSPM, since the nunber
of corresponding vertices between R-trecs(or
trees) by MCM is larger than or equal to that
by CM or SSPM. Let M be a mapping from
tree T, to tree Ty. If there are vertices u and »
such that M is an MCM from R-tree Ty(u) to
R-tree Ty(v), M is an MCM from T, to T[11].

'3 LSS in R-trees and Trees

Let M be an MCM from T,(u) to Ty(v). If
(i,§) € M and lab(i) # lab(j), we say that
lab(j) is substituted to lab(i). For any vertex y
of Tj(») and a vertex i of T,(u), il (¢,y) ¢ M, i
is deleted. For any vertex z of T,(u) and a. ver-
tex j of Ty(w), if (x,7) ¢ M, j is inserted. By
this interpretation, we can see that a map-
ping defines. a transformation from T,(u) to
Ty(v). Let M., denote an MCM from T, (u.x)
to Tp(v, y). If no confusion occurs, we use M.,
to indicate an MCM from T, (u) to Ty(n). De-
fine ](A[W) = {Jl (l,]) € M:'y}- Let Tay be

the root of subtree of Ty(») such that it in-

cludes J(M,,) and the number of its vertices is

smallest. If all the vertices of a subtree of Ty(v)
are inserted, it is called that the subtree is in-
serted. Let Ip7,, denote “the set of vertices of
all the inserted subtrees of T,(v, y) determined
by M,,".

Int,, = {31 Vi(v,5) C (Vi(w.y) = T(Mey )} . (1)

A similar substructure in Ty(v,y) to To(u,x)

determined by M,,, denoted by Sa,,, is de-
fined as the part of T;(v,y) obtained by remov-
ing the vertices of (IMry U An(y, 'r;,.y)) from
Ty(v,y)- Let Spy,, denote the set of vertices of
Sn,,- Sum,, can be expressed as follows.
(2)
That is, one M, determines one Sar,,- Let p, ¢
and r be the weights of a substitution, an in-
sertion and a deletion, respectively. p, ¢ and
r are positive and p = q = r > 1. As-
sume that M, determines ny deleted vertices
in To(u,x), ns substituted vertices and n; in-
serted vertices in Spr,,. The weight to trans-
form To(u, ) to Spr,,, denoted by W(M,,), is
defined as W(M,.,) = rng + pns + qn;.

S}\{,y = v,b(l”v !/) - Iﬂfry - /LI'"'(ya ""ry)'

Example 1  Consider an MCM M,, =
{(,3"),(1,5"),(2,7")} shown in Figure 1(a). We
have Ing,, = {1',6',8,9,10'}, r,, = 3’ and
An(y, Try) = An(y,3') = {y,2'}. The similar
substructure Sy, is shown in Figure 1(b). The
weight W (Mg, ) is é6(x,3') + 6(1,5') + 6(2,7") +
q, where ¢ is the weight of inserted vertex 4’
and
oo 0 lab(x) = lab(y),
b(r,y) = { p : lab(x) # lab(y).

a
Ty(v,y)
Y
Ty(u,x)
& 10’ Swm.,
9 3
. 7 4 7
., ........ 8! 5/
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Figure 1: (a) Mapping M,, = {(=,3"),(1,5'),
(2,7}, and (b) the similar substructure Sa,,
determined by M,,.

The distance from T,(u,z) to “similar sub-
structure in Ty(v,y) to T,(u,x)”, denoted by
D(u,z,v,y), is defined as follows. .

D(u,x,v,y) = minpy,, W(M.y). 3)

Note that there is at least one MCM that
determines D(u,x,v,y). Let the collection of
such mappings be {M] M2 --- M2} An
LSS in Ty(v,y) to Tu(u,z), denoted by

Siy, is defined as SMfy such that ,SMfyI =

maxj<i<d {ISM:uI}' An LSS is a tree. Let Sgy
denote the set of vertices of S,,.

