7 N T

(1996. 5.

V—rEEDOHZ3FENINTHAFT7IILT) TLIZDNT
B Rt MR E—t |0 E=8t

* /=P ILF AKE EHERR R
BEF X — IV chen@cse.nd.edu
1 BEBRIHEKRE BRFRLER
BF A —JU [chen|wada|kawaguchi]@elcom.nitech.ac.jp

Danny Z. Chen*

BE ARMTRAOL I ZHEMELER 2, BEEHn 0% SPELAOHS SR) FRETRY -}
AN n/kAOESELTEXONTWALE, N5 3% h(1/k < h < n/k) T LT % |D;| = O(hk)
THY, 1<i<j<ghIEBOBRF L jCHLTDOEDEED DOYXOERL Y KE v
Y1 g = O(n/(hk)) BOWSEE Dy, Ds, ..., DT 5o ZOFHME kL h 2) TSRETS
ek, w=T V- RENOPEER L EROBEERAATE Y, T BT EOBMEND
BHTEL, ARTHE, ZOFHMELBEEIITVTY XL ERT, ZOHF7 VT X AL EREW
PRAM £ V2 B\ T O(malln/hjsmax{loghl}inmax{logi/MALy {10y 7 11 v 4 % V> T O(log n) KM

CHERE LR, e

Parallel Algorithms for Partitioning Sorted Sets and Related
Problems

Danny Z. Chen* Wei Chen' Koichi Wada! Kimio Kawaguchit

*Department of Computer Science and Engineering

University of Notre Dame

Notre Dame, IN 46556, USA.
e-mail:chen@cse.nd.edu
tNagoya Institute of Technology
Gokiso-cho, Syowa-ku, Nagoya 466, JAPAN

e-mail:[chen|wadalkawaguchi]@elcom.nitech.ac.jp

Abstract: We consider the following partition problem: Given a set § of n elements that is organized
as k sorted subsets of size n/k each and given a parameter h with 1/k < h < n/k, partition § into g =
O(n/(hk)) subsets Dy, D, ..., D, of size O(hk) each, such that for any two indices ¢ and 7 with 1 < ¢
< j £ g, no element in D; is bigger than any element in D;. In this paper, we present efficient parallel
algorithms for solving the partition problem and its applications. Qur parallel partition algorithm runs

logn

Jy X L 51-5
29)

in O(logn) time using O(=ia{(n/h)xmax{logh.1}numax{log(1/h).1}}y processors in the EREW PRAM model.

1 Introduction

We consider the following partition problem:
Given a set § of n elements that is organized as &
sorted subsets (called columns) Cy, Cy, ..., Cg of
size n/k each and given a parameter h with 1/k <
h < n/k, partition § into g = O(n/(hk)) subsets
Dy, D,, ..., D,y of size O(hk) each, such that for
any two indices ¢ and j with 1 < i < 7 < g, no
element in D; is bigger than any element in D;.
We call such a set sequence of Dy, D3, ..., Dy an
ordered set sequence, and call the sets D; ordzened
sets.

Note that the desired partition does not require
that the sizes of the resulted subsets D; be equal
to each other, and such a partition is often suf-
ficient to solving many problems. With various
combinations of the values of parameters h and &,
several fundamental problems can be formulated
as or be reduced to this partition problem. For
example, by letting k = 2 and h = 1, the problem
of merging two sorted sequences can be reduced
to the partition problem. By letting ¥ = n and
h = 1/k, the partition problem becomes that of
sorting an arbitrary set. By letting k = n and h =
1/2, the partition problem becomes that of find-
ing an approximate median in an unsorted set.
The partition problem also finds applications in
solving problems of parallel computing and com-
putational geometry. In this paper, we present

efficient parallel algorithms for solving the parti-
tion problem and its applications.

The parallel computational model we use is the
EREW PRAM [13, 15]. We denote the time x
processor product of a parallel algorithm as its
work (i.e., the total number of operations per-
formed by the parallel algorithm). When ana-
lyzing the complexity bounds of our parallel al-
%orithms, we often give only their time and work

ounds; the desired processor bounds of all our
algorithms in this paper follow from Brent’s the-
orem [5].

