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Practical PTAS for Some Maximization Problems
on K3 s-free or Ks-free Graphs
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Department of Mathematical Sciences, Tokyo Denki University

Hatoyama, Saitama 350-03. E-mail: chen@r.dendai.ac.jp

We show that for an integer £ > 2 and an n-vertex graph G without a K33 (resp.,
Ks) minor, we can compute k induced subgraphs of G with treewidth < 3k — 4 (resp.,
< 6k—"17)in O(kn) (resp., O(kn+n?)) time such that each vertex of G appears in exactly
k — 1 of these subgraphs. This leads to practical polynomial-time approximation schemes
for various maximum induced-subgraph problems on graphs without a K33 or K5 minor.
The result extends a well-known result of Baker that there are practical polynomial-
time approximation schemes for various maximum induced-subgraph problems on planar

graphs.



1 Introduction

Let ™ be a property on graphs. = is heredi-
tary if, whenever a graph G satisfies 7, every
induced subgraph of G also satisfies 7. Sup-
pose 7 is a hereditary property. The. mazi-
mum induced subgraph problem associated with
7 (MISP(r)) is the following: Given a graph
G = (V,E), find a maximum subset U of V
that induces a subgraph satisfying 7. Yan-
nakakis showed that various natural MISP()’s
are N P-hard even if the input graph is re-
stricted to a planar graph {15]. Thus, it is of
interest to design efficient approximation algo-
rithms for these MISP(7)’s.

An approximation algorithm A for a max-
imization problem II achieves a performance
ratio of p if for every instance I of II, the ratio
of the optimal value for I to the solution value
returned by A is at most p. A polynomial-time
approzimation scheme (PTAS) for problem II
is an approximation algorithm which given an
instance I of II and an ¢ > 0, returns a solu-
tion s within time polynomial in the size of I
such that the ratio of the optimal value for I
to the value of s is at most (1 + €).

Much work has been devoted to design-
ing PTASs for MISP(r)’s restricted to cer-
tain special instances [1, 5, 12]. Lipton and
Tarjan were the first who proved that vari-
ous MISP(7)’s restricted to planar instances
have PTASs [12]. In their approach, they ap-
plied their planar separator theorem. Unfor-
tunately, their schemes are known to be non-
practical [6]. That is, to achieve a reason-
able performance ratio (e.g., 2), the number
of vertices in the input graph and/or the run-
ning time of the schemes has to be enormous
(=~ 2%”"). Later, Baker gave practical PTASs
for the same problems using a different ap-
proach [5]. By extending Lipton & Tarjan’s
approach, Alon et al. [1] showed that var-
ious MISP(w)’s restricted to graphs without
an excluded minor have polynomial-time ap-
proximation schemes. Like Lipton and Tar-
jan’s schemes, Alon et al.’s schemes have the
shortage of being very nonpractical. Very re-
cently, Eppstein proved that if F is a family
of graphs without an excluded minor and does
not contain all apex graphs, then there is a

function f such that every graph in F with
diameter at most D has treewidth f(D) [7].
Combining this result together with Baker’s
approach leads to PTASs for MISP(7)’s re-
stricted to graphs in such a family F. Unfor-
tunately, Eppstein’s proof is based on Robert-
son & Seymour’s “planar obstruction theorem”
[13] and f(D) is extremely large (even if D is
small) [7]. Consequently, the resulting PTASs
are nonpractical.

Since neither Alon et al.’s schemes nor the
schemes implied by Eppstein’s result above are
practical, it is natural to ask whether prac-
tical PTASs exist for MISP(7)’s restricted to
graphs without an excluded minor. In this pa-
per, we give an affirmative answer to this ques-
tion when the minor is K33 or K. Since nei-
ther a K3 3 minor nor a K5 minor can exist in a
planar graph, our result extends Baker’s result
above. Our schemes can be viewed as a modifi-
cation of Baker’s schemes. Recall that Baker’s
schemes consist of three steps. First, decom-
pose the input planar graph G into k (k — 1)-
outerplanar (induced) subgraphs Gy, ---, Gk
such that each vertex of G appears in exactly
k—1 of these subgraphs. Next, compute an op-
timal solution s; in each G; using dynamic pro-
gramming. Finally, output the best one among
81, -+, 8 as a (nearly optimal) solution in the
original graph G. In [5], Baker shows that the
output solution has size at least (k — 1)/k op-
timal. Our schemes differ from Baker’s only in
the first step. This difference is essential be-
cause it is impossible to perform the first step
above when G is not planar. In our schemes,
the input graph G without a K33 (resp., K’)
minor is decomposed into k induced subgraphs
with treewidth < 3k — 4 (resp., < 6k — 7) in
O(kn) (resp., O(kn + n?)) time such that each
vertex of G appears in exactly k¥ — 1 of these
subgraphs. This decomposition is based on
the nice structures.of graphs without a K33
or K5 minor that were developed in [2, 8, 11].
Roughly speaking, these nice structures say
that a graph without a K33 (resp., K5) minor
must have very special 3-connected (resp., 4-
connected) components each of which can eas-
ily be decomposed into induced subgraphs of
bounded treewidth. The problem is how to



