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Abstract. In this paper, we study the structural properties of the Kautz digraph such as decompo-
sition and arc-disjoint spanning trees. We present several isomorphic decompositions of the Kautz digraph
applying isomorphic decompositions of the complete symmetric digraph. Also we construct arc-disjoint
spanning trees rooted at a cyclical vertex of the Kautz digraph.

1 Introduction

In the design of massive parallel computers, the choice of the interconnection network is very important.
The topology of the interconnection network is one of the critical factors which determine the performance
of the parallel computer.

So far, a lot of interconnection networks have been proposed for massive parallel computers. Among
them, the de Bruijn and Kautz networks have been noticed because of their good properties such as
small diameter, high connectivity, bounded degree and so on. In this paper, we study their structural
properties such as decompositions and arc-disjoint spanning trees.

Let G be a digraph. The vertex set and the arc set of G are denoted by V(G) and A(G), respectively.
Suppose that € = (u,v) € A(G). Then it is said that u is adjacent to v, v is adjacent from u, e is
incident from u and e is incident to v. The set of vertices adjacent from (to) v is denoted by NZ(v)
(Ng(v)). The cardinality of Nf(v) (Ng(v)) is called the out-degree (in-degree) of v and denoted by
degd (v)(degg(v)). If degl(v) = degg(v) = r for any vertex v of G, then G is called an r-regular digraph.
A vertex whose out-degree is 0 is called a sink. Also, a vertex whose in-degree is 0 is called a source. The
set of arcs incident from v is denoted by A%(v). Also AZ(v) denotes the set of arcs incident to v. Let
u,v be vertices of G. The distance from u to v denoted by dg(u,v) is the length of a shortest path from
u to v. (If there is no path from u to v, then dg(u,v) = c0.) Let S C V(G). Then the distance from
S to v is defined by minyesdg(u,v). Let V C V(G) and A € A(G). Then (V) and (A) stand for the
subdigraph induced by V' and the subdigraph arc-induced by A, respectively. The underlying graph of G
is a graph obtained from G by replacing each arc to a corresponding edge, deleting loops, and replacing
multi-edges to single edges. If the underlying of a digraph is connected, then the digraph is called a
weakly connected digraph. Let Fi, F,..., F;, be subdigraphs of G such that Ui<i<mA(F;) = A(G),



A(F)NA(F;) = 0for 1 < i < j < m. Then it is said that G can be decomposed into Fy, Fy,..., Fr.
Also we say that G has a decomposition [Fy, F,..., Fy,]. If F; 2 F, 1 <i < m, then the decomposition
of G is called an isomorphic decomposition of G into F' and we say that G has an F-decomposition.

The line digraph of G denoted by L(G) is a digraph whose vertex set is A(G) such that vertex (u,v)
is adjacent to vertex (z,y) iff v = z. The k-iterated line digraph of G denoted by L¥(G) is recursively
defined as L*(G) = L(L*~!(G)). Note that a vertex of L*(G) is corresponding to a walk of length k in
G. Let W, be the corresponding walk of G for vertex v of L*(G). Then vertex u is adjacent to vertex v
in L*(G) iff the last subwalk of length k — 1 of W, is equal to the first subwalk of length k — 1 of W,. A
vertex of L*(G) which is corresponding to a walk in a cycle of G is called a cyclical vertex of L*(G). Let
v be a cyclical vertex of L¥(G). Then c(v) denotes the length of the cycle which contains W,. Let P be
a statement that can be true or false. Then [P] stands for 1 if P is true, 0 otherwise.

Let K, denote a complete symmetric digraph of order p. A digraph of order 1 and size d is denoted
by K¢. That is, K'{ has one vertex and d loops. Then, using the line digraph operation, the de Bruijn
digraph B(d, D) and the Kautz digraph K(d, D) are defined as follows.

{ Bl = LK)
K(d,D) = LP-(K},y).

From the point of walks, definitions by an alphabet of these digraphs are obtained. That is, The vertex
set of B(d,D) is {(v1,v2,...,vp) | vi € {0,1,...,d —1},1 < ¢ < D}. Then there is an arc from vertex

(vi,v3,...,vp) to d vertices (vq,...,vp,a) where @ € {0,1,...,d — 1}. Similarly, the vertex set of
K(d,D) is {(w1,ws,...,wp) | w; € {0,1,...,d},1 £¢ < D, wj # wjs1,1 < j < D} such that there is
an arc from vertex (wq,ws,...,wp) to d vertices (wa,...,wp,a) where a € {0,1,...,d} and @ # wp.