Except for the special cases such as merging,
sorting, and finding an approximate median, we
are not aware of any previous sequential and par-
allel algorithms for the general version of the par-
tition problem. A notable related work is due to
Frederickson and Johnson [11] on sequential se-
lection and ranking among sorted columns. Our
results on the partition problem are as follows.

e Qur parallel artition algo-
rithm takes O(log n) time and O(min{(n/h)+*
max{logh, 1}, nxmax{log(1/h),1}}) work on
the EREW PRAM. Note that the complex-
ity bounds of this parallel partition algorithm
on the respective special cases match those
of the optimal EREW PRAM algorithms for
merging [3, 6, 12], sorting [1, 9], and finding
an approximate median [8]. Qur parallel so-
lution also implies that the partition problem
can be solved sequentially in O(minf(n/h) *
max{log h, 1},n * max{log(1/h),1}}) time.

A word on the representations of the resulted
ordered subsets D; of the partition is in order.
When h < 1, the subsets D; are actually con-
structed from the set S. But when h > 1, the
subsets D; are represented implicitly: Each D;
is described by using the sorted columns Cj;, be-
cause for every such column Cj, it is sufficient to
describe the elements of D; N C; with at most two
elements of C; (hence each D; can be described
implicitly by using O(k) elements of §). This im-
plicit representation is necessary to obtaining the
desired complexity bounds for the case with A >
1.

We expect that our parallel partition algorithm
would be useful in solving many other problems.
In particular, we show how to use our paral-
lel partition algorithm to improve the complex-
ity bounds of the previously best known parallel
algorithms for the following important problems.

e For an n-element set U and a value a (a need
not be in U), we say that the rank of @ in U, de-
noted as ranky(a),is 7,5 € {0,1,...,n},ifaisno
smaller than the j-th smallest element of U and is
less than the (j+1)-th smallest element of U (with
the 0-th smallest element of U being —00). Given
the set § with k sorted columns C; and a sequence
A of m values a4, as, ..., @, such that @1 < a3 <
-e» < @m, 1 £ m < 7, the multi-ranking problem
is to find ranks(a;) for each a; in A. A related
multi-search problem is to find, for each a; in A,
the unique element b of S such that ranks(b) =

ranks(a;). Let h=n/(km). Then1/k <h < n/k.
A sequential O{min{(n/h) * max{logh,1},n *
max{log(1/h), 1}?) time algorithm for the multi-
ranking and multi-search problems is possible.
We are not aware of any parallel algorithm de-
signed specifically for these two problems, but the
following two simple parallel solutions are not dif-
ficult to obtain: Using the parallel merging algo-
rithms [3, 6, 12], the two problems can be solved in
O(log nétime and O(n+km) = O(n+ n/hg work
on the EREW PRAM; using the CREW PRAM
algorithm for sorting & sorted columns [26], the
two problems can be solved in O(logn) time and
O(nlogk) work on the CREW PRAM. Using our
parallel partition algorithm, we solve these two
problems in O(logn) time and O(min{(n/h) *
max{log h, 1}, n * max{log(1/h), 1}%) work on the
EREW PRAM. In the same complexity bounds,
our parallel multi-search and multi-ranking algo-
rithms can be used to partition § into m + 1 or-
dered subsets by using the m values in A. Since
1/h < k,when 1/k < h <lorl< h< nfk,our
algorithms can perform less work than the merge-
based and sorting-based approaches, while using
the weakest PRAM model.

