7 T) X A 51-7
(1996. 5. 29)

B/ hY 7 Ly AR OD S D 8 U B R AR

I He H—1t

P RERERER G RBEH R
N HMARZETZ2HE[ET LM

B A2 WA DNT, AOMOERESHET5HE, AOBIHORL L CHMLTWSHHEMIET 3
B, AOMOBAILEEME LM T 2WESD 5. BEOMBRMO - OOMERSA TS, ARXT
&, SLEELEAMOBE %AW TEF SRV AOOBALEEMES (LOSS) MM T2 ME®H L, 1
BUSAMOEROH HRERET 5. FEROBMABRE, BHD DEFISEVADBAE O(malaNy)
THY, WA EEBBVADBER O(mamyNoNy) THB. ZIT, ma(ms) & Na(Ny) REREHRA
T.(Ty) OBARARK L AR ERT. EROHEELM T 20 LCSS, Hid2T D LOSSs #HMiliT3 7
NWINVZXL2EZILEIBERTHS. ThoO7IINTY IAREE BHEECEALREESICEHETES.

Several Similarity Problems between
Unordered Trees
Shaoming LIUT and Eiichi TANAKA't

tThe Graduate School of Science and Technology, Kobe University
tDepartment of Electrical and Electronics Engineering, Faculty of
Engineering, Kobe University

There are three similarity problems for unordered trees. That is, to compute the distance between trees, to
find one of the largesyt similar substructures in a tree to a specific tree, and to find one of the largest
common similar substructures(in short, LCSS) for trees. The third problem includes the first and the second
ones. In this paper we define a distance which determines the LCSS and discuss the LCSS problem using the
distance. We give a computing method of this distance between rooted and unordered trees(in short R-trees)
and that between unrooted and unordered trees(in short trees). The time complexity of the computing
method for R-trees is O(mqNaNy), and that for trees is O(mamyNoNy), where, ma(ms) and No(Np) are
the largest degree of a vertex of tree T4(T}) and the number of vertices of To(T}), respectively. Ttis easy to
make an algorithm for finding one of the LCSSs largest cominon similar substructures or enumerating all
of the largest common similar substructures between two trees. Those computing methods can be applied
to structure-activity studies and structure comparison problems.

1 Introduction

The study of relationship between the structures of chemical compounds and their properties is one of the
most important problems in chemistry [1],[2], and several substructure search systems have already been
constructed [3]. For these purposes methods for extracting similar substructures and common similar
substructures for plural graphs must be studied. If we replace a ring or a set of rings with a super-
atom, a comparatively simple graph can be expressed as a tree [4]. In relation to those problems, the
largest common substructure(in short, LCS) problem has been studied [5]—[7]. As the first step to study
similarity measures between graphs, several tree distances for rooted and ordered trees(in short RO-
tree) [8]—[11], those for trees embedded in a plane [12],[13], those for unordered trees [14]—[16] have
already been proposed. The largest similar substructure(in short, LSS) problem [17],[18] were discussed.
Recently, the largest common similar substructure(in short, LCSS) problem between trees embedded in
a plane has been reported [19]. Obviously, the LCSS problem is a generalization of both the LCS prob-
lem and the LSS problem, and has wider applications. In this paper we will define a distance between
unordered trees and define the LCSS problem using this distance. This distance is a general similarity
measure between unordered trees, and can be applied to structure-activity studies and structure compar-
ison problems.

2 Definitions

Let T = (V, E) be an unrooted and unordered tree(in short, tree), where V' is the set of vertices and
E is the set of edges. In this paper all of the vertices in a free are numbered and labeled. If a tree has
the root, we can make a rooted and unordered tree(in short, R-tree). Let T(u) = (V(u), E(u)) denote
an R-iree with the root u. Consider an R-tree. Let An(x) be the set of proper ancestors of x. Note that
z ¢ An(z). Let An(z, z') = An(a') — An(z) for x € An(z'), where “A — B” denotes that removing all of
the elements in set B from set A. Let Ch(z) denote the set of children of z. Let T'(u, z) be the subtree of
T(w) with the root z. If there is no confusion, we use notation T(x) = (V(z), E(z)) instead of T'(u, z). Let
z;(i = 1, ... , |Ch(z)]) denote a child of z, and F(z) = (V(Z), E(Z)) denote the forest that consists of
trees T(z1), ... ,T(2jch(x)), Where |A| indicates the number of elements of set A.