Let D(u,v) denote the distance from T,(u) to
“similar substructure in Ty(v) to To(u)”, and
Suv be an LSS in Ty(v) to T,(u). Sy, indicates
the set of vertices of S,,,. Hereafter, SSD stands
for “the distance from T,(u,z) to ‘similar sub-
structure in Tp(v,y) to Tp(u,x)". If there are
vertices u and » such that a substructure of 7},
is a similar substructure in Ty(») to T,(u), the
substructure of Ty is called a similar substruc-
ture in T} to T,. The distance from T, to “sim-
ilar substructure in T} to 7,7, denoted by D, is
defined as follows.

(4)

D = minyev, vev, {D(u,v)}.



Let Z be the set of pairs of vertices u and v such
that D = D(u,v). An LSS in T}, to T,, denoted
by S, is defined as an LSS in Tj(v) to To(u) de-
termined by max(, ,)ez {|Su.|}. § denotes the
set of vertices of S.

4 A Computing Method of SSD

Consider two R-trees shown in Figure 2. From
the definition of MCM, MCM satisfies the map-
ping conditions of TM. Similar to Ref. [7], TM
from T,(u,x) to Tp(v,y) can be classified into
the following four types.

(b1) Vertex = maps to vertex y, and forest
F,(u,#) maps to forest Fy(n,7).

(b2) Vertex ' of Fu(u,¥) maps to vertex
y, and forest F,(u,%) maps to forest
Fy(v,5). The vertices of T,(u,x) except

those of Ty(u, ') are deleted.

(b3) Vertex a maps to vertex y' of Fy(n,7), and
forest Fy(wu,¥) maps to forest Fy(v,7").

The vertices of Ty(v,y) except those of
Ty(v,y') are inserted.

(b4) Vertex =z is deleted, vertex y is in-
serted, and forest Fy(w, &) maps to forest
Fl)( n, !7)
Tulu,x) Ti(v,y)
€T Y

Yicn)

Figure 2: R-trees To(u,x) and Ty(»,y).

Assume that a mapping from Fy(w,T) to
Fy(v,7), that from Fu(u,&) to Fy(v,7)
and that from Fo(u,%) to Fy(v,7) are
MCM. Then, the mappings of type (b1)~(h3)
satisfy the conditions of MCM. Let M be an
MCM from Fy(u,%) to Fy(v,§). Since M U
{(x,y)} is a CM from T,(u,z) to Tj(»,y), the
mapping of type (b4) is not an MCM.
Consider an MCM from Tu(u, ) to Ty(v,y).
Let Alyzuy, A2yupy and A3y, be the min-
imum value of W(M,,) for all M,, of type
(b1), that of type (b2) and that of type (b3), re-
spectively. Note that as described in the pre-
vious section, W(M,,) means the weight to

transform To(wu,2) to Spr,,. From the defini-
tion of SSD, we have the following formula.
D(u,,v,y) = min {Alyzvy, A2usvy, Aucvyl)-
(5)
A similar substructure Sps,, determined by
M., of type (b2) is shown in Figure 3(a). In
this case we have
A2u:r,vy = nlinI’EVa(u,.i') {Alux’uy
+(|Va(u, ©) = [Va(u,2")]) - r}. (6)
For the case of type (b3) shown in Figure

3(b), we have

(7)

A3ypy = Milyey(v,g) {ALyzuy}-

To(u, )
z

(b)
Figure 3: (a) SuM,, determined by M, of
type (b2), and (b) Sps,, determined by M.,
of type (b3).

Lemma 1 Assume that all of Aly;,, and
D(u,x;,v,y;)(x; € Ch{z), y; € Ch(y)) are
given. D(u,z,v,y) can be computed by the fol-
lowing formula.

D(u,r,v,y)

Alutvy,

ming, egn(e) { D(4, i, v, y) (3)
+(IVa(u, 2)| = [Va(u,2)]) * 7},

m‘“y,eCh(y) {D(u,z,v,9;)}.