o Given an unsorted set U of n elements and
a sequence @ of integers ¢, g2, . .., gm such that
1< q1<q2 < -+ < gm < n, the multi-selection
problem is to find all the ¢;-th, ¢o-th, ..., gn-th
smallest elements in U. This problem is clearly a
generalization of the well-known selection prob-
lem [4], and finds applications in several areas
(e.g., databases [20]). A sequential O(nlogm)
time algorithm for the multi-selection problem is
eagsy and is in fact optimal. Olariu and Wen
[22] solved this problem in O(lognlog* nlogm)
time and O(nlogm) work on the EREW PRAM.
Olariu and Wen’s algorithm [22] is based on a
divide-and-conquer strategy and on Cole’s par-
allel selection algorithm [8]. Using our parallel
partition algorithm, we solve the multi-selection
problem in O(logn + log(n/m)log*(n/m)) time
and O(nlogm) work on the EREW PRAM. In
the same complexity bounds, our parallel multi-
selection algorithm can be used to partition U
into m + 1 ordered subsets based on the ranks
in Q. Hence we improve the time bound of the
previously best known parallel multi-selection al-
gorithm f22] by a factor of at least logm. We
also consider a problem related to multi-selection,
which we call approrimate multi-selection: Given
the same input as the multi-selection problem,
partition U into O(m + 1) ordered subsets U; of
size O(n/(m+ 1)& each, and find, for every rank g;
€ @, the subset U; that contains the g;-th smallest
element of U. The approximate multi-selection
problem can be viewed as a generalization of the
approximate median problem for which Cole gave
an O(logn) time, O(n) work EREW PRAM al-
gorithm [8]. (In the approximate median prob-
lem, m = 1 and an element in the subset contain-
ing the (n/2)-th smallest element can be used as
an approximate median.) We solve the approxi-
mate multi-selection problem in O(logn) time and

O(nlogm) work on the EREW PRAM.

o The problem of sorting the set S from its
k sorted columns is of theoretical interest and
finds applications in several areas (e.g., informa-
tion retrieval systems [25]). Sequentially, it is
known how to sort such a set § optimally in
O(nlogk) time [16]. Optimal EREW PRAM
algorithms are known for the special cases of
this sorting problem with £ = n [1, 9] and & =
O(1) [3, 6, 12]. However, for the general ver-
sion of this sorting problem (with O(1) < &k <
n), the best known EREW PRAM algorithms ei-
ther take O(logn) and O(nlogn) work (by sim-
ply using [1, 9]) or take O(lognlogk) time and
O(nlogk) work (by repeatedly using the O(logn)
time, O(n) work EREW PRAM merging algo-
rithms [3, 6, 12]), and are clearly not optimal in
either their time or work bound!. Recently, Wen
[26] gave an O(logn) time, O(nlogk) work al-

orithm for this sorting problem on the stronger
%REW PRAM. Wen’s CREW PRAM sorting al-
gorithm is based on Cole’s cascading divide-and-
conquer technique [9]. Although Wen’s algorithm
is work optimal, it is not necessarily time optimal
on the CREW PRAM. When k = o(2lcg"/loglogn),
for example, it is easy to obtain a o(logn) time,
O(nlogk) work algorithm on the CREW PRAM
for this sorting problem, by making use of the op-
timal O(log log n) time, O(n) work CREW PRAM
merging algorithms {13, 17]. Furthermore, al-
though the cascading divide-and-conquer tech-
nique is elegant at designing numerous PRAM al-
gorithms [2], it is still a challenging issue to imple-
ment the cascading divide-and-conquer based al-
gorithms on existing parallel computers. In addi-
tion, simulating Wen’s CREW PRAM algorithms
on the EREW PRAM is likely to increase the
time bound by a factor of logn. Our algorithm
sorts the k sorted columns in O(logn) time and
O(nlogk) work on the EREW PRAM, improv-
ing the time or work bound of the previously
best known EREW PRAM algorithms and using
the weaker EREW PRAM model than the best
known CREW PRAM algorithm {26]. Further-
more, our solution need not rely on the cascad-
ing divide-and-conquer (although our partition al-
gorithm does do sorting, the sorting operation
is used in our solution merely as a%la,ck box).
Hence, our approach is possibly of more practical
value than the CREW PRAM algorithm [26].

e Chen, Wada, and Kawaguchi [7] presented
an interesting parallel technique for computing
the convex hull of n planar discs. The parti-
tion problem is one of the key operations to this
technique, and was performed in [7] in O(logn)
time and O({(nlogn)/f(n)) work on the CREW
PRAM, where f(n) is a chosen integer such that
1 < f(n) < loglogn. Using our parallel parti-

!Very recently, Nakano and Olariu [21] obtained an
O(logn) time, O(nlogk) work EREW PRAM algorithm
for the restricted case of k = GS(log n)¢) for any constant
€ > 0, by using a scheme called sampling and bucketing

[23]

tion algorithm, this operation can be performed
in O(logn) time and O(n) work on the weaker
EREW PRAM. .