Consider a mapping from vertices of T, to those of T;. If vertex x of T, maps to vertex y of T3, we
write (z,y). We call a set of (z,y)s a mapping from T, to T, and denote it by M. If vertex z of T,
maps to vertex y of T; and the label of z is different from that of y, we say label of z is substituted to
that of y. If a vertex = of T, does not map to any vertex y of Tj, we say « is deleted. If a vertex y of
T; does not be mapped from any vertex z of T,, we say y is inserted. By this interpretation, we can see
that a mapping defines a transformation from T, to T;. A substitution, an insertion and a deletion are
called transformational operations. The weight of a transformation is the total of all of the weights of
edit operations. Furthermore, the weight of a transformation determined by a mapping M is called the
weight of M.

Tanaka [10] and Tanaka [15] defined a strongly structure preserving mapping(in short, SSP-mapping)
between RO-trees and that between unodered trees, respectively. Muguruma, Tanaka and Masuda [14]
defined a subclass of the SSP-mapping between unordered trees, which is called a closest common ancestor
mapping(in short, C-mapping). To express the largest similar substructure, Liu, Tanaka and Masuda [17]
defined a maximal closest common ancestor mapping(in short, maximal C-mapping) between RO-trees
and that between trees embedded in a plane, and Liu and Tanaka [16] defined a maximal C-mapping
between R-trees and that between trees. In Reference [15] Tanaka showed that the SSP-mapping can make
more suitable correspondences between the similar substructures of 7,, and those of Ty than Tai mapping
[8]. To express a similar substructure and a common similar substructure, the maximal C-mapping is
better than the C-mapping and the SSP-mapping, since the number of corresponding vertices between
trees by a maximal C-mapping is larger than or equal to that by a C-mapping or an SSP-mapping.

3 Several Similarity Problems

In this section we will define a distance between two trees. Using this distance we can define the LCSS
problem, the LSS problem and the distance problem for trees. That is, this distance which will be defined
in the following is a general measure to express the similarity between two trees.

3.1 A Distance and the LCSS Problem

Consider a maximal C-mapping from T, to T;. The smallest connected part of T, that includes all of the
mapping vertices and that of T includes all of the image vertices are considered to be a common similar
substructure between T, and T;. That is, one maximal C-mapping between T, and T} determines one
common similar substructure between T, and T}. In general, there are many common similar substructures
between T, and Ty, say [Ta1 , Tbl], .. [T2, T7]. 1f the weight to transform T¥ to T is the smallest among
those paris of substructures, we can say [T¥,Ty] is the most similar common substructure between 7,
and T}.

3.1.1 The LCSS Problem for R-Trees

To define the LCSS problem for R-trees mathematically, we first consider the inserted vertices and the
deleted vertices that determined by a maximal C-mapping. Consider a maximal C-mapping M, from
T,(x) to Ty(y). Let T(M,,) denote the set of all of the mapping vertices of Ta(z), and J(M;,) denote the
set of all of the image vertices of Tj(y). Vertex r4(r;) is the root of subtree of Ta(z)(T3(y)) that includes
I(M;y)(T (Mzy)) and the number of its vertices is smallest. If all of the vertices of a subtree of T.(z)(or
Ty(y)) are deleted(or inserted), it is called that the subtree is deleted(or inserted). Let Del(M.,) and
Ins(M;,) denote “the set of vertices of all of the deleted subtrees of T,(z)” and “the set of vertices of
all of the inserted subtrees of Ty(y)” determined by My, respectively. We can express them as follows.

Del(Myy) = {i | Va(i) C (Va(z) = T(Mzy))} . (1)

Ins(May) = {il Vi(§) C (Va(y) — T (Mzy))} - (2)

The part of T,(z) obtained by removing the vertices of (Del(MIy)UXn(x,ra)) from T,(z) and the
part of T3(y) obtained by removing the vertices of (Ins(sz) UZn(y, rb)) from T,(y) is defined as the
common similar substructure determined by M_,. We denote it by [S'I}dw, Sj’wn} . Let SX/L.,, and Sﬂbl” be

the set of vertices of 83, can be expressed

as follows.

and that of S?M”, respectively. Obviously, Sit., and 51'{4”

Sit,, = Valz) - Del(M,y) — gn(r Ta), (3)