Proof. We will prove Lemma 1 for the follow-
ing three cases.

Case 1: This is the case that Al is the
mininum value of formula (5). Clearly, we have
D(u,2,v,9) = Alypuy-



Case 2: This is the case that A2,,,, is the
minimum value of formula (5). Consider all
M., of type (b2). Vertex 2’ maps to y, where
2’ is a vertex of To(u,2;) and #; is a child of
2. From formula (6), we have

Azumuy
= mingrev, (us) { Bluatvy
+([Valu, 2)| = [Va(uw,2)]) - r}
= Mily, ech(e) MV, () { A Luatuy
+(Va(u, @) = [Va(u,«")[) - r}
= lllill;,,'e(_:-h(;r) I"ina."EVa(u,nf.) {Al,”-lvy
+(|Va(uy ;)] = [Valu,a")]) « #}
+(|Valt,2)] = Valu,x)]) - v}
= Wil echr) {min {ALL.;y,
MiN v, (u,7) { A Lurty
+(|Valu,w)| = [Valu, =")]) - r}}
+H(IValw, )] = Valu,)]) - 7}
= Mily,ecn(e) {MIN {A Luroys A2uray}
(| Valw,2)| = [Volu,x5)]) * v}
From the definition of SSD, we have
D(u, v, v,y) = min{ALlur,uy, A2us,uy, ABuroy )
Assume that “min{Aluruy, A2uuy) >
A3uziuy” (¥1). Let Ly(v,y) be the set of leaves
of Tj(v,y). From the assumption (x1) and for-
mula. (9), we have
B2uruy
= MiNg gonge) {MIN {A Loy A2ury}
+([Valu,®)| = [Valu,x3)]) - 7}
> ming, ecn(a) {A3ury
+(|Valu,z)| = |Va(u,x3)|) < v}
= nli"ar.-e(?h(m) lllillytevb(,,’g) {Al,”‘,'yl}
+(|Va(u, 2)] = [Valu,x3)]) - 7}
min,, echx) {miny,evb(,,.g) {AL oy
+(|Valw, )| = [Va(u,2:) = 1) - + p}}
2 Milg ecn() {MINyevy(v,5) { Alury!
+6(x, pa(y'))
+(|Valu, )| = |Va(u,23)| = L) * 7 }}
"linx.-e(?h(;r) {Illillylevb(,,,g) {Alu:,,,,pa(yt)

miny ey, (n,5) {Alu.ru]m(y')}

min {Alyzvy,

Milyrev, (u,9), y'¢Ly(uy) § Dluzuy } }

min {A 1u.17'uya uliny'EVb(“yy) {A 1 urvy! } }

= min {A lu,y'vya A3m:1'y } - ( 1 0)

Since this contradicts the asswmption that
“A2ypuy is the minimum value of formula (5)”,

(9)

v

i

v

the assumption (x1) is wrong. Therefore, we
have min{Aluz;vy, A2umy} < A3uzuy. That
is, D(u,2;,v,y) = min {Alyr,oy, A2uruy}-
From formula (9), we have

A2y = Hlillm.ec*h(x) {D(u,z;,v,y)
+(Valu, )] = [Va(u, z3)]) - r}. (11)
Case 3: This is the case that A3,;,, is the
minimum value of formula (5). Similar to Case
2, we have

A3upuy = miny eony) {P(v,z,0,9;)} (12)
Summing up the above discussions, we have

Lemma 1. u]

Hereafter, we will describe a computing
method for Alyzy,. If  maps to y, an SSPM
from F,(u, &) to Fy(v, §) has the following char-
acteristics.