Without loss of generality (WLOG), we assum
that the elements of § are distinct (otherwise, ties
can be broken based on the column indices and
the positions of the elements in the columns), and
that each column C; is represented as an array
with its elements in increasing order. Due to the
space limitation, we focus in this extended ab-
stract our parallel partition algorithm and omit
the algorithms for all the “application” problems.
We also omit the proofs of the lemmas.

2 Useful Building Blocks and a
Preliminary Algorithm

Our parallel partition algorithm makes use of sev-
eral procedures. One such procedure is a paral-
lel solution for the weighted median problem [14],
which we review as follows: Given an unsorted
set A of n distinct elements a1, a3, ..., an, with
each ¢; having a nonnegative weight w;, find the
element a; in A such that A4 is partitioned into
two ordered subsets A; and A; with each element
of Ay (resp., A2) < (resp., >) a;, and such that
Toiem Wi £ (Laeawi)/2 < wj + Taoien, i-
The special case of this problem in which every
weight w; is 1 is the well-known (unweighted) me-
dian selection problem [4]. The weighted median
problem can be solved sequentially in O(n) time
by using the linear time unweighted median selec-
tion algorithm [4]. By making use of Cole’s ap-
proximate unweighted median selection algorithm
on the EREW PRAM [8], the weighted median
problem can be solved in parallel, as follows:

1. Find an approximate (unweighted) median a,
of A by using Cole’s algorithm [8], in O(logn)
time and O(n) work.

2. Use a, to reduce the problem to a subset A’
of A, with |A’| being a constant fraction of

| Al

3. If |A'| = O(n/logn), then sort A’ by using a
sorting algorithm [1, 9], and find the weighted
median e; from the sorted set 4’ (by perform-
ing a parallel prefix [18, 19} on the weights of
the elements in the sorted set A’); otherwise,
recursively solve the problem on A’.

The above parallel weighted median algorithm
takes O(log nloglog n) time and O(n) work on the
EREW PRAM, because it makes O(loglogn) re-
cursive calls, with each call taking O(logn) time
and performing a constant fraction of the amount
of work of the previous recursive call.

The following observation is a key to our paral-
lel partition algorithm.

Lemma 1 Suppose that a set S is organized as
k sorted columns C; of size n/k each. For each
i=1,2, ..., k, let C] be the subset of C; that
consists of every s-th element of C; (i.e., the s-th,
(2s)-th, ..., ([n/(ks)]s)-th elements of C;). Let

§' =k, CL Ifz (vesp., y) is the a-th (resp., B-
th) smallest element of §', with x < y, then there
are at most s(f — a + k — 1) elements of S that

are in between z and y (i.e., they are > z but <
y)-

Based on the above parallel weighted median al-
gorithm, we first obtain a preliminary paralle] al-
gorithm for the special case of the partition prob-
fem in which 1 < & < n/k. Note that in this case,
the sizes of the resulted ordered subsets are O(hk)
= Q(k). This preliminary parallel algorithm takes
O(log(n/(hk)) * (log kloglog k + log(n/k))) time
and O((n/h)*log h) work on the EREW PRAM.
Although the time bound of the preliminary al-
gorithm is not very efficient, we illustrate it here
because it is a useful procedure for our final solu-
tion to the general partition problem.

The preliminary parallel partition algorithm
works on sequences of consecutive blocks of the
sorted columns. For each i1 = 1, 2, ..., k, let B;
be a consecutive block of C; and n; = |B;|. Ini-
tially, B; = C; and n; = n/k. The algorithm
proceeds as follows.

1. Find the middle element b; of B; and asso-

ciate with §; a weight n;. Let WM be the set
of the k such b;’s.

2. Obtain the weighted median ¢ of WM, in
O(log klog log k) time and O(k) work.

3. Use the element ¢ to partition each B; into
two consecutive blocks B! and B!, such that
each element in B! (resp., BY) is < (resp., >)
g- (Note that B or B! can be empty.) This
is done by performing a binary search in each
B; for ¢, and it takes O(1+ max{log|B;| | i =
1,2,...,k}) = O(log(n/k)) time. (Actually,
in some extreme cases, parallel merging [3, 6,
12] instead of parailel binary search will be
used in this step; more on these extreme cases
in Lemma 4.) Assuming that on each (possi-
bly empty) block B;, the binary search per-
forms O(1+ max{log|B|,0}) work, this step
takes altogether O(k+ Y%, max{log|B;|,0})
work.