Sjbwzy = Vi(y) — Ins(Mgy) — An(y,). (4)
One mapping M, determines one common similar substructure [S}’ww, S?W“]. Let p, ¢; and r; be the
weights of a substitution, an insertion in S}’W and a deletion in 8§, | respectively. Let g, and r, be the

weights of an insertion in T3(y) but not in S}, |, and a deletion in T, (a:) but not in 8§, , respectively. Let
¢i=7Ti>¢=1,>land g, +7r, >p > 1. The reason of this setting will be explamed in Subsection
3.4. Assume that a mapping M, determines ng deleted vertices in S%, M., , and n, substituted vertices and
n, inserted vertices in S?W”‘ The weight to transform S, to S?m_y, denoted by W(M_y), is defined as
W(Ml-y) =ring +pns; + ¢n;.
Example 1: Consider a maximal C-mapping M., = {(3,y),(5,5'),(6,6"),(7,8'),(8,1"),(9, 2’)} shown
in Fig.1(a). We have Del(M,y) = {1 4,10}, Ins(Mgy) = {3,4,7,9}, ra = 3, 1, = 3, An(x 7q) =
An(z,3) = {z,2} and An(y,r) = An(y,y) = O(the empty set). The common similar substructure
Si., Sf’uw] determined by Mg, is shown in Fig.1(b). The weight W (M,) is 6(3, y)+6(5,5")+6(6,6') +
6(7,8") +6(8,1") +6(9,2'), where
A [0 : the label of = the label of y,
8(z,y) = { p otherwise.f T

Tu(=) T(y)
/IUQ y(a) /z@ y(a)
1) 20 ;Ezg ‘7‘8 1h) 2(b)1®(c)
3'(c) 8'(c) (b)
0
(a) (b) (a)

Fig.1 (a) A maximal C-mapping My, and (b
the common similar substructure [S%, 8%,

oy oy
determined by the mapping Mg, .

Fig.2 (a) Two R-trees and a largest common
similar substructure determined by D, and (b)
a largest common similar substructure determ-
ined by D¢, where z(a) indicades that vertex

z has label a.

The distance between two parts of a common similar substructure of T,(x) and T;(y), denoted by
Dc (T, (), Ts(y)), is defined as follows.

De(Tu(e). To(w) = min {W(May) + ([Va(2)] = I532,,1) *ro + (GO = 1S3,1) 00} (5)

Note that there is at least one maximal C-mapping that determines D¢ (7T, (z), T3(y)). Let the collection of
such mappings be {M‘7 e Md}A Those mappings determin d’ common similar substructures between

two subtrees, where d’ < d. If]S;’m |+ |S]’{4k| is the largest among those pairs of substructures, [S}‘m , S}’m]

is called an LCSS of T,(x) and T3(y), and denoted by [S%,,SE].
3.1.2 The LCSS Problem for Trees

We use D¢ (7, (u), T3(v)) to indicate the distance between two parts of a common similar substructure
between T,(u) and T;(v). The distance between two parts of a common similar substructure of T, and
T, denoted by D¢ (75, T3), is defined as follows.

Dc(Te, Ty) = ue‘;?’iunevb {Dc(Tu(u), Te(v))} - (6)

Note that there is at least one maximal C-mapping that determines D¢(7,,T}). Let the collection of such
mappings be {Ml M‘i} Those mappings determin d' common similar substructures between two
trees, where d' < d. If ISM | + |bM | is the largest among those pairs of substructures, [SMkaMk] 1s
called an LCSS of T, and T}, and denoted by [S“ S"]

3.2 The LSS Problem

In Reference [18] we defined a distance from T, to “a similar substructure in T} to T,”, denoted by
Ds(T,,Ty), and defined the LSS problem using Ds(7,,T;). Using the notations defined in this paper, we
can express Dg(T,(z),T3(y)) in the following.

) ik ()

Compare formulae (5) and (7). We can see that the distance Dg(T,(x), T3(y)) does not contain all of
the weights of inserted subtrees, and the weight r; is equal to r,. Therefore, setting r; = r,, g, = 0
and r; > p > 1 for formula (5), we can get formula (7) from formula (5). We can say that the distance
Ds(T,(x),T3(y)) is a special case of the distance D¢ (T (z), Ty (y)) which is described in Subsection 3.1. As
described in Reference [18], an LSS for R-trees is St o, and that for trees is S? in this paper.