combine the decompositions of these compo-
nents into a (single) decomposition of the orig-
inal graph G. We solve this problem by orga-
nizing these components into a suitable tree.
The other two steps in our schemes are the
same as those in Baker’s, and therefore can
be done in practical polynomial (often linear)
time because various MISP(r)’s restricted to
graphs of bounded treewidth can be computed
in practical polynomial (often linear) time by
dynamic programming [4, 14]. Besides their
practicality, our schemes also have the advan-
tage of being easy to parallelize.

2 Preliminaries

Throughout this paper, a graph is always con-
nected. Unless stated explicitly, a graph is al-
ways simple, i.e., has neither multiple edges
nor self-loops. Let G = (V,E) be a graph.
For convenience, we allow V = 0. f V = 0,
then we call G an empty graph. We sometimes
write V(G) instead of V and E(G) instead of
E. The neighborhood of a vertex v in G is the
set of vertices in G adjacent to v. For U C V,
the subgraph of G induced by U is the graph
(U, F) with F = {{v,v} € E:u,v € U} and is
denoted by G[U]. When U C V, we sometimes
write G — U instead of G[V — U].

A contraction of an edge {u, v} in G is made
by identifying u and v with a new vertex whose
neighborhood is the union of the neighbor-
hoods of u and v (resulting multiple edges and
self-loops are deleted). A contraction of G is a
graph obtained from G by a sequence of edge
contractions. A graph H is a minorof G if H
is the contraction of a subgraph of G. G is H-
freeif G has no minor isomorphic to H. In this
paper, we deal with K3 3-free graphs and K-
free graphs. Recall that a planar graph must
be both K3 3-free and K's-free by Kuratowski’s
Theorem.

A tree-decomposition of G is a pair
({X; ¢t € I},T), where {X; i € I} is
a family of subsets of V and T is a tree with
V(T) = I such that the following hold:

(a) Uier X; = V.

(b) For every edge {v,w} € E, there is a
subset X;, 7 € I with v € X; and w € X,.

(c) For all 4,5,k € I, if j lies on the path
from ¢ to k in T, then X; N X C X;.

The treewidth of a tree-decomposition
{X; : teI},T)is max{|X;| -1 : i €I}.
The treewidth of G, denoted by tw(G), is the
minimum treewidth of a tree-decomposition of
G, taken over all possible tree-decompositions
of G. The treewidth of an empty graph is de-
fined to be 0.

Lemma 2.1 [Robertson & Seymour] Let G =
(V, E) be a graph, and R; and R be two sub-
sets of V such that (i) ByNRy = @ or G[R1NR;]
is a clique and (ii) there is no {ui,uz} € E
with vy € Ry — R; and u3 € Ry — Ry. Then,
tw(G[R1UR,]) < max{tw(G[R1]), tw(G[R2])}

A set § C V is a cutset if G — S is discon-
nected. A cutset S is a k-cutif |§| = k. A
k-cut is strong if G — S has at least three con-
nected components. A graph with at least &
vertices is k-connected if it has no (k — 1)-cut.
A biconnected component of G is a maximal
2-connected subgraph of G.

Let C be a cutset of G, and Gy, ..., G, be
the connected components of G — C. For 1 <
it < p, let G; U K(C) be the graph obtained
from G[V(G;)UC] by adding an edge between
every pair of non-adjacent vertices in C. The
graphs G1UK(C), ..., GoUK(C) are called the
augmented components induced by C. Clearly,
if G'is k-connected and C is a k-cut of G, then
all the augmented components induced by C
are also k-connected.