4. If 5 |B!| (vesp., 5, |BY|) > ¢ * hk for
some chosen constant ¢ > 1, then recursively
solve the problem on the sequence of blocks
B! (resp., BY).

It is clear from the above algorithm that no
element in |J°, B! is larger than any element
in U5, BY. The first three steps of the algo-
rithm altogether take O(log k loglog k +log(n/k))
time and O(k+ Y%, max{log |B;|,0}) work, and,
as to be shown next, the algorithm stops after
O(log(n/(hk))) levels of recursion. Hence the
O(log(n/(hk)) * (log kloglog k + log(n/k))) time
bound of the algorithm follows. The algorithm
clearly uses an EREW PRAM because at each of
its recursion levels, a sequence of blocks B; does
not share any element of S with any other se-
quence of blocks at the same level (if such a block

sequence exists). What remains to be done for
our analysis is to: (i) show that when the algo-
rithm stops its recursion at a sequence of blocks
B! (resp., BY), the total sum of sizes of the blocks
is O(hk), (ii) show that the algorithm stops af-
ter O(log(n/(hk))) levels of recursion, (iii) ana-
lyze the work bound of the algorithm, and (iv)
discuss how desired processor bounds can be ob-
tained from these time and work bounds.

(i) and (ii) follow from the next lemma.

Lemma 2 Let the blocks B;, B!, and B! be de-
fined as in the above preliminary parallel partition

algorithm. Then the following holds: %Zfﬂ | Bil
< T Bl < 5L IBil, and 3T 1B <

1 1B < § T 1Bl

i=1
It is more difficult to show (iii) and (iv). We

need to compute the sum of O(k + Y5, log|B;|)
work for each block sequence over all sequences of
all recursion levels of the algorithm. It turns out
that the sum of the part O(3%_, log|B;|) over all
sequences of all recursion levels of the algorithm
is the dominating factor of the total work of the
algorithm.

It is clear from the description of the algorithm
that at recursion level j, the algorithm processes
simultaneously at most 27 sequences of disjoint
blocks, and that every column C; contributes at
most one non-empty block to each such block se-
quence. Instead of calculating directly the total
sum of O(Efg lo%]B,-D over each individual se-
quence of blocks B; at level j, we calculate the
work of all these 27 sequences performed on every
column C; at level j. The total work of each re-
cursion level is then the sum of work performed
over all the k columns. Thus, at recursion level 7,
letting C; be partitioned into r; < 27 disjoint non-
empty blocks B; 1, Big, ..., é.',, ; with sizes ni1,
2, - - -5 Mir;, Tespectively, we want tofind a tight
upper bound for Y72 log|B;,| = YiL logni,.
The lemmas below together prove such an upper
bound.

Lemma 3 At level j, 0 < j < O(log(n/(hk))),
suppose the preliminary parallel partition algo-
rithm partitions a column C; of size m = n/k into
r; < 27 disjoint non-empty blocks B;1, Big, ...,
é;,rj with sizes miy, Ni2, .-, Nir;, respectively.
Ifm/27 > 4, then 3212 logn; s < 2/ log(m/27).
Lemma 4 At level j, 0 < j < O(log(n/(hk))),
the preliminary parallel partition algorithm per-
forms a total of O(k2/ + log(m/27)) work, where
m=n/k.

Lemma 5 The preliminary parallel partition al-
gorithm performs a total of O((n/h)+logh) work.

We still need to discuss how desired processor
bounds can be obtained from the time and work
bounds shown above. We make use of Brent’s
theorem [5]. There are actually two qualifications
to Brent’s theorem before one can apply it to a

PRAM: (1) One must find out the amount of work
W, done by each parallel step [, in time O(W;/P)
and with P processors, and (2) one must know
how to assign each processor to its task. The key
to applying Brent’s theorem [5] to our algorithm
is to find out the amount of work W, done by each
parallel step [(i.e., qualification (1)) of the algo-
rithm. We like to leave the details on computing
the amount of work W; to the full paper.