Ds(Tu(=), To(w) = min { W (Mey) + (IVale)| -

3.3 The Distance Problem

Many papers discussed the distances between trees and their computing methods. In this subsection
we will show that the distance which is described in Subsection 3.1 can express the distance between
unordered trees based on a maximal C-mapping. Using the notations defined in this paper, we can express
the distance between T,(x) and T}(y) based on a maximal C-mapping which is defined in Reference [16]
in the following.

D(T.(2). To(w) = ggin {W(Mo) + (1Valo)] = 150, 1) v+ (V01 = I5he,,]) i} (8)

Compare formulae (5) and (8). We can see that the weight r; is equal to r, and the weight ¢; is equal to ¢,
in formula (8). Therefore, setting r; = r, = g; = g, for formula (5), we can get formula (8) from formula
(5). We can say that the dlstance D(T,(x), Ty(y)) is a special case of the distance D¢ (T (z), Ts(y)) which
is described in Subsection 3.1.

3.4 The Weights of Transformational Operations

In this subsection, we will explaine the reason of setting “¢; = r; > ¢, = 7, and g, +7, > p” for expressing
the similarity measure between two parts of a common similar substructure.

(i) Consider the distance Dc. Since ¢; = r; and q, = ,, we have D¢ (Tu(x), Te(y)) = Dc(Ti(y), Ta(z)).
That is, the distance D¢ is symmetric.

(i) Consider two R-trees To(z) and T;(y) such that the labels of all of the vertices of To() are dif-
ferent from those of Ty(y). If we set ¢, + r, < p, from the definition of the distance D¢, we have
De(Tu(2), Ty(y)) = |Va(z)| * o + [Vi(y)| * go- This means that all of the vertices of T,(z) are deleted
and all of the vertices of T3(y) are inserted. Therefore, we can only obtain a pair of empty trees as their
LCSS. This is unsuitable. This is why we set ¢, + 7, > p.

(iii) Set q; = r; = q, = 7. As described in Subsection 3.3, the distance D¢ denotes the distance between
two trees. Consider the two R-trees shown in Fig.2(a). We have D(T.(z),T3(y)) = 8¢;, where one of
the maximal C- mappings determines D(T,(z), Ty(v)) is {(z,),(1,5),(2,10")}. An LCSS determined by
D(T,(z), Ty (y)) is [T(T (y)] If we set g; = r; > q, = r, as described in Subsection 3.1, we can
get an LC‘SS which is shown in Fig.2(b). We think the LCSS shown in Fig.2(b) is more suitable than
[Tu(z), Ty (y)] shown in Fig.2(a). This is why we set ¢; =1, > g, = 7.

4 Computing Methods of the Distances

In this section we will show three types of the maximal C-mapping between R-trees, and show a computing
method of the distance between R-trees and that between trees.
4.1 Types of the Maximal C-mappings

Consider two R-trees T,(x) and Ty3(y). From the definition of the maximal C-mapping, the maximal
C-mapping satisfies the mapping conditions of Tai mapping. Tai mapping from T,(z) to T3(y) can be
classified into the following four types [11].

(al) Vertex z maps to vertex y, and forest F,(%) maps to forest F3(g).

(a2) Vertex z’ of F,(%) maps to vertex y, and forest Fy(Z') maps to forest F3(g). The vertices of T,(x)
except those of T, (') are deleted.

(a3) Vertex z maps to vertex y’ of Fy(%), and forest F,(&) maps to forest F3(§'). The vertices of T}(y)
except those of T;(y’) are inserted.

(a4) Vertex z is deleted, vertex y is inserted, and forest F,(Z) maps to forest Fy(7).

Assume that a mapping from F,(%) to F3(g), that from Fy(2') to Fy(¥) and that from F,(Z) to Fy(g’) are
the maximal C-mappings. Then, the mappings of types (al)—(a3) satisfy the conditionds of the maximal
C-mapping. Let M be a maximal C-mapping from Fy (%) to Fy(§). Since MU{(z,y)} is a C-mapping from
T, (z) to Ty(y), a mapping of type (a4) is not a maximal C-mapping. Therefore, the maximal C-mappings
from T,(z) to Ty(y) can be classified into (al)—(a3) types.

