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The maximum satisfiability problem (MAX SAT) is : given a set of clauses with weights, find a truth
assignment that maximizes the sum of the weights of the satisfied clauses. In this paper, we present
approximation algorithms for MAX SAT, including a 0.76544-approximation algorithm. The previous best
approximation algorithm for MAX SAT was proposed by Goemans-Williamson and has a performance
guarantee of 0.7584. Our algorithms are based on semidefinite programming and the 0.75-approximation
algorithms of Yannakakis and Goemans-Williamson.
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1 Introduction

We consider the maximum satisfiability problem
(MAX SAT): given a set of clauses with weights,
find a truth assignment that maximizes the sum of
the weights of the satisfied clauses. MAX 25AT,
the restricted version of MAX SAT where each
clause has at most 2 literals, is well known to
be NP-complete even if the weights of the clauses
are identical, and thus MAX SAT is also NP-
complete. Thus, many researchers have proposed
approximation algorithms and the best approxi-
mation algorithms for MAX SAT had been 0.75-
approximation algorithms proposed by Goemans-
Williamson [3] and Yannakakis {8]. On the other
hand, Goemans-Williamson recently obtained a
0.878-approximation algorithm for MAX 2SAT
based on semidefinite programming, a new and very
useful technique in the approximation algorithms
and noted that it leads to a 0.755-approximation al-
gorithm for MAX SAT [2]. Then they obtained an-
other improvement and the 0.7584-approximation
algorithm is the best known algorithm [4].

In this paper, we first present a 0.75899-
approximation algorithm for MAX SAT based on
semidefinite programming and 0.75-approximation
algorithm of Goemans-Williamson [3]. Although
this algorithm may be quite similar to the above
0.7584-approximation algorithm, in that both
algorithms are based on semidefinite program-
ming and the 0.75-approximation algorithm of
Goemans-Williamson, our algorithm will not ex-
plicitly transform a MAX SAT instance into a
MAX 2SAT instance. We next give a 0.76544-
approximation algorithm by combining the above
0.75899-approximation algorithm with the 0.75-
approximation algorithm of Yannakakis based on
the probabilistic method. Yannakakis’s algorithm
divides the variables of a given instance into three
groups P/, (P—P')UQ and Z and sets the variables
in P/, (P - P')UQ and Z to be true with proba-
bilities 3/4, 5/9 and 1/2, respectively. In our algo-
rithm, we set the variables in P/, (P—P')UQ and Z
to be true with probabilities 3/4, 0.568729 and 1/2,
respectively. Combined with the 0.75899 approxi-
mation algorithm, this leads to the approximation
algorithm with performance guarantee 0.76544.

2 Preliminaries
An instance of the maximum satisfiability problem

(MAX SAT) is defined by a collection of boolean
clauses C where each clause C; € C is a disjunction

of literals and has a nonnegative weight w; (a literal
is either a variable z; or its negation ;). Let X =
{z1,...,Tn} be the set of variables in the clauses in
C. We assume that no variable appears more than
once in a clause in C, that is, we do not allow a
clause like z; V Z; V 7. For each variable z; € X,
we consider z; = 1 (z; = 0, resp.) if z; is true (false,
resp.). Then, Z; = 1 —z; and a clause C; € C can

be considered to be a function of ¢ = (z1,...,Zn)
as follows:
Ci=Cilmy=1- J[ @-=) J[ = @
xiEX;' z.»GXJ.'

where X;f (X, resp.) denotes the set of vari-
ables appearing unnegated (negated, resp.) in Cj.
Thus, C; = Cj{z) = 0 or 1 for any truth assign-
ment € {0,1}" (i.e., an assignment of 0 or 1 to
each z; € X), and Cj is satisified (not satisfied,
resp.) if Cj(z) = 1 (Cj(z) = 0, resp.). The value
of an assignment  is defined to be

Fle)= Y wCj(). )

C;eC

That is, the value of z is the sum of the weights of
the clauses in C satisfied by . Thus, MAX SAT is
to find a truth assignment of maximum value.