It is well known that the de Bruijn digraph can be decomposed into isomorphic spanning trees ([2]).
We generalize this result from the point of the line digraph iteration. Then we present several isomorphic
decompositions of the Kautz digraph applying isomorphic decompositions of the complete symmetric
digraph.

Construction of arc-disjoint spanning trees rooted at the same vertex is related to the broadcasting
scheme from a vertex of the root. In particular, we want to construct many spanning trees of maximum
height as small as possible to get an efficient broadcasting scheme. For the de Bruijn digraph, Bermond
and Fraigniaud [2] construct d — 1 arc-disjoint spanning trees rooted at a given vertex of small height in
B(d, D). In particular, arc-disjoint spanning trees rooted at a vertex with a loop are directly given and
the maximum height is optimal, that is D+ 1. For a vertex without a loop, an algorithm which construct
arc-disjoint spanning trees are given. In a worst case, the maximum height is at most D + 2]_%] + 1.
In this paper, we construct arc-disjoint spanning trees rooted at a cyclical vertex of small height in the
Kautz digraph. Let v be a cyclical vertex of K(d, D). Then we construct d arc-disjoint spanning trees
rooted at v of height at most D + c(v) + [c(v) = 2| — [¢(v) = d + 1] in K(d, D).

In section 2, we show that a decomposition of G induces a decomposition of L(G). Also we define
a class of digraphs named fountains and show some properties on the fountains and the line digraph
operation. Then we present several isomorphic fountain-decompositions of the Kautz digraph applying
isomorphic fountain-decompositions of the complete symmetric digraph. In section 3, applying decom-
posable results shown in section 2, we construct arc-disjoint spanning trees rooted at a cyclical vertex of
small height in the Kautz digraph.

2 Isomorphic decompositions of Kautz digraphs

We introduce the following variation of the line digraph operation.



Definition 2.1 Let H be a digraph. Let G be a subdigraph of H. Then Ly (G) is defined as follows:

{ V(La(G)) = {(u,v) | (u,v) € A(H), u € V(G)},
ALu(@)) = {((w,v), (v,w)) | (w,v) € A(G), (v,w) € A(H)}.

A decomposition of L(G) is obtained from a decomposition of G.

Lemma 2.2 Let H be a digraph. If H can be decomposed into G1,Ga,...,Gm, then L(H) can be de-
composed into Ly(G1), Lg(Ga),...,Lg(Gmn).

Proof. Now A(L(H)) = {((v,v),(v,w)) | (v,v),(v,w) € A(H)}. Then we can divide A(L(H))
according to the first element (u,v). Let A, ) = {((u,v), (v,w)) | (v,w) € A(H)}. Then

A(L(H)) = UeeagmAe, AcNAp=0if e# f.
Since A(H) can be divided into A(G1), A(G2),. ., A(Gm), A(L(H)) can be divided into

Uecaa)Aer Ueeaay)Aer - » Ueca(an) Ae

Here Ly (G;) = (Ueca(c,)Ae). Therefore L(H) can be decomposed into Lg(G1), Ly (Gs) ,..., Ly(Gm).
jm]

Definition 2.3 Let G be a digraph. Then o.(G) is a digraph obtained from G by adding, for each vertex
v, new max(0,r — degli(v)) arcs (with new distinct vertices) incident from v.

If H is r-regular, then Ly (G) is represented L(c.(G)). Also if H is r-regular, then L(H) is r-regular
too. Thus the following corollary holds.

Corollary 2.4 Let H be an r-regular digraph. If H has a decomposition |Gy, Gs,...,Gm], then L*(H)
has a decomposition [(L - a,)*(G1), (L - 0,)5(Ga), ..., (L~ 0 )*(Gm)].

Here we introduce a class of digraphs called fountains.

Definition 2.5 Let G be a nontrivial weakly connected digraph. If degz(v) = 1 for any vertez v ezcept
for sinks, then G is called a fountain. If degg(v) = 1 for any vertez v, then G is called a proper fountain.

The next proposition is well known.

Proposition 2.6 (Harary and Norman)
Let G be a nontrivial weakly connected digraph. Then G = L(G) if and only if degg(v) = 1 for any
vertez v or degli(v) = 1 for any vertez v.

Proper fountains are invariant with respect to the line digraph operation. As shown in the next
lemma, fountains are invariant with respect to the operation L - o, such that “proper” or “non-proper”
is also invariant. Let K (m,n) denote a digraph obtained from a complete bipartite graph with partite
sets of order m and n by replacing edges with arcs such that all vertices in a partite set of order m are
sources.