“For any vertices «;,, *i,, yj and y;, (i1 #
iZ’J:ila Xy, € C'h(.’l?), jl 96 j27 Yo Y5 € Ch(?/))’
both To(u,x;,) and T,(u,x;,) cannot map to
Ts(v,y;,) at the same time, and T,(u, x;, ) can-
not map to both Ty(v,y;, ) and Tp(v, yj,) at the
same time.[6]"(*2)

Since MCM is a subclass of SSPM, (#2) is
correct for MCM. Let M;; denote an MCM
from Fy(u,Z) to Fy(v,y) in the case that
(x,y) € Myy. From the definition of Mzg, if
(x,y) € M,,, we have Mzy; = My -
{(z,y)}. Let (2:,y;) denote that Ty(u, z;) maps
to Ty(v,y;). From (#2), we can express Mgy
using set Clypy of (2i,y;), that is, Cuzyy =
i i), (i) o (@io ) He, €
Ch(x), yj, € Ch(y), 1 < h < k). If (x,y) €
M, M, can be expressed as follows.

Mﬂ/ = {(fv.'/)} U Miy_.
= {(W»y)}U(U(m.,m)ecmy (Mz.'yj))- (13)

Consider a C'yzyy and an M, in the case that
(r,y) € M,,. Assume that “subtree T,(u,x,)
(x5 € Ch(x))is deleted and subtree Ty(v, ¥ )(y:
€ C'h(y)) is inserted by M,,"(+3). Since M, U
M.y is a CM from T, (u, x) to Tp(v,y), Myy is
not an MCM. Therefore, the assumption (*3)
is incorrect. Then, we have

|Cuzuy| = min {|Ch(2)],|Ch(y)|}- (14)

Consider W(M;,) in the case that (z,y) €
M. Assume that Tp(u,x;)(z; € Ch{z)) maps



to Tu(»,y;)(y; € Ch{y)). Since x maps to
y, all the vertices of /in(yj,'r_,..y]) belong to
Shs,, From (#2) and formula (13), W(M,,) in
the case that (x,y) € M,y and Al,,., can be
expressed as follows.

W(Me) = 600,14 5 punny (W (M)
+ |z:1~'ll(yj, Ty )| ° q)
F i) € Cunny [Valts i) 1y (15)
Alypuy = minpg,, W(Mzy)
= ming,,,, {Z(“_‘,/J)e(‘;“w (min Ma,y,
{W(I\L,.»_,,J) + lfi'"'(?/jv"a:.y,)l . q})
£ T o IVl )] 7} 4 6(2,3)
= §(x,y) + ming,,,, {Z(;,,”yj)e(jmw
(ﬁ(u, Ty 0, Y5) ’
o ey )ung Valt )] 1)},
where
f)(u,;zi, ", 95) E minMI'y) {W(M‘,,,yj)
+ lﬁvz(yj,v'miy‘) . q}.
Before discussing a computing method of
Alyzuy, we show a computing method of

D(u,x,v,y) first. Similar to Lemma 1, we have
Lemma 2.

(16)

(17)

Lemma 2 Assume that Al,,uy, D(u, 2, 0,y;)
and D(u, i, 0,y;)(xi € Chz), y; € Ch(y))
are given. D(u,x,v,y) can be computed by the
following formula.
D(u,x,v,y)
Aluz‘uys
lllill;,,i €Ch(x) {D(u, €Ty, 0, '_l[)
= +”Vn(uy 1)‘ N IVG(“'v 'rt)l) . 7'}’
minyiec,,,(y) {D(u,a:,v,yj) + q} .