3 The Parallel Partition Algo-
rithm

We classify the partition problem into three cases
based on the actual value of the parameter h: (1)
h = 1 (we call this the basic case), (2) 1/k < h
< 1,and (3) 1 < h < n/k. In all three cases, our
parallel partition algorithm runs in O(logn) time
and performs O(min{(n/h) * max{logh,1},n *
max{log(1/h),1}}) work on the EREW PRAM.
Since our solutions for cases (2) and (3) both de-
pend on the solution for the basic case, we present
first the parallel solution for the basic case, and
then the parallel solutions for cases (2) and (3).

3.1 The Case with h =1

When h = 1, the problem is to partition the &
sorted columns C; of size n/k each into O(n/k)
ordered subsets of size @(k) each. We solve this
case in O(logn) time and O(n) work. We fur-
ther classify case (1) into three cases based on the
values of n/k and k: (1.a) n/k > logn and k& >
logn, (1.b) n/k < logn and k > logn, and (1.c)
n/k > logn and k < logn (in general, we can-
not have n/k < logn and k < logn). Case (1.2)
is more typical than cases (1.b) and (1.c) because
both (1.b) and (1.c) can be treated as special cases
of (1.a). Hence we present here only the general
algorithm (for case (1.a)). It is not hard to mod-
ify the general algorithm to solve cases (1.b) and
(1.c).

Our general parallel algorithm for case (1l.a)
consists of four phases: (I) Partition the &
columns C; into O(n/(klogn)) ordered subsets F,
of size ©(klogn) each, (II) partition every subset
E, into O(k/logn) arbitrary subsets Fy of size
O(log? n) each, with each F, cousisting of logn
sorted columns of size O(logn) each, (III) parti-
tion every subset Fj into logn ordered subsets of
size O(log n) each, and (IV) let every subset E,
(of size @(klogn)) consist of O(k/logn) “roughly
sorted” columns (each column corresponds to a
subset F} that has been partitioned into logn or-
dered subsets of size ©(log n) each), and partition
E, into O(log n) ordered subsets of size ©(k) each.
We discuss each of these four phases below.
Phase I
The input is a set .S with k sorted columns of size
n/k each. Phase I consists of the following steps.

1. Choose n/(klogn) elements from each sorted

column Cj, such that these n/(klogn) cho-
sen elements together partition C; into
n/(klogn) ordered consecutive blocks of size
logn each. From all the k columns, we have
chosen n/logn elements of §. Let these
n/logn elements form a set). This step can
be easily done in O(1) time and O(n/logn)

work.

. Sort @ by a sorting algorithm [1, 9], in

O(log n) time and O(n) work.

. Choose n/(klog n) elements from @ such that

these n/(klogn) elements together partition
Q into n/{klogn) ordered subsets of size k
each, in O(1) time and O(n/(klogn)) work.
Let these n/(klogn) elements form a sorted
set @’. Then by Lemma. 1, for any two con-
secutive elements z,y € @', there are at most
2k log n elements of § that are in between z
and y.

. Use the elements of @' to partition the set

S into d = n/(klogn) ordered subsets Ej,
Es, ..., E4 of size O(klog n) each (some sub-
sets E, possibly contain less than klogn el-
ements). This partitioning is done by first
performing a parallel binary search on each
column C; for all elements of @', and then
for every pair of consecutive elements z,y
€ @', adding up the number of elements of
each C; that are in between z and y, over
all the k£ columns. By using Chen’s paral-
lel binary search algorithm ?6] and parallel
prefix [18, 19], each column C; can be par-
titioned with the elements of Q' in O(logn)
time and O(nloglogn/(klogn)) work. Al-
together, this step takes O(logn) time and
O(nloglogn/logn) work.