Lemma 2.7 Let F be a fountain. Then L(o.(F)) is obtained from F by doing the following operations.
1. Apply o.-operation to F except for end-vertices.

2. For each end-vertez w, replace w with I*:’(deg; (w),r) and let each arc incident to w be incident to
each source of f(’(deg; (w),r) where distinct arcs are incident to distinct sources.



Figure 1: F3(2,4)

Proof. Let H denote 0.(F) — End(F). Since F — End(F) is a proper fountain, H is also a proper
fountain. We consider a decomposition of o,.(F) into H and U,epna(r) {4, (r) (z) U A:r(F)(z)). By
Lemma 2.2, L(o,(F)) is decomposed into L, () (H), Uernd(F)La,(F)((A;r(p)($) u A:,.(F)(I)))‘ Now

{ V(L,r(p)(H)) = V(L(H)) U {(v,w) € A.(F) ‘ wE End(F)},
A(Lq,(r)(H)) = A(L(H)) U{((u,v), (v,w)) | w € End(F)}.
Here L(H) = H.
Also
Lar(F)«A;(F)(z) U A:,(F)(z») = K(degp(z),7).
And the set of sources of L, (r)({(4; ) (z) U A;’r(F)(a:))) is {(v,2) | (v,z) € A(F)}. Therefore the
proposition holds. O

A complete m-ary out-tree is obtained from a complete m-ary tree by replacing edges to arcs such
that there is a directed path from the root to any other vertex. Let Fi(m, k) be a digraph obtained from
a complete m-ary out-tree of height k by adding a loop to the root and deleting one complete m-ary
out-tree of height (k —1). Also let F,(m, k) be a digraph obtained from p Fi(m, k) by deleting each loop
of Fy(m, k) and adding p arcs such that the set of the roots induces a cycle of order p.

The de Bruijn digraph B(d, D) is a D-iterated line digraph of K. Also (L - 0q)P(K{) & Fi(d, D)
Thus the following proposition holds.

Proposition 2.8 (Bermond and Fraigniaud [2])
B(d, D) has an F1(d, D)-decomposition.

Similarly, fountain-decompositions of a Kautz digraph can be induced from fountain-decompositions
of a complete symmetric digraph. Clearly, a complete symmetric digraph has C;-decomposition. Some
cycle-decompositions of a complete symmetric digraph have been known.

Theorem 2.9 (Bermond [1], Tillson [7])
¢ K has a C3-decomposition if p=0 or 1 (mod 3) and p # 6 [1].
e K} has a Cp-decomposition 1f p #4o0r6 [7].
" From these cycle-decompositions, we can get isomorphic decompositions of Kautz digraphs.
Theorem 2.10

e K(d,D) has an Fy(d, D — 1)-decomposition.



Y, z, ™)

Figure 2: Y}, Z, and TM(4)

e K(d,D) has an F3(d, D — 1)-decomposition if d =0 or 2 (mod 3) and d # 5.
e K(d,D) has an Fgy1(d, D — 1)-decomposition if d # 3 or 5.

Let Y, and Z, be fountains shown in Figure 2. Then it is easily checked that K} has isomorphic
decompositions into Y, if p > 3 and Z, if p is even and p > 4. Thus we can also get isomorphic
decompositions of K(d, D) applying these decompositions of K, .

The back-to-back complete m-ary out-tree BT B(m, D) is a digraph obtained from two complete m-
ary out-tree of height D by identifying their corresponding leaves. Let T be a fountain with a sink of
in-degree greater than one. Then (L - ¢,,,)*(T™*)) contains a digraph isomorphic to BT B(m, k).

The underlying graph of BT B(2, D) is called a tree machine TM (D). The tree machine is well-known
as an interconnection network. It is easily checked that B(2,2) and K(2,1) contain a fountain with a
sink of in-degree greater than one. Thus, from Corollary 2.4 and Lemma 2.7, we can get results on
the embeddability of a tree machine in the binary de Bruijn and Kautz graphs. (The de Bruijn and
Kautz graphs are the underlying graphs of de Bruijn and Kautz digraphs, and denoted by U B(d, D) and
UK (d, D), respectively.) For the binary de Bruijn digraph, the embeddability is shown in [6).

Corollary 2.11 (Samatham and Pradhan [6])
TM(D - 2) C UB(2,D).

Corollary 2.12 TM(D-1)C UK(2,D).