Let A be an algorithm for MAX SAT and let
wA(C) be the value of a truth assignment 24(C)
produced by A for an instance C. If w#(C) is
at least a times the value w*(C) of an optimal
truth assignment z*(C) for any instance C, then A
is called an approximation algorithm with perfor-
mance guarantee a. A polynomial time algorithm
A with performance guarantee a is called an a-
approzimation algorithm.

The 0.75-approximation algorithm of Yannakakis
is based on the probabilistic method. Let z? be a
random truth assignment obtained by setting in-
dependently each variable z; € X to be true with
probability p; (i.e, 0 < 27 = p; < 1). Then the
probability of the clause C; € C satisified by the
assignment z? is

cie=1- [[ a-p) Il - ®
z.eX} 2EX;

Thus, the expected value of the random truth as-
signment zP is
F(m") = Z w,-Cj(m”). (4)
Cj;eC

The probabilistic method assures that there is a
truth assignment z? € {0, 1}™ such that its value is



at least F'(zP). Such a truth assignment 7 can be
obtained by the method of conditional probability

(131,(8)).

3 0.75899-Approximation Al-
gorithm

In this section we present an approximation algo-
rithm A for MAX SAT. The algorithm is based on
semidefinite programming used first by Goemans
and Williamson for MAX 2SAT [2] and if it is
combined with the 0.75-approximation algorithm
of Goemans-Williamson then it achieves a perfor-
mance guarantee of 0.75899. The algorithm A con-
sists of the following four steps.

1. Translate a maximization problem of {0,1}-
variables into a maximization problem of
{-1, 1}-variables, that is, we regard MAX SAT
as a maximization problem of a polynomial of
variables in {-1,1}.

2. Obtain another maximization problem of a
polynomial of low degree.

3. By relaxing the new maximization problem,
formulate it as a semidefinite programming
problem and solve it.

4. Construct a truth assignment of the original
MAX SAT from a solution of the semidefinite
programming problem.

We explain each of the above steps in the follow-
ing subsections.

3.1 From a Maximization of {0,1}-
Variables to a Maximization of
{-1,1}-Variables

We translate an instance of MAX SAT of n {0, 1}-

variables into a polynomial of n {—1, 1}-variables
in the following way.

We introduce n variables z}, ..., z!, and consider
142!
I = D) L, (5)
11—z’

Thus, i =1-xz; = —* and ; = I(Ii = 0,
resp.) if and only if z; = 1 (z} = -1, resp.). Let
z’ = (z4,...,7,). By this replacement, clause C;
in (1) becomes

a=1- I 5% [ 85, @

ext eXT
zi€X] zi€X;

Thus, finding a truth assignment « € {0, 1} that
maximizes F(z), the sum of the weights of the sat-
isfied clauses in C, is equivalent to finding an as-
signment &’ € {~1,1}" (assignment of —1 or 1 to
each x}) that maximizes

F(@') = ) w,C;(). (7)

Cjec

F(a') is called the value of z’. Thus we can regard
MAX SAT as the following problem:

(P): Maximize F(z') subject to ' € {1, 1}".

3.2 Maximization Problem of a
Polynomial of Lower Degee

Instead of maximizing F(z'), we will consider an-
other maximization problem. Let Ci be the set of
clauses in C with k literals and let C; =z, Vz, V
-++V 2y € C. Then, by (6), C; = C;(z') is

1 k
2k s (1+2i) + 'ilF lei, <i25k(1 - Iglzgn
1
+§F ZlSi1<i2<isSk(1 + $£lﬂ7£2.’t§.3)

ot (1 (<1)kahay o ah)

We divide C; into two parts cg.l) and c?: ¢ is the
sum of the terms in C; of forms 14z and -2} ],
(2)

and c;