. Union the sets E, whose sizes are < klogn

so that the resulted ordered set sequence of
the E,’s consists of only sets whose sizes are
O(klogn), as follows. Mark every set E; in
the sequence whose size e, = |E,| is < klogn,
and group the marked sets of the sequence
into blocks of consecutive marked sets. The
following is then done on each such block
R; ; of consecutive marked sets E;, Ejyq, ...,
E; (i £ j): Compute the prefix sums p; =

f,='- e, l=1,1+1, ..., j (by parallel prefix
{18, 19]). If p; < klogm, then let E/ = E;
U Eiy1 U - -+ U Ej, and union E’ with either
the preceding or succeeding unmarked set of
the block R;; in the sequence (e.g., let E;_y
= E;_y U E'). If p; > klogn, then for every
integere=1,2,... ,I&pj/(klogn)J, there is a
set F;_ in the block R;; such that cklogn <
Pi. < (¢+ 1)klogn (because the size of every
E;in R; ; is < klogn). Identify such a set E;,
in R;jforeache=1,2,..., ij/(klogn)rl,
and partition the block R;; into sub-blocks
of consecutive sets by using the sets E;,, ¢/
= 2,4,6, ..., 2|p;/(2klogn)|. Union the
sets in each such sub-block into a single set

(the size of the resulted set is < 3klogn).
If the set resulted from unioning the sets in
the last sub-block is of a size < klogn, then
union this set with either the preceding set
or the succeeding unmarked set of the block
R; ;. Relabel the sets in the resulted sequence
of O(n/(klogn)) ordered sets and still denote
these sets as E,’s. As a result, the size e, of
every set E, in the ordered set sequence is
such that klogn < e, < 4klogn. This step
takes O(log n) time and O(n/logn) work.

1t is easy to see that Phase I takes O(log ») time
and O(n) work.

Phase II

As the result of Phase I, we have obtained a se-
quence of d = n/(klogn) ordered subsets Ey, Ey,
..., Eq4 of size O(klogn) each. Phase II simply
partitions every such subset E, into O(k/logn)
unordered subsets Fy, b = 1, 2, ..., O(k/logn),
of size O(log® n) each, as follows.

1. Note that for each set E, and each column
Ci, E, n C; is a (possibly empty) consecu-
tive block of C;. We assume WLOG that the
size of each such block E; N C; is clogn for
some nonnegative integer ¢ (if this is not the
case, we can implicitly patch at most logn—1
dummy elements of value +o0c to the end
of E, N C;, so that the assumption holds).
Note that ¢ need not be a constant integer.
With the dummy elements, we have |E,[<
5klogn for each E,. Partition each E, N C;
of size clogn, for some integer ¢ > 1, into ¢
sorted columns of size logn each. Hence each
set E, consists of O(k) such sorted columns.
Group the O(k) sorted columns of each E,
into O(k/logn) matrices F, b = 1,2, ...,
O(k/log n?, with each such matrix F, con-
sisting of logn sorted columns of E,. Note
that the matrices F}, are not ordered subsets
of E,.

It is clear that Phase II takes O(logn) time and
O(n) work.
Phase III
As the result of Phase II, we have, for each set E,,
O(k/logn) (unordered) matrices Fj, such that
every matrix F, of E, consists of logn sorted
columns of size logn each. Phase III partitions
every matrix Fy of E, into logn ordered subsets
of size log n each, as follows.

1. Use the preliminary parallel partition algo-
rithm in Section 2 to partition each matrix
F; into a sequence of O(log n) ordered subsets
G, of size O(logn) each. Since |F}| = log®n,
this takes O((loglogn)?logloglogn) time
and O(log? n) work on each F,. Altogether,
this step takes O((loglogn)Zlogloglogn)
time and O(n) work.

2. For every F;, compute the prefix sums of
the sizes of the subsets G, along the ordered
subset sequence of Fj. [fse the information

of these prefix sums to guide an appropriate
partitioning of each subset G, of Fj, so that
Fy is partitioned into logn or(fered subsets of
size exactly log n each. Since this partition of
Fy requires that each subset Gy of F (with
|G4| = O(logn)) be further partitioned into
at most O(1) ordered subsets, such a par-
titioning of Gy can be done by using the se-
quential linear time selection algorithm [4] on
G,. This step takes O(logn) time and O(n)

work.

Phase III altogether takes O(logn) time and
O(n) work.

Phase IV

As the result of Phase III, we have partitioned,
for every set E,, each of its O(k/logn) (un-
ordered) matrices F into logn ordered subsets
of size log n each. We can view every such matrix
F as a “roughly sorted” column whose elements
form log n ordered consecutive blocks (of size log n
each) of the column (the elements in each such
block of F}, are not sorted, but this does not mat-
ter to our algorithm). Phase IV partitions every
E, (of size ©(klogn)) into O(logn) ordered sub-
sets of size O(k) each.