3 Arc-disjoint spanning trees of Kautz digraphs

A decomposition of a digraph G into spanning proper fountains is abbreviated by an SPF-decomposition
of G. Let F be a proper fountain. The cycle of F is denoted by C(F). (Note that A proper fountain is
unicyclic.) The length of C(F) is denoted by c¢(F). A digraph F — A(C(F)) is a digraph obtained from
F by deleting all elements of A(C(F)). Thus F — A(C(F)) is a union of out-trees rooted at a vertex of
C(F). The maximum height of the out-trees of F — A(C(F)) is denoted by h(F). Let w be a vertex of
C(F). Then the out-tree rooted at w in F — A(C(F)) is denoted by sTr(w). A digraph F — V(C(F)) is
a digraph obtained from F by deleting all elements of V(C(F)). Thus F — V(C(F)) is also a union of
out-trees. An out-tree rooted at z is denoted by Tr(z). Let u be a vertex of L*(G). Then I(W,) denotes
the last vertex of the walk W,.

Lemma 3.1 Let G be a loopless digraph. Suppose that G has an SPF-decomposition [Fy, Fy,..., Fy)
such that all cycles of the fountains have a common vertez v. Let w be a cyclical vertex of L¥(G) such
that Wy, C C(F1) and (Wy) = v. Let Np (v) = {v'}. Then there exist m arc-disjoint spanning trees
rooted at w of height at most k + max; cicm(c(Fi) + h(F:) + [i = 1)[degf, (v/) # 1)) in LF(G).



Proof. Let [Fy, F,..., Fy] be an SPF-decomposition of G such that all cycles of the fountains con-
tain a vertex v. Also, let [Hy, Hy,. .., Hy) be the SPF-decomposition of L*(G) induced by [F1, Fs,. .., Fy]
where H; is induced by F; for: =1,2,...,m.

Let N} (v) = {a1,as,..., a5} such that (v,a;) € A(F;) for i = 1,2,...,m. Let w be a vertex such
that W, C C(Fi) and I(Wy,) = v. Also let Ng (v) = {v'} and Ny (w) = {w'} . Let Nf, 5 (w) =
{w1,wa,...,wn} such that I(W,,) = a; fori =1,2,...,m.

Let B; = ({(w,w;)} U A(Tx, (w;))) for i = 2,...,m. Then we define T}, i = 1,2,...,m as follows and
show that these trees are arc-disjoint spanning trees rooted at w of L*(G).

(T2 (B0 I\ () |y e VB

T1 = ((A(H1) \ (Vz2gigmA(B:)) U {(w", w)})) U (Vz<ism(A(H:) 0 {(z,y) | y € V(Bi) \ {w}}))-
Since A(B;) N A(B;) =0 and A(H;)NA(H;)=0for 2 <i<j<m,Ty,..., Ty are arc-disjoint. Also, it
is easily checked that 77 and T; are arc-disjoint for 2 < ¢ < m.

First, we show that T}, ¢ # 1 is a spanning tree rooted at w of height at most k + ¢(F;) 4 h(F;). Let
Y (Tw, (w;)) denote the set of leaves of Ty, (w;). Then Y (T, (w;)) is corresponding to the set of walks
of G whose first and second vertices are v and «o;, respectively. Therefore, there is a cyclical vertex z; in
Y (Ty, (w;)) such that W,, C C(F;). Since H; is a spanning proper fountain of L¥(G), for any vertex of
L*(G), there is a path from x; in H;. Thus 7; is a spanning tree rooted at w of L¥(G).

In Hj, the distance from w to any vertex of Ty, (w;) is at most k. In particular, the distance from w
to x; is k. Now consider the locations of leaves of Ty, (w;) in H;. Let 97y - - - 7—1 be the cycle of H; such
that vp = ;. Let V;(sTq,(7-)) denote the set of vertices of sTy,(7,) whose distances from 7, are j. Let
Wy, = gog1 - gk- Note that go = v and g1 = a;. Then y_j(moq 1y is corresponding to a walk obtained

from gggs - - - gk by j-times right-shifting. Thus W, , is represented as follows.