5 is the rest, i.e.,c_g.l) = cg.l) (z') is

k
1 1
e (+a)top D (-zg) (8

i=1 1<iy <ia<k

and cgz) = c§2)(m,) = Cj(z') - cg.l)(a:’). Similarly,
for any Cj € C, we can define cg-}) and cg.?) in the
same way even if some literal in C; appears as a
negation Z; (in this case we have only to replace z}
with —z}). Note c;l)(a:’) = Cj(a') for any C; € Cy
with k£ <2, and that 1+ 2z} > 0 and 1:i:z§lz§, >0
since ¢’ € {-1,1}™

Let
2k k is odd

_ T+D? ( 18 O )
g = 4k : (9)

w1 (kis even)

and define
9k-+1

Ga)=3" 3 “mw @) (1)

k>1C;ECk

Thus, G(z') is a polynomial with nonconstant
terms of degree at most 2 and we use a solution



of the following problem as an approximate solu-
tion of (P).

(Q): Maximize G(z') subject to 2’ € {-1,1}".

Now we introduce new variables
Yy = (Yo, ¥1,- - - , ¥n) and consider
§ = yoys with |yo| =yl =1 (11)

for later use in semidefinite programming. Then
1+ (1—, resp.) becomes 14+yoy; (1-yoy:, resp.)
and 1+2} 7}, (1—z 2], resp.) becomes 1+y;,4;,
(1 — y3,¥i,, Tesp.). Now they are of the same form
and cgl)(y) = c§1) (z’) is a linear combination of the
terms 14y, %i,, 1—¥i, ¥i;. Thus, G(y) = G(z') can
be expressed by

E a:;in(1+yi1yi:)+ E

0<iy<ian 0<iy <ia<n

a‘i_lig (l—yilyﬁ)

(12)
with some nonnegative numbers a}; . a;; . Note
that G(y) is a polynomial with nonconstant terms
of degree 2. Thus, (Q) is reduced to the following
problem (Q’) and we use its solution as an approx-
imate solution of (P) based on (11).

(Q'): Maximize G(y) subject to y € {—1, 1}"+1,

3.3 Relaxation and Semidefinite
Programming Problem

Since (Q') is difficult to solve, we consider a re-
laxation of (Q’) as described in {2]. Let v; be an
(n+1)-dimensional vector with norm ||v;|| = 1 cor-
responding to y; with |y;} = 1. We replace y;,yi,
with an inner product v;, -v;,. With this relaxation,
(@Q') is reduced to the following problem (R).

(R): Maximize G(v) = Yo, ciz<n af (14w, -

Viz) + Loci ciggn Onin(1 — Vin - Viz) subject to
flvs|| =1foralli=0,...,n

Now let y;,5, = v, *v;,. Then, amatrix Y = (yi,4,)
is symmetric and positive semidefinite. Thus, the
following problem is equivalent to (R).

(R'): Maximize G(Y) = Yoci, cig<n Shis(1 +
Yiria) + 2oo<iy <ia<n Biriy (1 = Yinia) Subject to the
conditions that the matrix Y = (y;,;,) is symmetric
and positive semidefinite, and that y;; = 1 for all
i=0,...,n

Since (R') is a semidefinite programming prob-
lem as in [2], we can find an approximate so-
lution ¥ = (§,;,) within a constant error € in
polynomial time. An approximate solution ¥ =
(@, Dy, . . ., Ty) of (R) can be obtained by Cholesky
decomposition of ¥ = (%,:,). At this point we have
an approximate solution of (R) in polynomial time.

3.4 Finding an Approximate Solu-
tion of MAX SAT

As described in [2], we find a randomized approx-
imate solution ¥ = (o, J1,---,¥n) of (Q') and the
corresonding solution of (Q) and (P) from an ap-

proximate solution © = (Tp,D1,...,¥s) of (R).
Taking a random vector 7, let ; = +1if ;-7 > 0,
or §; = —1 otherwise. &' = (&,...,%;,) is also

obtained by Z} = fjof; based on (11).