(18)

Consider a computing method of Al
based on formula (16). Create a bipartite graph
G(A, B, E) from T,(u,x) and Ty(v,y). A =
Ay U A4; and B = B; U B, are the sets
of vertices of G, and FE is of
edges of G. Ay = {a1,0p, -, qon()} and
B1 = {p1,02, -+, By }- @i(B;) denotes sub-
tree To(u,z)(To(v,y;)))(xi € Chix), y; €
C'h(y)). Az and B, are the sets of dwnmy ver-
tices. If |Ch(z)] = |Ch(y)|, then Ay = By =

the set

@(the empty set). If |Ch(z)| < |Ch(y)], then
Az = {0Ch(e)+ 1A Ch@)42r * XCR(y) ) and
By = 0. If |Ch(z)|] > |Ch(y)|, then A, = @
and By = {Bicn)+1:Bchw+zs 0 Ben@)}-
Let ¢;; denote the edge that is incident with «;
and f3;, and E = {e;;li = 1,2, -+ ,]|A], j =1,
2, --+ ,|B|} denote the set of edges that are
incident with vertices of A and that of B. Let
w(e;;) denote the weight of edge e;; and be de-
fined as follows.

w(ei;)
D(u,x;,v,y;) : o; € Ay, Bj € By,
= IVa(u’zi)l Tl a; € A, /3] € Bz,

0 ’ i a; € Ay, B; € B.
A matching M of G is perfect if each vertex is
incident with exactly one member of M. From
formulae (13) and (14), we can see that a per-
fect matching of G, denoted by M, can be ex-
pressed by a C\yqy. Let M, denote one of the
minimum weight perfect matchings of G, and
W(Mpin) denote its weight. For Al,zyy, we
have Lemma 3.

Lemma 3 Assume that all of the distances
ﬁ(u,;lri,v,yj)(;xr,- € Ch{z), y; € Ch(y)) are
given. We can compute Al,,,y by the following
formula.

Alyryy = é(z, .1/) + W(Mmiu)- (19)
m]

I

5 An Algorithm for LSS in R-trees

Let Ny = S|, and let ]V_,,,y denote
“maxa,, {|SM_W| + [/in(y,r,_v)l}”, where M,,
is an MCM that determines D(u,m,v, y). Let
N1,y denote “maxp,, {|Snm,,|}”, where M.,
is an MCM that deterniines Alyzuy. Consider
Figure 2. Assume that all of D(u,#;,v,y;) and
Ny, (2; € Ch(z), y; € Ch(y)) are given. Us-
ing Lemma 3, we can compute Al,,,, and find
one of MCMs that determine Al,,,,. To com-
pute N1,,, it is necessary to know all M, that
determine Al,,,,. We show an eficient com-
puting method for Al and N1g,. .

Lemma 4 Assume that all of 5(1/,:1:;,1;,3/]-)
and ﬁaz.y,(mi € Ch(x), y; € Ch(y)) are
given. We can compute Al and N1,y by
the following formulae.



Alyroy = b(z,y) + Z(‘r,,y,»),e(?;,w b("'“'“,yj) Procedure LSS-subtree(u, z, v, y);

begin

Vo(u,£)] * r, (20) compute Alyzyy and N1;y using LSS-AT,

+2 (w80

wy compute ﬁ(u, z,v,y) by formula (18);
Nl. =2 o . N 21 compute D(u,z,v,y) by formula (8);
i + Z("l"y’)e("'l“'"y ¥ ( ) it D(u,z,v,y) = Aluzuy, then
- . . . ) Niy = N1,
where C,,. satisfies the following forniula. else
R if D(u,7,v,y) = A24,0y, then
E(”ly'/])E(T:.xvy ((D(",mi’ v y’) + J) ‘ le = NI'y
’ . else
. U, 0,1 —]’\7' ) Nay i= Nayj;
([ Va(u, o) + [Vi(w, 1)) Ty, it D(w,z,v,y) -_-.IA‘Z...I-.W and N,y < N,,,, then
) v Volu, )]+ r ' Nay = Ny y;
+ Z(m”y’)¢("‘,““’y | alt, i )l ! if D(u,x,v,y) = A3uzuy and Noy < Ny, then
“(Valw,2)] + [Vi(v, 9)]) Ney = Now, s
end.