—j(mod I
hjhj—1---h1gog1 " gk—;-

If there is a path of length p from vertex u to vertex u’' in L¥(G), then W, is obtained from W, by
p-times left-shifting. Thus any element of Vj(sTw, (Y- j(mod 1))) is a leaf of T (w;) if j < k. Let y be a
leaf of Ty, (w;) such that y # z; and W, = ygy; - - - yx. Note that yp = v and y; = ;. Let r be an integer
such that y; = g; for ¢ < r and yr4+1 # gr+1- Then y € Vi (sTH,(Yr—k(mod 1)))- Therefore

Y (T, (wi)) = Yo<j <k Vi (8T, (Y=j(mod 1)))-

Thus, for any vertex of Up<p<i, 0<j<kVi(sTw,(7p)), the distance from Y (T, (w;)) is at most I, that is at
most ¢(F;). The height of sTy,(v;) is at most k + h(F;). Therefore the distance from Y (Tq, (w;)) to any
leaf of H; is at most ¢(F;) + h(F;). Hence the height of T}, i # 1, is at most k + c(Fi) + h(F;).

Next we show that T} is a spanning tree rooted at w of height at most k+c(F1)+h(F1)+[degf, (v') # 1].
Since H, is a spanning proper fountain of L*(G), there is a path from w to any vertex of V(L*(G)) \
(Ua<i<mV (T, (w:))) in Ty. Here the length is at most ¢(Fy) — 1+ k + h(F1). Also, H;, i # 1 is
a spanning proper fountain. Thus there is an arc incident to any vertex of V{(Ty,{(w;)) in A(H;) N
{(z,y) | y € V(B;:), y # w}. Let z be a vertex of Y(Ty, (w;)) where ¢ # 1. Then the first vertex
and the second vertex of W, are v and «;, respectively. Since a; # v, there is no arc between vertices
of Us<i<cmY (T, (wi)). Also, any vertex of V(Ty, (w;)) \ Y (Ty, (w;)) is a leaf of H;, i # 1. Thus an
arc in A(H;) N {(z,¥) | y € V(B;),y # w} which is incident to z is incident from a vertex of V(Hi) \
(Us<i<cmV{(Ta,(w:))). Therefore, for any vertex of Us<icmY (Tw, (w;)), there is a path from w. Here
the length is at most ¢(F) + k + h(F}). Since any vertex z’ of V(Ty,(w;)) \ Y (T, (w;)) is a leaf of
H;, i # 1, the arc incident to 2’ in A(H;) N {(z,y) | y € V(Bi), y # w} is incident from a vertex of
V(H:)\ (Ue<i<cm(V (T, (wi))\ Y (T, (w;)))). Thus there is a path from w to 2’ in T3 of length at most
c(F)+k+h(F)+ 1.



Suppose that Ng(v') ={01,02,...,8m:,v}. Let w} be a vertex of NZL,C(G)(w’) such that {(W,,) = ;.
Let h(sTr, (v')) = 0. Then h(sTq, (v')) = k and h(Ty, (w!)) = k — 1. Now the first vertex and the second
vertex of a walk corresponding to a leaf of Ty, (w}) are v’ and 3;. Therefore, there is no arc incident from
a leaf of Ty, (w;) to a leaf of T, (w;). Thus the length of a path from w to any leaf of T, (w;) is at most
e(F1) — 1+ k + h(F1). Hence, in this case, the height of T} is at most c(F1) + k + h(Fy). O

Corollary 8.2 Let G be a loopless digraph of order p. Suppose that G has a hamiltonian cycle decompo-
sition [Hy, Hy, ..., Hpy). Let w be a cyclical vertez of LF(G) which is corresponding to a walk in an H;.
Then there exist m arc-disjoint spanning trees rooted at w of height at most k + p in L*(G).

In Lemma 3.1, we assume that G is loopless. If G has a loop and there exists an SPF-decomposition
which satisfy the condition in Lemma 3.1, then G must be isomorphic to K¢ for some positive integer d.
In this case, we can also construct arc-disjoint spanning trees T; except T} according to the definitions
in the proof of Lemma 3.1. (Note that a walk of K¢ is represented as a sequence of arcs in this case.)

These arc-disjoint spanning trees are the same trees shown in [2].

Proposition 3.3 (Bermond and Fraigniaud [2])
There exist d ~ 1 arc-disjoint spanning trees of height D + 1 rooted at a vertez with a loop in B(d, D).

Constructing SPF-decompositions of K., which satisfy the condition in Lemma 3.1, we can get
arc-disjoint spanning trees of K(d, D).

Theorem 3.4 Letv be a cyclical vertex of K(d, D). Then there exist d arc-disjoint spanning trees rooted
at v of height at most D + c(v) + [c(v) = 2] — [c(v) = d + 1] in K(d, D).

Proof. We present SPF-decompositions of K;,; which satisfy the condition in Lemma 3.1.