We show in Section 4 that the expected value
F(%') of &' is at least 0.75899 times the value
F(z'*) of the optimal solution &’ of (P) under
some conditions. We can derandomize this method
in the same way as in [2],[4],[6] and obtain an
approximate solution y4 = (y&,yf,...,yd) of
(Q') and the corresonding approximate solution
TA=(zA,...,5.2) of (P) by 4 = yfyft. Since
T, = 1—%211 by (5) (i.e., z; = 1 (z; =true) if and
only if 1 = 1 and #; = 0 (z; =false) if and
only if z; = —1), we have an truth assignment
x4 = (zf,...,72) which is an approximate solu-
tion of MAX SAT.

4 Analysis of the Perfor-

mance Guarantee

Based on the argument in the previous section, so-
lutions = of MAX SAT, =’ of (P) and y of (Q')
can be obtained from one another based on (5) and
(11). Thus, we can assume, from now on, that any
one solution of =, ' and y implies any other two
solutions in hand even if we do not say explicitly. In
this section we analyze the performance guarantee
of the above algorithm. Let z# = (z1,...,%Zs) be
an approximate solution of MAX SAT obtained by
the algorithm A described in the previous section.
Let G be an assignment obtained by using 0.75-
approximation algorithm of Goemans-Williamson.
Let B be an algorithm choosing the better solution
2P between z# and zG. Then, roughly speaking,
the performance guarantee of ¥ will be 0.75899.

The following lemmas play critical roles through-
out the paper.



Lemma 1 Let C; be any clause in C. Then, for
any &' = (z},...,7,) € {-1,1}", C;(z') # 0 (C;
is true) zf and only if c( )(m) # 0. Furthermore,
for any &’ € {-1,1}" and any C; € Cx, if k is odd

(k4 1)?
9k+1

4k
oF+1

= Ci(e) <§P(@) < Cj(a’)

and if k is even

(k+1)2 -1

7o Cil@) < (@) < ——Ci(@).

2k+1

Proof. By symmetry we can assume C; = z; V
29 V .-+ Vi € C. By equations (1), (5) and (6), if
Cj(z') # 0 then C;(z') = 1 since C; = Cj(z’) is
boolean and z} = 1 for some z} and thus c(l)(a:’) #*
0 by (8). On the other hand, if c(l)(a:’ ) # 0, then
z} = 1 for some z; by (8) and thus Ci&) =1
by (6). Thus, we have Ci(z') # 0 if and only if
cgl) (') # 0. Let £ be the number of z!’s with z} =
16 =12..k fcP@)#0then 1 <<k

and cgl)(m’) = ‘ijéé;ﬁ by (8). Since

k41, (k+1)7
g )Vt

we have the lemma. w}

L+ 2k —0)=—(¢~

Lemma 2 Let x'* be a solution of (Q) obtained
by the alogrithm A in Section 3 for an instance C.
Let ='* be any solution in {—1,1}" that marimizes
F(z') and let Wi = 3¢ ¢, wiCj(a"™). Then the

value wA(C) = F(z'?) of &' satisfies

wA(C) = F(@'™) > G@") 20 > aWj,
k>1

where a = 0.87856 and oy, is defined in (9), i.e.,

k .
= z;i—‘}z; (k 'fs odd )
FrD?=1 (k 18 even).

Proof. For any C; € Cy, and any =’ € {-1,1}",
we have
AMRRC /
rad@) <o) 1)

since cg.l)(a:') < L’;3’,;';1-21Cj(:c') (k is odd) and
(1) (&) < M}E,:lc i(z') (k is even) by Lemma
1 and by the deﬁnmon of oy, and thus, we have
F(a'") > G(@").