= minge,_, { " . . o
Curny 24, )€Curuy ( Figure 4: Procedure LSS-subtree.
Algorithm LSS-R-tree

(ﬁ('u.,.t,-, 0,y;) + 1)
-~ Input  : Two R-trees Ta(u) and Tp(v)
(| Valu, @) + Vi, 9)l) - Nr,’y,) Output. : N,

+ ; v AValuya)) o ' begin
Z(J“’ylmcu“w I “( o I D(u,v):=Ny-r+ Ny q;

*(|Valu, )] + [Vi(o, ) }- (22) for vertex y in Th(v) do
{9 is chosen in decreasing order of the depth of y}
O for vertex x in T,(u) do
{# is chosen in decreasing order of the depth of =}
begin
Nyy:=1, Nlzy:=1;
if both 2 and y are leaves, then

Using the algorithm for finding one of
the minimum weight perfect matchings of

G[13}, we can find (7, in formula (22). Us- begin

ing Lemma 4, we can compute Al D(u,x,0,9) :=6(z,y); Aluzuy := b(x,y);
and Nl1.,. Let LSS-Al denote this proce- dD(“""*"’-") =8y

dure. The time and space complexities of ZII:,e

LSS-Al are Of(m?) and Og(m?), respec- compute D(u, =, v,y), D{u,z,v,y) and N,
tively, where m = max(mg,m;). Using LSS- using LSS-subtree;

Al, Lemma 1 and Lemma 2, we can com- end;

~ =D i Nuw i= Nyy;
pute D(w,x,n,y), D(u,2,v,y), N,, and one of Diw, v) (w0, 0); v

MCMs that determin Sg,. Since it is easy to '
find the vertices of S,,, we will omit the de- Figure 5: Algorithm LSS-R-tree.

tails. A procedure LSS-subtree for computing )

D(u,x,v,y), D(u,x,v,y) and N,y is shown in 6 An Algorithm for LSS in T'rees
Figure 4. The time complexity of LSS-subtree If all of distances D(u,v) and all of S,, are

is Or(m?). given, for T, and T, we can compute D and
Let Nyy = |Syo|, and let Ny(Ny) be the num-  find S. In Ref. [8], an efficient algorithm for the
ber of vertices of T,(T}). Using procedure LSS-  distance between CO-trees was proposed. Mod-
subtree, we can get an algorithm LSS-R-tree  ifing this algorithm, we can obtain an algorithm
for finding one of the LSSs in R-trees which LSS-tree for finding one of the LSSs of trees.
is shown in Figure 5. The time complexity of
LSS-R-tree is O7(m>N, Ny). Since the space for
recording 'y, for all vertices x of T, (u) and
all vertices y of T;(v) is at most 2N, Ny, the
space complexity of LSS-R-tree is Og(m N, Ny). (¢2) Replace the notations concerning the dis-

end.

(cl) Replace the notations concerning RO-
tree( CO-trec) with R-tree(tree) defined in
this paper.



tances based on SSPM with those concern-
ing the distances between similar substruc-
tures.

(c3) Replace the procedure for computing the
distance between subtrees with procedure
LSS-subtree.

(c4) Add the instructions for computing |S5].

The time complexity of LSS-tree is
Ot (m3N,N;). Since the space for recording
Cuzoy for all vertices & of To(u) and all ver-
tices y of Ty(w) is at most mN, Ny, the space
complexity of LSS-tice is Og(mN,Ny).

7 Conclusions

We discussed the problems of largest simi-
lar substructures in 7T), to T,, where both
T, and T, are R-trees(trees). An efficient al-
gorithm for finding one of the LSSs in R-
trecs and that in frees were proposed. The
time and space complexities of both algo-
rithms are Op(m3N,N,) and Os(mN,Ny), re-
spectively. Those algorithms can be applied to
structure-activity studies and structure com-
parison problems. One of the future problems
is to enumerate all subtrees of tree T}, with at
most k differences to tree T,.
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