4.2 A Computing Method of the Distance between R-Trees

Let Alyy, A2y and A3y, be the minimum value of “W (M) +(|Va(z)] — S5, 1) “ro+ (Ve ()] — [Sha,, 1) ~ a0
for all of the maximal C-mappings M, of type (al), that of type (a2) and that of type (a3), respec-
tively. Note that as described in the previous section, the value W(M,,) denotes the weight to transform
S}’wiy to S']’””. From the definition of the distance D¢, we have the following formula.

Dc(Tu(2), Tr(y)) = min {Alyy, A2y, Adgy}. 9)

A common similar substructure [S“MW, Sj’ww] determined by a maximal C-mapping M., of type (a2) is

shown in Fig.3(a). In this case we have

A2gy = z,glvi:%f) {Alyy + (IVa(2)| = ‘Va(II)D T} (10)

Consider a maximal C-mapping M, of type (a3). A common similar substructure [s;hy,s}’ww] deter-

mined by this mapping is shown in Fig.3(b). Therefore, we have

A3y = min {Alyy + (IVe(w)] = [Vi(y)D) * g0} - (1)
y' €Va ()

Consider two R-trees To(z) and Ty(y). If @ maps to y, the SSP-mapping from Fo(Z) to F}(3) has the
following characteristics.

Ta(u,)

Ta(u,)
@

(b)
Fig.3 (a) A common similar substructure [S‘}my, SS’W”] determined by a maximal C-mapping My,
of type (a2), and (b) that determined by a maximal C-mapping M, of type (a3).

“For any vertices zj,, ¥;,, yj, and yj, (i1 # i, %i,, ¥i, € Ch(x), j1 # J2,¥j,,¥j» € Ch(y)), both To(x;,)
and T,(z;,) cannot map to T3(y;,) at the same time, and To(z;,) cannot map to both Ty(y;,) and Ty(y;,)
at the same time.[10]" (*1)

Since the maximal C-mapping is a subclass of the SSP-mapping, the maximal C-mapping holds the
characteristics (x1). Let Mz; denote a maximal C-mapping from F,(Z) to F3(7) in the case that z
maps to y. If z maps to y, we have Mz; = M,, — {(,y)}. Let (z;,y;) denote that To(z;) maps to
Ti(y;). From the characteristics (*1), we can express Mgy using a set Cgy of (z;,y;), that is, Cpy =
{{ziys ¥51)s - =iy, v) i, € Ch{z), y;, € Ch(y), 1 < h < k). Then, a maximal C-mapping Mg,
can be expressed as follows.

Mgy = {(m,y)} UMz = {(z,y)}U (U Mr;yj) . (12)

(£1,4;)€Cey

Consider the set C;, and the maximal C-mapping M, in the case that z maps to y. Assume that “subtree
To(zs)(xs € Ch(z)) is deleted and subtree Ty(y:)(y: € Ch(y)) is inserted”(+2). Since Myy U Mz y, is a
C-mapping from Ty(z) to T3(y), Msy is not a maximal C-mapping. Therefore, the assumption (*2) is
incorrect. Then, we have

[Cay| = min {|Ch(z)],|ICh(y)[}. (13)

Lemma 1: Assume that Algy, all of the Al,,, and Algy,(z; € Ch(z), y; € Ch(y)) have been com-
puted. The distance D¢ (Ta(z), T3(y)) can be computed by the following formula.

Algy,
D¢ (To(x), To(y)) = min { ming ¢ cn(e) {De(Tal®i), To(y)) + ([Va(2)| = [Va(z:)l) * 70}, (19)
miny.eCh(y) {DC(Ta(f):Tb(yj)) + ([Va(v,¥)| - Vv, ¥)]) " g0} -

u}

Hereafter we will describe a computing method of Alsy. Consider the weight W(M,,) in the case

that & maps to y. Assume that T,(z;)(z; € Ch(x)) maps to Ty(y;)(y; € Ch(y)) shown in Fig.4. Since

z maps to y, the vertives of Zn(ri,ra) belong to S}’w”(FigA(a)) and that of .zl\n(yj,rb) belong to

SS’MW(FigA(b)). From the characteristics (*1) and formula (12), we can express W(M;,) in the case
that » maps to y, and Alg, as follows.