Let o'; be any solution in {—1,1}" that max-
imizes G(z'). Then, by the same analysis as in

[21,[4] for a = 0.87856, we have G(z'*) > aG(z'y
and G(z';) > G(z'*). On the other hand, we have
cg.l)(a:') > #5rCj(a') for any C; € Ci and any
' € {-1,1}" by Lemma 1 and thus

2k+1 )y ,
TR (z') 2 axCy(2’). (14)
This implies
. 9k+1 o
G(z' ).—_Z E TR (=™)
k>1C;€Ck
>3 (e Y wiCi(a") = Wi (15)
k>l CieCk k>1

Thus, we have the lemma by
F(z'*) 2 G@™) 2 aG(a'G) 2 aG(a"")

obtained above. a

The 0.75-approximation algorithm of Goemans-
Williamson is obtained by choosing the better solu-
tion & between their original linear programming
relaxation solution z¥ and a solution 2z’ by John-
son’s algorithm [5).

Let z'* be any solution in {—1,1}" that max-
imizes F(z') in (P) and let * be obtained from
z'* by setting z} = 1+;". For k > 1, let Wy, =
Zc cc, wj and W = z:c,ec,c w;Cj(z™). Then,
the value w” of 2/ satisfies w” > Zk>1(l ) W
On the other hand, the value w” of z satisfies
wk > Y11~ %)k)W,‘; Strictly speaking,
wh >3, 01-(1- 1)kyw;” for another optimal
solution z' *" in {-1, 1} that maximizes F'(z') and
wy” Ec cc, WiCi (a:" ). We will later show

that we can assume W,c = Wy forall k > 1. Thus,

if we let
ﬂk:(l_#H;_(l—%)k, (16)
then the value wS of the better solution z€ satisfies
w® > ZﬂkW,: (17)
k>1

Now we are ready to analyze the performance
guarantee of the algorithm B choosing the bet-
ter one B between the solution z# obtained by
the algorithm A and the Goemans-Williamson's

solution z&. Thus, w? = max{w?,w®}. Let
b= -;izq% = 0.758990... where e is the number e
(the base of the natural logarithm). If
Wi+ Wy 2 — Z(b o)Wy, (18)
b5



thenw? > a} o, WS > b3, ; Wy by Lemma
2 and w# (as well as w?) has a required perfor-
mance b (note that ay; = az = 1). Thus, we can
assume

* * 1 *
Wy + Wy < a_b;(b o)Wy, (19)

On the other hand, if
1
* * < _ >
Wi+ W < 5575 éw" bW,

then w® > Yis AWy > b3 x5 Wi by (16) and
(17) (note that §; = B2 = 0.75) and w€ has a
required performance b. Thus, we can assume

* »* 1 *
Wi+ Ws > s é(ﬂk —b)Wj.

However, for b = 0.75899, it is not difficult to see

Br —b
b—-0.75 —
and we have

* * 1 *
WitWe > o kg(ﬂ" R

b— aoy
a—-b

(k23) (20

1 x * *
> EZ(b— aa)Wi > Ws +Ws,
k>3
a contradiction.
Thus, we have the following theorem.

Theorem 1 A 0.75899-approzimation algorithm
can be obtained based on the algorithm A in Sec-
tion 3 and the 0.75-approzimation algorithm of
Goemans- Williamson.

5 Formal Formulation

In this section, we formulate MAX SAT based on
the the formulation by Goemans and Williamson
[3],[4] as follows.

(S) : Maximize Z w;z; subject to:
1 C;eC 1

> oAl 3 Sl vgec
zieX} TEX]
2k.+1
chl)(Y) > Zj VC] € Ck
yi=1 Y0<i<n
0<z<1 VYC; eC
Y = (v1,i,) is symmetric positive semidefinite.

2y

Recall that, by (11) and y;,4, = ¥4, - Vi = ¥4, Yia»
the matrix Y = (y;,4,) is symmetric and positive
semidefinite and cg.l)(Y) = cgl)(y) = cgl)(z:’ ). Let
(Y, 2*) is an optimal solution to (S). By fixing 2*

“and changing Y in the optimal solution (Y, z*) to

(S), we also solve (R’) under the same constraints
in (S). Let (Y*,2*) be an optimal solution to (S)
and (R').