It is well known that the biconnected com-
ponents of a graph are unique. Let C' be
the set of all 1-cuts of G, and B be the set
of all biconnected components of G. Con-
sider the bipartite graph H = (C!' U B, F),
where F = {{C,B}: C € C!, B € B, and
C C V(B)}. It is known that H is a tree. Sup-
pose that B = {By,...,B,;}. Let I = {1,...,q}.
Root the tree H at B; and define 7(G) to be
the tree whose vertex set is I and edge set is
{{i,#'} : B is the grandparent of B; in the
rooted tree H}. (Note that 7(G) is undi-
rected.) The following fact is easy to prove.

Fact 1 ({V(B,) i € I},TYHG)) is a tree-
decomposition of G and can be computed from

G in O(|V]) time.



Suppose that G is 2-connected. Further
suppose that G contains a 2-cut. Replac-
ing G by the augmented components induced
by a 2-cut is called splitting G. Suppose G
is split, the augmented components are split,
and so on, until no more splits are possible.
The graphs constructed in this way are 3-
connected and the set of the graphs are called
a 2-decomposition of G. Each element of a
2-decomposition of G is called a split compo-
nent of G. It is possible for G to have two or
more 2-decompositions. A split component of
G must be either a triangle or a 3-connected
graph with at least 4 vertices. Let D be a 2-
decomposition of G. We use C*(D) to denote
the set of the 2-cuts used to split G into the
split components in D. Consider the bipartite
graph H = (C*(D)UD, F), where F = {{C, D}

C € C¥D), D € D, and C C V(D)}.
It is known that H is a tree. Suppose that
D = {Dy,...,Dy}. Let I ={1,...,q}. Root the
tree H at D and define 72(G, D) to be the tree
whose vertex set is I and edge set is {{7,¢} :
D; is the grandparent of D;s in the rooted tree
H}. (Note that 72(G, D) is undirected.) Con-
struct a supergraph G?(D) of G as follows: For
each {u,v} € C*(D) with {u,v} ¢ E, add the
edge {u,v} to G. Then, we have the following
fact:

Fact 2 ({V(D;) : i€ I},T*G,D))is a tree-
decomposition of G%(D).

3 A technical lemma

Let S be a set. For an integer £ > 2, a k-
cover of S is a list of k subsets of § such that
each element of S is contained in exactly k —1
subsets in the list.

Lemma 3.1 Let G = (V, E) be a graph. Let
k and b be two integers with £ > 2, and 7 be a
property on k-covers of subsets of V. Suppose
that G has a tree-decomposition ({X; : j €
I},T) and T has a rooted version such that the
following three conditions are satisfied:

(1) For every j' € I and every child j of j/
in T, G[X;» N X;] is a clique.

(2) For the root r € I of T, we can compute
a k-cover (Ry,..., Rg) of X, in f(k,|X,]|) time

such that

(2a) for every 1 <1 < k, tw(G[R;]) < b and

(2b) for every child j” of » in T, (Ry N
X,y RN Xjn) is a k-cover of X, N X;n sat-
isfying 7.

(3) For every j' € I and every child j of j' in
T and every k-cover (Y7, ..., Yx) of X;:NX; sat-
isfying 7, we can compute a k-cover {Z1, ..., Zy)
of X; in f(k,|X;|) time such that

(3a) forevery 1 <I<k, Y= 210 X,

(3b) for every 1 < I <k, tw(G[Z]) < b, and

(3¢) for every child j” of §, (Z1NX;ny ..., ZkN
X;n) is a k-cover of X; N X;» satisfying 7.
Then, we can compute a k-cover (Vi,...,V)
of V in O(¥;er f(k,1X;])) time such that for
each 1 <1<k, tw(G[V}]) £ band VINX, = R;.

Proof. Consider the following algorithm for
computing (V1, ..., Vi):

Algorithm 1

1. Set V4, ..., Vi to be the empty set.

2. While traversing T (starting at its root r)
in a breadth-first manner, perform the fol-
lowing steps:

2.1. If the current vertex j is r, then com-
pute a k-cover {Ry, ..., Rg) of X, sat-
isfying the two conditions (2a) and
(2b) above, and further add the ver-
tices in each R;, 1 <! <k, to V.

If the current vertex j is not r,
then find the parent j' of j in
T, set {¥1,...,Yx) = (i n(Xyn
X]‘),...,Vk N (Xjr n X]‘)), compute a
k-cover (Zi,...,Zy) of X; satisfying
the conditions (3a), (3b), and (3c)
above, and add the vertices in each
Zi,1< 1<k, to V.