W) =8+ 3 (WMe,) + |An(aira)
(I.,y,‘)Eny

cri+ \Zn(y,- »T'b)| . Qi) : (15)

Algy = min{ Y DBe(Tulz) T+ Y. WVal@)l ret+ Y IVb(yj)l‘qo}

o3 251 €€y (22950 €Cry (£1,9,) € Cay
+6(x, y), (16)

where

ﬁC(Ta(rt)! Tb(y]))

Il

min {W(Mw:,yj) + lgn(ﬁi,fa)

¥y

+ (IValel = 1830, ,,1) - o+ (W ()1 = 1S3..,,1) 0} (17)

(ri—ro) + l/i"(yj, '“b)‘ (i — ¢)

YICh{y)

(b)

Fig.4 Ilustration of the weight M, in the case that z maps to y.

Note that either An(z;,r,) or A\n(yj ,7p) is the empty set. If both of them are not the empty sets, from the
definition of the maximal C-mapping the vertices of ﬁn(z-,-, 7o) must map to those of Xn(yj, rp). Before
discussing a computing method of Al.,, we show a computing method of ﬁc(Ta(z),Tb(y)). Similar to
Lemma 1 we have Lemma 2. We omit the proof for the limitation of pages.

Lemma 2: Assume that Al,y, all of the Al; , and Algy;(z; € Ch(z), y; € Ch(y)) have been com-
puted. ﬁc(Ta(r),Tb(y)) can be computed by the following formula.

Algy,
Do(Ta(x), Th(y)) = min { Mils,eCh(z) De(Ta(z:), To(w)) + (IVa(z)] = [Va(zi)| - 1) - ro+re}, (18)
miny,ecnsy { De(Ta(e), To(ws)) + (Valo)l = Vo(y) = 1) g0+
[m]
Consider a computing method of Al,, based on formula (16). Create a bipartite graph G(4, B, E) from
T.(z) and Ty(y). A and B are the sets of vertices of G, E is the set of edges of G. A = {1, ... , ajch(z)}
and B = {B1, ... , Bjerw)} @i(B;) denotes subtree T, (z:)(Ti(y;))(z: € Ch(x), y; € Ch(y)). Let e
denote an edge between o; and 8;, and E = {¢;;|[i =1, ... ,|A], j =1, ... , |B|}. The weight of edge
¢ij, denoted by w(e;;), is defined as follows.
w(eis) = V(@) * 7o + [Ve()] * 40 — De(Tu(i), To(y;))- (19)

From the definition of D and the assumption g, + r, > p, we have D¢ (Tul:), Ts(;)) < |Valai)] - ro +
[Va(y;)| * go. That is, w(e;;) is nonnegative. Let M denote one of the weight matchings of G. If vertex o
of G maps to vertex f3;, it denotes T, (x;) maps to T;(y;). From formula (12), we can see that a matching
of G expresses a Cyy. Let My, denote one of the maximal weight matchings of G, and W(M,z)
denote its weight. We have Lemma 3 for computing Alg,. '

Lemma 3: Assume that all of D¢ (Tu(z:), To(y;))(z: € Ch(x), y; € Ch(y)) have been computed. We
can compute Al,, by the following formula.

Ay = 3 WVl ro+ Y Vsl * a0+ 8(2,3) = W(Mumaz). (20)
z,€Ch(T) y,€Ch(y)

R a

Let mg(my) and Ng(N;) be the largest degree of a vertex of T,(7}) and the number of vertices of

Ta(Ty), respectively. Using Lemma 1—Lemma 3, we can get a procedure Dist-subtree and an algorithm

Dist-R-tree for computing the distance between two subtrees and that between two R-frees, respec-

tively. Since the time complexity for computing Algy is O(m2my), the time complexity of the procedure
Dist-subtree and that of the algorithm Dist-R-tree are O(m2m,;) and O(mg N, N), respectively.

4.3 A Computing Method of the Distance for Trees

If all of the distances D¢ (T, (u), Ty(v)) are given, we can compute D (T, T;) by formula (6). In Reference
[16], an efficient algorithm for computing the distance D(T,, T}) was proposed. Modifing this algorithm in
the following way, we can obtain an algorithm Dist-tree for computing D¢ (T,,Ts). The time complexity
of the algorithm is O(momy N, Ny).

(b1) Replace the notations concerning the distances based on the maximal C-mapping with those con-
cerning the distances described in this paper.

(b2) Replace the procedure for computing the distance between subtrees with the procedure Dist-subtree.