Since any permutation on V(K},,) is an automorphism of K7}, it is sufficient to show that for any
1 €{2,...,d + 1}, there is an SPF-decomposition of K}, ,, [F, Fy,..., Fiy] such that all cycles of the
fountains contain a common vertex and c(F;) = 1.

Case 1: I #4 0or 6. Ifl =d+ 1, then we can employ a hamiltonian cycle decomposition of K; . In
this case, the maximum height of d arc-disjoint spanning trees is at most (D — 1) + (d+ 1) = D +d.

Suppose that 2 <1 < d. Let V(K}, ) = {ag,01,...,01-1,80,51,.+.,Bm-1}, where m = d +1 — 1.
Let [Hy, Ha,..., Hi_1] be a hamiltonian cycle decomposition of ({ay, o,. .., 001} ks, . Without loss
of generality, we can let (agp,a1) € A(Hy). We define H] as follows.

{ V(H;) =V(K3,,),
A(H;) = A(H;) U{(4,85) [0 < j <m}.

Also we define Fj, 0 < j < m, as follows.
{ ym = v
A(F;) = {(a0,8)} U {(B5,v) | v € V(Kg,) \ {B;}}-
Then H}, 1 <i < 1land Fj, 0 < j < m are arc-disjoint spanning proper fountains such that all cycles
of H] and F; have a9 as a common vertex. That is, [H{, H},...,H|_y,Fo, Fi,...,Fmn_1] is an SPF-
decomposition of K, , which satisfy the condition in Lemma 3.1. Therefore, there exist d arc-disjoint
spanning trees rooted at any vertex which is corresponding to a walk in a cycle of length ! of K} ,1- Here
the maximum height of the trees is at most (D — 1) + max(! + 1,24+ 1) = D+ 1 if 1 # 2. If I = 2, then
the maximum height is at most (D — 1) + max(4,3) = D + 3.
Case 2: [ =4. We define H;, i = 1,2, 3, as follows.
V(H;) = {ag,a1,a2,a3}, 1 =1,2,3,
A(Hl) = {(O‘Oa a1)7 (011, az), (a2v a3)’ ({)‘3» 0‘0)}1

A(Hz) = {(a, a2), (g, 01), (01, ap), (@1, a3) },
A(Hy) = {(x0, a3), (03, 3), (a3, ap), (a3, 1) }.



Then [Hi, Hs, H3) is a SPF-decomposition of K such that all cycles of Hy, H; and H3 contain ap. If
d = 3, then we employ this SPF-decomposition. Then, the maximum height of the arc-disjoint spanning
trees is at most (D —1)+4 =D +3.

Suppose that d > 3. We define H!, : =1,2,3 and F}, j =0,1,...,d — 4, similar to the previous case.
Then [H{, H}, H}, Fy,. .., Fg_4] is an SPF-decomposition of K, which satisfy the condition in Lemma
3.1. Therefore, there exist d arc-disjoint spanning trees rooted at any vertex which is corresponding to a
walk in a cycle of length 4. Here the maximum height of the trees is at most (D — 1) + max(5,4,4,3) =
D +4.

Case 3: | =6. We define H;, 1 =1,2,...,5, as follows.

V(H;)={e; |0<j <6}, i=12,...,5
A(Hy) = {(a0,01), (@1, a2), (a2, a3), (s, aa), (@4, @5), (205, 0) },
A(Hz) = {(a0, 22), (02, 0q), (g, ), (@025 205), (g, o), (@1, @3)},
A(Hj) = {(0, @3), (@3, 20), (a3, 05), (@5, az), (@5, 01), (@1, 04)},
A(Hy) = {(@0, 04), (@4, a3), (a3, 01), (1, 0), (@1, 05), (s, 22) }
A(Hs) = {(a0, a5), (a5, @3), (@3, a2), (@2, &), (@5, 24 ), (@2, 0) }
Then [Hy, Hs,. .., Hs] is an SPF-decomposition of K¢ such that all cycles of the fountains contain aq.

Similarly to the case 2, we can get d arc-disjoint spanning trees of height at most D + 5 if d = 5,

D +6 if d > 5 using this SPF-decomposition of K. O

4 Conclusion

In this paper, we have shown several isomorphic decompositions of the Kautz digraph. Also we have
given d arc-disjoint spanning trees rooted at a cyclical vertex of small height in K(d, D). It remains to
construct arc-disjoint spanning trees rooted at a non-cyclical vertex of small height in the Kautz digraph.
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