2.2.

3. Output {(V4,..., Vi).

Next, we prove that the output (V3,..., V)
of Algorithm 1 satisfies that tw(G[V}]) < b
and ViN X, = R; for each 1 < I < k. First
note that the while-loop in Algorithm 1 is exe-
cuted |I| times. W.l.o.g., we may assume that
I={1,..,|I|} and that j+1 is traversed by Al-
gorithm 1 right after j for each 1 < j < |I|-1.



Then, r = 1. For each 1 < j < |I| and each
1 <1< k,let V7 be the content of the variable
V) right after the jth iteration of the while-
loop. We claim that for each 1 < j < |1],
(V7,...,V]) is a k-cover of Uj<ic; X; satisfying
the following three conditions:

(C1) tw(G[V{]) < b and V/ N X; = R, for
each 1 <[ <k. '

(C2) For each son j” of j in T, (V{ N(X; N
Xn), ...,ij N(X; N X;n))is a k-cover of X; N
XJ'M satisfying .

(C3) For each 1 < i < j and each child ¢’ of
1in T, (VIJ n (Xi N X,'l), ey Vlg Nn(X;n X,':)) =
(Vin(Xin Xir), .o, Vi O (X 0 X))

The lemma follows from the claim. We can
prove the claim by induction on j. |

Let G = (V,E) be a graph, and U be a
subset of V. A k-cover L of U is completely
unbalanced if exactly one set in L is empty
and the others are equal to U. A k-cover
L of U is weakly unbalanced if there are one
vertex © € U and two sets U; and U; in L
such that U; = {u}, Uz = U — {u}, and all
the sets in L except U; and U, are equal to
U. A k-cover of U is unbalanced if it is either
completely unbalanced or weakly unbalanced.
Note that if |U| < 2, then every k-cover of U
must be unbalanced. Hereafter, the property
7 in Lemma 3.1 means “unbalanced”, i.e., a
k-cover L of U satisfies 7 if and only if L is
unbalanced.

4 Approximating MISP(7)’s
on Kj3-free graphs

Lemma 4.1 Let G = (V,E) be a connected
planar graph, and k£ be an integer > 2. Sup-
pose that s; and s; are two adjacent vertices
in G and (Y3,...,Y%) is an unbalanced k-cover
of {s1,32}. Then, we can compute a k-cover
(Z1,....,2%) of V in O(k|V]) time such that
tw(G[Z)]) < 3k — 4 and Z; N {31,852} = Y, for
each 1 <[ <k.

Lemma 4.2 [2, 8]. Each split component of
a 2-connected K3 3-free graph is either isomor-
phic to K5 or planar.

Lemma 4.3 Let G = (V, E) be a 2-connected
K3 3-free graph. Then, for any k£ > 2, we can
compute a k-cover (V1,..., Vi) of V in O(k|V])
time such that tw(G[V]]) < 3k — 4 for each
1< 1<k

Proof. Let D = {Di,..,D;} be a 2-
decomposition of G, and let I = {1,...,¢}. It
is known that D can be computed in O(|V})
time [9]. Moreover, Y ;c;|V(Di)l = O(|V])
[9]. W.lo.g., we may assume that G*(D) = G
because a k-cover (Vi,..., Vi) of V such that
the subgraph of G?%(D) induced by V; has
treewidth < 3k — 4 for each 1 < I < &
is also a k-cover (Vi,...,Vx) of V such that
tw(G[V]]) < 3k — 4 for each 1 <1 < k. Then,
by Fact 2, ({V(D;) : j € I},T*G,D))is a
tree-decomposition of G. For convenience, let
T = T*G,D)), b = 3k — 4, and X; = V(D;)
and f(k,|X;|) = O(k|X;|) for each j € I. We
want to apply Lemma 3.1 to the graph G and
the tree-decomposition ({X; : j € I},T). To
this end, we first (arbitrarily) choose an r € [
and root T at r.