To achieve the bound described in the previous
section, we consider Algoorithm C consisting of the
following three algorithms:

(1) set each variable z; true independently with
probability 0.5;

(2) set z; true independently with probability
Itwi ysing the optimal solution (Y, 2*) to (S);

(3) take a random unit vector r and set z; true if
and only if sgn(o} - 7)=sgn(@§ - ) using the optimal
solution (Y*, 2*) to (S) and (R') (v},;, = v}, - vi,):

Suppose we use algorithm (i) with probability
pi, where p1 + ps + p3 = 1. From the arguments in
[2],{4] and the previous section, the probability that
a clause C; € C;, being satisfied by algorithm (3) is
at least aakc§l)(Y) > aoyz; by Lemmas 1 and 2.
Thus, the expected value W€ of the solution is at
least

ST wy {(1 - Zlk)pl + (wpz + aakpa)z}])’

k>1 CjECk
(22)

where 3, = 1— (1 )*. Let Wy = Y0 ¢, wiz;-
Then, by 2; < 1 in the constraints of (5), Wy <
EC,- cc, Wj and thus,

1 .
we=%" [(1 — 36)P + P2 + aakps)] Wy

k21

(23)

This equation also assures the arguments in the pre-

ceeding section. If we set p; = py = 0.4650334 = p
and p3 = 0.0699332 = 1 — 2p, then

WE > " (28p + ca (1 - 2p)) Wy
k31

(0 =1-F+1-(1-p)F=1-gF+mnby
(16)). Thus, we obtain Algorithm C is a 0.75899-
approximation algorithm, which can be verified by
checking

26kp + aay(1 — 2p) > 0.75899

for k < 8 and noticing 20;p+ aay(1—2p) decreases
as k increases, and that, for k = 0o, f; = 1— % and
oy = 0and 26;p+aa(1-2p) = 0.4650334(2—-2) >
0.75899.



Thus Theorem 2 in the preceeding section is also
obtained. For MAX kSAT where each clause has
at most k literals, we can similarly obtain a 0.769
approximation algorithm for £ < 5 by maximizing
b in the preceeding section and appropriately fixing
p1, p2 and pa.

6 0.76544- Approximation Al-
gorithm

We can improve the bound 0.75899 by using the
0.75-approximation algorithm of Yannakakis. It
is based on the probabilistic method proposed by
Johnson [5] and divides the variables X of a given
instance C into three groups P/, (P—P')UQ and Z
based on maximum network flows. Simultaneously,
the set C of weighted clauses is transformed to an
equivalent set of weighted clauses EUFUGUG UH
(two sets D, D’ of weighted clauses over the same
set of variables X are eguivalent if every truth as-
signment of X, D and D’ have the same value).
For simlicity, we assume as follows (in fact we can
assume without loss of generality):

&€ = {#,z,} with Z;,z, of weight Kg,

G = {z1,72,73,%1 V F2 V £3} with z1,22,73 €
XUX —~ P of weight K and Z; V&3 V Z3 of weight
2K,

G = {xg,,Tgy, Tgyy Tgy, gy Vg, ViEgs V Ty, } With
Zg, € XUX — P of weight K¢ (k= 1,2,3,4) and
Z; VI, VI, VI, of weight 3K¢,

H= {.’Eh‘, Thyy Thy Thy V Th, V Tha, T1, 2_31} with
Zyp, € XUX ~P (k = 1,2,3) of weight 2Ky,
Zp, V Zp, V Th, of weight 2Ky and 1, Z; of weight
-Kg,

F=FUFRUFUFU-. - with ECjefle =
ZC,’EC[ w; —2Kg —3Kg —4Kg —4KH

ECJ‘ €Fy w] - EC,' €C3y w]

2oc ers Wi = Ligjecs Wi — 2Ke — 2Kn

ECJ eFr Wi = ECjGCc wj — 3Ke

Fi = Cy, for all k > 5 (weight of a clause in this
class is not changed).