5 Conclusions

In this paper we defined the LCSS problem for unordered trees and gave a computing method of the
distance which determines the LCSS between R-trees and that between trees. The time complexity of the
computing method for R-trees is O(my N, Ny), and that for trees is O(mqom; Ny Ny). Using the maximal
C-mappings that determine the distance, it is easy to make an algorithm for finding one of the LCSSs(or
LSSs) or enumerating all of the LCSSs(or LSSs) between two unordered trees. The computing methods can
be applied to structure-activity studies and structure comparison problems. One of the future problems
is to make a file for similar structure search using the proposed metrics.

References

1] P.Willett, Similarity and clustering in chemical information systems, Research Studies Press, 1987.

[2] K.J.Lipscomb, M.F.Lynch and P.Willett, “Chemical structure processing,” Ann. Rev. Inf. Sci. Tech-
nol., 24, pp.189-238, 1989. :

[3] M.G.Hicks and C.Jochum, “Substructure search systém. 1. Performance comparison of
the MACCS, DARC, HTSS, CAS registry MVSSS, and S4 substructure search sys-
tems,” J. Chem. Inf. Comput. Sci., vol.30, pp.191-199, 1990.

[4] W.A . Warr, Chemical structures 2, Springer, 1993.

[5] Y.Takahashi, Y .Satoh, H.Suzuki and S.Sasaki, “Recognition of largest common structural fragment
among a variety of chemical structures,” Analytical Sciences, no.3, pp.23-28, 1987.

[6] T.Akutsu, “An RNC algorithm for finding a largest common subtree of two trees,” IEICE
Trans. INF. & SYST., vol. E75-D, no,1, pp.95-101, 1992.

[7] S.Masuda, I.Mori and E.Tanaka, “Algorithms for finding the largest common subgraphs of two
trees,” IEICE Trans., vol.J77-A, no.3, pp.460-470, 1994.

8] K.C.Tai, “The tree-to-tree correction problem,” JACM, vol.26, no.3, pp.422-433, 1979.

[

[9] E.Tanaka and K.Tanaka, (a)“A tree metric and its computing method,” IEICE Trans., vol.J65-
D, no.5, pp.511-518, 1982. (b)“Correction to “A tree metric and its computing method”,” IEICE
Trans., vol.J76-D-I, no.11, p.635, 1993.

[10] E.Tanaka, “The metric between rooted and ordered trees based on strongly structure preserving
mapping and its computing method,” IEICE Trans., vol.J67-D, no.6, pp.722-723, 1984.

[11] K.Ohmori and E.Tanaka, “A unified view on tree metrics,” Proc. Workshop on Syntactic and Struc-
tural Pattern Recognition, Barcelona, pp.85-100, 1986. (Eds. G Ferraté et al. Syntactic and Structural
Pattern Recognition, Springer 1988.)

[12] $.M.Liu, E. Tanaka and S.Masuda, “The distances between unrooted and cyclically ordered trees and
their computing methods,” IEICE Trans. INF. & SYST., vol.E77-D, no.10, pp.1094-1105, Oct. 1994.

(13] E.Tanaka, “Metrics between trees embedded in a plane and their computing methods,” IEICE
Trans. vol.E79-A, no.4, pp.441-447, April, 1996.

[14] T.Muguruma, E.Tanaka and S.Masuda, “A metric between unrooted and unordered trees and its
top-down computing method,” IEICE Trans. INF. & SYST., vol.E77-D, no.5, pp.555-566, 1994.

[15] E.Tanaka, “A metric between unrooted and unordered trees and its bottom-up computing
method,” IEEE Trans. Pattern Anal. & Mach. Intell., vol.16, no.12, pp.1233-1238, 1994.

[16] S.M.Liu and E.Tanaka, “Algorithms for computing the distances between unordered trees,” IEICE
Trans., vol.J78-A, no.10, pp.1358-1371, Oct. 1995.

[17] S.M.Liu, E.Tanaka and S.Masuda, “Largest similar substructure problems for trees and their algo—
rithms,” IEICE Trans., vol.J78-A, no.10, pp.1348-1357, Oct. 1995.

[18] S.M.Liu and E.Tanaka, “Efficient algorithms for finding largest similar substructures in unordered
trees,” IEICE Trans. vol.E79-A, no.4, pp.428-440, April, 1996.

[19] S.M.Liu and E.Tanaka, “A largest common similar substructure problem for trees embedded in a
plane,” Technical Report of IEICE, COMP 95-74, pp.11-20, JAN. 1996.