Clearly, the condition (1) in Lemma 3.1 is
satisfled by G and ({X; j € I},T). By
Lemma 4.2, G[X,] = D, is either isomorphic to
K5 or planar. Let us first suppose that G[X,]
is isomorphic to Kjs. Then, we set By = §
and Ry = --- = Ry = X, if kK > 3; otherwise
(k = 2), we arbitrarily choose two vertices vy
and v, in X, and set By = {v1,v2} and R; =
X, — Ry. Obviously, (R1, ..., R) is a k-cover of
X, satisfying the condition (2a) in Lemma 3.1.
(R, ..., Ri) also satisfies the condition (2b) in
Lemma 3.1 since | X, N X;»| = 2 for every child
4" of r in T. Next, suppose that G[X;] is
a planar graph. Then, we arbitrarily choose
an edge {s1,s2} in G[X;], set Y1 = § and
Y, = .- = Y, = {s1,52}, and use Lemma 4.1
to compute a k-cover (Rj,...,Ry) of X, in
O(k|X.|) time such that tw(G[R;]) < 3k—4 for
each 1 < I < k. Clearly, (Ry,..., Rg) satisfies
the condition (2a) in Lemma 3.1. (Ry,..., By)
also satisfies the condition (2b) in Lemma 3.1
since | X, N X;»| = 2 for every child j” of r in
T.

Fix a j' € I and a child j of j' in T. Let
(Y1,...,Y;) be an unbalanced k-cover of X; N
X;. W.lo.g., we may assume that |¥7| < |¥i41]



foreach1 <! < k—1. By Lemma 4.2, G[X;] =
D, is either isomorphic to K's or planar. Let us
first suppose that G[X] is isomorphic to K. If
k > 3, then weset Z; = Y; and Z; = YU(X; -
X;/) for each 2 < I < k. Otherwise (k = 2), we
arbitrarily choose a vertex v € X;— X/ and set
Zl = Y1U(XJ’ —(Xjr U{’U})) and Z2 = YQU{U}.
Then, no matter what k is, (Z1,...,Zx) is a
k-cover of X; satisfying the conditions (3a),
(3b), and (3c) in Lemma 3.1. Next, suppose
that G[X,] is planar. Let X; N X; = {s1,52}.
Note that s; and s; are adjacent in G. We use
Lemma 4.1 to compute a k-cover (Z, ..., Zj) of
X;. It should be easy to see that (Z,..., Z) is
a k-cover of X; satisfying the conditions (3a),
(3b), and (3c) in Lemma 3.1.

Theorem 4.4 Let G = (V, E) be a K33-free
graph. Then, for any k£ > 2, we can compute a
k-cover (Vi,..., Vi) of V in O(k|V]) time such
that tw(G[W]) <3k —4for 1 <I< k.

Corollary 4.5 Let 7 be a hereditary property
on graphs. Suppose that MISP(7) restricted
to n-vertex graphs of treewidth < k can be
solved in T'r(k,n) time. Then, given an integer
k > 2 and a K3 3-free graph G = (V, E), we can
compute a subset U of V in O(k|V|+ Tx(3k —
4,|V])) time such that G[U] satisfies = and |U|
is at least (k — 1)/k optimal.

For various properties w, T.(k,n) =
2¢(K)¢(n) where p and q are polynomials of low
degree (often, of degree 1) [4, 14]. Hence, for
such properties w, MISP(r) restricted to K3 3-
free graphs has a practical polynomial-time ap-
proximation scheme by Corollary 4.5.

5 Approximating MISP(7)’s
on Kj;-free graphs

We start by giving several definitions. Suppose
that G is 3-connected. Further suppose that
G contains a strong 3-cut. Replacing G by the
augmented components induced by a strong 3-
cut is called strongly splitting G. Suppose G
is strongly split, the augmented components
are strongly split, and so on, until no more
strong splits are possible. The set of the graphs

constructed in this way are called a strong 3-
decomposition of G.

Definition 5.1 We define W to be the graph
obtained from a 8-cycle by adding 4 crossing
edges. More precisely, W = ({1,...,8}, 4 U
E;), where Ey = {{i,i+1} : 1 << T}U
{{8,1}} and E, = {{i,s +4} : 1 <1< 4}
A Ks-free graph G is said to be nice if G is
3-connected, nonplanar, and is not isomorphic
to K33 or W.

Fact 3 [11] Suppose that G is a nice Ks-free
graph. Let C be a strong 3-cut in G. Then, the
augmented components induced by C are also
nice K;-free graphs. Moreover, G has another
strong 3-cut C’ if and only if C’ is a strong
3-cut of some augmented component of G in-
duced by C.

Fact 4 [11] A nice K;-free graph has a unique
strong 3-decomposition. Moreover, each graph
in the strong 3-decomposition is planar.