Furthermore, we can assume

each literal in F; is contained in P/,

for each clause z V y € F3, if one of z,y is con-
tained in P’ then the other is in P/, and if one of
x,y is contained in Q U (P — P’) then the other is
in PVQ,

for each clause z Vy V 2 € F3, all z,y, z are not
contained in P’, and if two of z,y, z are contained
in P’ then the remaining one is in PV Q,

for each clause z VyVvz Vv € Fy, all z,y, 2, v are
not contained in P’

Since the set C and the set EUFUGUG UH
described above are equivalent, from now on we
assumeC =EUFUGUG UH.

Then Yannakakis algorithm sets the variables in
P, (P-P")UQ and Z to be true with probabilities
3/4,5/9 and 1/2, respectively. In our algorithm we
change to set the variables in (P — P') U Q to be
true with probability p = =3£Y57 ~ 0.568729. Let
W}, be the value of an optimal truth assignment for
D, the sum of the weights of the satisifed clauses
inD (D =¢&,G,G,H). Then W < Kg, W <
4Kg, W < 6Kg and W} < 5Kg. Let W] =
> c;er. ws- Thus the probabilistic method assures
that we can find a truth assignment z¥ € {0,1}"
of value wY which is at least

Wy +0.7T0(Wg + Wi + W) + (W] + W)
+(1- 320 -p)W;+ (1 - E)Pp)W;
+ 3 ss(1— ()WL (24)

Now we consider an algorithm D consisting of the
following four algorithms:

(1) set each variable z; true independently with
probability 0.5;

(2) set z; true independently with probability
1—+23&i using the optimal solution (Y, 2*) to (S);

(3) take a random unit vector r and set z; true if
and only if sgn(@} - r)=sgn(¥g - ) using the optimal
solution (Y*, 2*) to (S) and (R') (y},;, = vi, " vi,)

(4) set each variable z; in P/, (P —P)uQor Z
true independently with probability 3/4, 0.568729
or 1/2, respectively based on the modified Yan-
nakakis's algorithm above.

Suppose we use algorithm (z) with probability p;,
where py + p2 +ps +ps = 1. If weset p = p; =
0.3110053, pz = 0.1201425 and ps = 0.2578469,
then the expected value of D can be shown to be at
least 0.76544 3" . pw;z; (D = £,G,G','H). Fur-
thermore, the expected value of Fj can also be
shown to be at least

Yoo er wil(l = g6)p1 + mepe + aokps + 6)2;

> 0.76544 ZC,'efk w525,

Where7k :1—(1—%)’6, 51 = b :0.75, 63 =1-
0.752(1—p), 64 = 1—0.753p, 6 = 1—0.75% (k > 5).
Thus, we have the following theorem.

Theorem 2 A 0.76544-approzimation algorithm
can be obtained based on the algorithm A in Section
3, the Yannakakis’s algorithm modified as above,
and the 0.75-approzimation algorithm of Goemans-
Williamson.



We have presented two approximation algorithms
for MAX SAT, including a 0.76544-approximation
algorithm. = We believe this approach can be
used to further improve the performance guarantee
for MAX SAT. Note that Goemans-Williamson’s
0.7584-approximation algorithm can be shown to
have the same performance guantee 0.75899 by
choosing p; = pz = 04650334 and p; =
0.0699332 as in this paper. Although our 0.75899-
approximation algorithm is of the same perfor-
mance as Geomans-Williamson's algorithm, our al-
gorithm has better performances when applied to
MAX kSAT (for example 0.769 for k¥ < 5, while
Geomans-Williamson is at most 0.765). On the
other hand, Feige and Goemans recently obtained
0.931-approximation algorithm for MAX 2SAT [1]
and if it is used in the Goemans-Williamson’s
0.7584-approximation algorithm in place of 0.878-
approximation algorithm, then the performance
guarantees 0.76199 for MAX SAT and 0.770 for
MAX 3SAT can be obtained. The techniques
in 0.931-approximation algorithm for MAX 2SAT
may also be used in our algorithms.
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