Suppose that G = (V,FE) is a nice Ks-
free graph. Let D3(G) be the strong 3-
decomposition of G, and C3(G) be the set of
all strong 3-cuts in G. Define H(G) to be
the bipartite graph (D3(G) U C3(G), F), where
F = {{D,C}: D € D}G), C € C3(G), and
CcVv(D)}. ‘

Lemma 5.2 (1) Every edge of GG is contained
in some graph in D3(G).

(2) If a subset S of V induces a triangle but
§ ¢ C3(G), then exactly one graph in D3(G)
contains the three vertices in §.

(3) H(G) is a tree. Moreover, if some vertex
u € V is contained in two graphs D and D’ in
D3(G), then u is contained in every graph on
the path between D and D’ in H(G).

Proof. We can show the lemma by induction
on the number of strong 3-cuts in G. |

Suppose that D3(G) = {Di,...,Dq}. Let
I =1{1,...,q}. Root the tree H(G) at D; and
define 73(G) to be the tree whose vertex set is
I and edge set is {{¢,7'} : D; is the grandpar-
ent of D;s in the rooted tree H(G)}. (Note that
T3(G) is undirected.) Construct a supergraph



G? of G as follows: For each strong 3-cut C
and each pair of nonadjacent vertices v and v

in C, add the edge {u,v} to G.

Corollary 5.3 ({V(D;) : i € I},73(G)) is a
tree-decomposition of G3.

Lemma 5.4 Let G = (V,F) be a connected
planar graph, and & be an integer > 2. Sup-
pose that S is a subset of V such that G[S]
is a triangle, and (¥7,...,Y}) is an unbalanced
k-cover of S. Then, we can compute a k-cover
(Z1y .., Zy) of V in O(K|V|) time such that
tw(G[Z)])) < 6k —~ 7 and Z; N S = Y for each
1<i<k,and (ZyNnS',...,Z, N S") is an un-
balanced k-cover of §’ for all subsets S/ of V
with G[S$'] being a triangle. |

Lemma 5.5 Let G = (V,FE) be a nice K-
free graph, and k£ be an integer > 2. Sup-
pose that s; and s; are two adjacent vertices
in G and (U4, ...,Uy) is an unbalanced k-cover
of {s1,s2}. Then, we can compute a k-cover
(Viyooy Vi) of V in O(Kk|V]| + |V|?) time such
that tw(G[V]) <6k — 7 and V; N {s1,52} = U
foreach 1 <1< k. [ |

Lemma 5.6 Let G = (V, E) be a 2-connected
Ks-free graph. Then, for any k£ > 2, we can
compute a k-cover (V4,..., Vi) of Vin O(k|V |+
[V|?) time such that tw(G[V;]) < 6k—T7 for each
1<1<k.

Proof. Let D = {Di,..,D4} be a 2-
decomposition of G, and let I = {1,...,q}. Tt is
known that D can be computed in O(|V|) time
[9]. W.lo.g., we may assume that G}(D) = G
because a k-cover (V4 ..., Vi) of V such that the
subgraph of G%(D) induced by V; has treewidth
< 6k — 7 for each 1 <! < k is also a k-cover
(V1,..., V&) of V such that tw(G[V]]) < 6k - 7
for each.1 < [ < k. Then, by Fact 2,
{v(D;) J € I}, T*G,D)) is a tree-
decomposition of G. For convenience, let T =
T7*G,D), b = 6k — 7, and X; = V(D;) and
J(k,1X,1) = OKIX;| + [X;12) for cach / € I.
We want to apply Lemma 3.1 to the graph G
and the tree-decomposition ({X; : j € I},T).
To this end, we first (arbitrarily) choose an
r € I and root T at r.

Clearly, the condition (1) in Lemma 3.1 is
satisfied by G and ({X, Jj e Ih,T) To

see that the condition (2) in Lemma 3.1 is also
satisfied, we distinguish four cases as follows:

Case 1: G[X;] is planar. Then, as stated
in the proof of Lemma 4.3, we can com-
pute a k-cover (R, ..., R) of X, in O(k|X:|)
time satisfying the conditions (2a) and (2b) in
Lemma 3.1.

Case 2: G[X,] is isomorphic to K33. Then,
weset Ry =0 and Ry = ++- = R, = X,. Obvi-
ously, (Ry, ..., Rk) is a k-cover of X, satisfying
the conditions (2a) and (2b) in Lemma 3.1.

Case 3: G[X,] is isomorphic to the graph
W (see Definition 5.1). Then, we set By = 0
and Ry = --- = R, = X, if £ > 3; otherwise
(k = 2), we (arbitrarily) choose four vertices
from X, and set R; to be the set of the four
vertices and Ry to be X, — R,. Obviously,
(R, ..., Rg) is a k-cover of X, satisfying the
conditions (2a) and (2b) in Lemma 3.1.

Case {: G[X,]is anice K5-free graph. Then,
we arbitrarily choose an edge {s1,s2} in G[X;]
and set Uy =P and Uy = -+ = U = {51,852}
By Lemma 5.5, we can compute a k-cover
(Ry,..., Rg) of X, in O(k|X,|+]X,|?) time such
that tw(G[R;]) < 6k — 7 for each 1 <! < k.
Clearly, (R1, ..., Rg) satisfies the condition (2a)
in Lemma 3.1. (Ry,...,Ry) also satisfies the
condition (2b) in Lemma 3.1 since | X, NX;n| =
2 for every child 7” of rin T.

Note that one of the above four cases must
occur. Thus, the condition (2) in Lemma 3.1
is satisfied by G and ({X; : 7 € I},T). To
see that the condition (3) in Lemma 3.1 is also
satisfied, fix a 7' € I and a child j of 7' in
T. Let (Y1,...,Yx) be an unbalanced k-cover
of le N X]', and let X]'I n )(J = {51,82}. Re-
call that {s;,s5} is an edge in both G[X;:] and
G[X;]. Moreover, by symmetry, we may as-
sume that |Y)] < |Yigq| forall 1 <1 <k~ 1.
We distinguish four cases as follows:

Case 1’: G[X,] is planar. Then, as stated
in the proof of Lemma 4.3, we can compute
a k-cover (Zi,...,Z;) of X; in O(k|X,|) time
satisfying the conditions (3a), (3b), and (3c)
in Lemma 3.1.

Case 2’: G[X,] is isomorphic to K3 3. Then,
weset Zy = Yyand Z; =Y U (X]' - XJ'I) for
each 2 < I < k. Clearly, (Zy,...,2Zx) is a k-
cover of X satisfying the conditions (3a), (3b),



and (3c) in Lemma 3.1.

Case 3’: G[X;] is isomorphic to the graph
W (see Definition 5.1). If k > 3, then we set
Zy = Y1 and Z; = Y1 U (X — X;1) for each
2 < I < k; otherwise (k = 2), we (arbitrarily)
choose a subset A of X; — X, with |A] = 3
and set Z; = YU A and Z; = X; — Z;. Then,
it is easy to verify that (Z1, ..., Zk) is a k-cover
of X; satisfying the conditions (3a), (3b), and
(3¢) in Lemma 3.1.

Case 4’: G[X;] is a nice Kj-free graph.
Then, by Lemma 5.5, we can compute a k-
cover (Z, ..., Z) of X; in O(k|X;|+|X;|?) time
such that tw(G[Z]) < 6k—7 and Z)N{s1,52} =
Y] for each 1 < [ < k. From this, it should be
clear that (Z,..., Zy) satisfies the conditions
(3a), (3b), and (3c) in Lemma 3.1.

Note that one of the four cases must oc-
cur. Thus, by the discussions above and
Lemma 3.1, we have the lemma. [ |

Theorem 5.7 Let G = (V,E) be a Kj-free
graph. Then, for any k£ > 2, we can compute a
k-cover (V4,..., Vi) of V in O(k|V|+|V|?) time
such that tw(G[Vi]) < 6k—T7foreach1 <[ < k.

Corollary 5.8 Let 7 be a hereditary property
on graphs. Suppose that MISP(r) restricted
to m-vertex graphs of treewidth < k can be
solved in Tr(k,n) time. Then, given an integer
k > 2 and a Kj-free graph G = (V, E), we can
compute a subset U of V in O(k|V|+ |V|* +
T.(6k — 7,|V|)) time such that G[U] satisfies
7 and |U] is at least (k — 1)/k optimal.

For various properties w, Tn(k,n) =
27(F) g(n) where p and g are polynomials of low
degree (often, of degree 1) [4, 14]. Hence, for
such properties m, MISP(r) restricted to Ks-
free graphs has a practical polynomial-time ap-
proximation scheme by Corollary 5.8.
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