1. Let every set E, form a matrix of O(k/logn)
roughly sorted columns, with each column
being a subset F}, of E,. Let a set Fj con-
tain the log n elements of the column Fj such
that these logn elements together partition
F, into log n ordered blocks of size log n each.
Let a set E! be the union of the sets Fj for
E,. Then |E!| = O(k).

2. Sort the set E,, in O(logk) time and
O(klog k) work.

3. Choose O(logn) elements from E, such that
these O(log n) elements together partition E
into O(log n) ordered subsets of size k/logn
each, in O(1) time and O(logn) work. Let
these O(log n) elements form a sorted set £,
Then by Lemma 1, for any two consecutive
elements = and y of E., there are O(k) ele-
ments of the matrix E, that are in between
z and y.

4. Use the elements of E to partition E, into
O(logn) ordered subsets of size O(k) each.
This is done by partitioning every roughly
sorted column F} of E, with the elements of
E! | as follow. Merge E! with each F) by us-
ing a parallel merging algorithm [3, 6, 12], in
O(loglogn) time and O(logn) work. Then
the elements of E! fall into some of the logn
ordered blocks of F; (of size logn each) that
are delimited by the elements of F (note that
each such block of F; may be unsorted). For
every such block Z of Fj, into which some el-
ements of E7 fall, the following is done. Sup-
pose ¢ > 0 elements of E fall into the block
Z of F,. Make logn copies of the sorted se-
quence X(Z, E!) formed by the ¢ elements of

EY that fall into Z, in O(loglog ») time and
O(clogn) work. For all elements of E, al-
together |E”| x logn = O(|F;|) = O(log® n)
copies of them are made for each column F;.
WLOG, assume the result of the above copy
making process for the block Z is a matrix
M(Z,E) of size ¢ x logn, with each row
of M(Z, E") being the sequence X(Z, EY) of
the c elements of E fell into Z. Then for
every element z; in the j-th position of the
unsorted block Z, 7 =1, 2, ..., logn, find
the unique [-th element z; in the sorted se-
quence X (Z, E”) stored at the j-th row of the
matrix M(Z, E)), such that z; < z; < zi4q
(withl € {0,1,...,c}, 20 = —00,and &4y =
+00). Associate such an element 2; of Z with
the I-th element of the j-th row of M(Z, EY).
Then a parallel prefix on each column of the
matrix M(Z, E"é for the associated elements
from the block Z gives the partition of Z by
the elements of X(Z, E”). This step takes
O(loglog n) time and O(n) work.

5. Remove all dummy elements of E,, and union
the O(logn) ordered subsets (of size O(k)
each) of E, as in Step 5 of Phase I, such that
each such subset of E, is of size O(k).

6. If the constant factor for the size of such a
subset of E, is still too big, then Cole’s ap-
proximate unweighted median selection algo-
rithm [8] can be applied to that subset O%l)
times, further partitioning the subset into
O(1) ordered subsets of size ©(k) each.

Phase IV takes altogether O(logn) time and
O(n) work.

In summary, our parallel algorithm for case
(l.aﬂ runs in O(logn) time and performs O(n)
work on the EREW PRAM. The discussion of
the correctness of the algorithm has been given
in each step of the four phases.

3.2 The Case with 1/k < h <1

When 1/k < h < 1, the problem is that of parti-
tioning the k sorted columns C; of size n/k each
into O(n/(hk)) ordered subsets of size O(hk) (<
O(k)) each. We solve this case in O(logn) time
and O(nlog(1/h)) (< O(nlogk)) work, as follows.

1. Use the algorithm for the basic case to parti-
tion the & sorted columns C; of size n/k each
into O(n/k) ordered subsets U, of size @(k)
each, in O(logn) time and O(n) work.

2. For each subset U, (of size O(k)), partition it
arbitrarily into O(hk) subsets V} of size 1/h

each, and sort each subset V. This step takes
O(log(1/h)) time and O(nlog(1/h)) work.

3. Let each set U, form a matrix of O(hk) sorted
columns, with every column being one of its
sorted subsets V; (of size 1/h each). Use
the algorithm for the basic case to partition
U, into O(1/h) ordered subsets of size @(hk)

each. This step takes O(log k) time and O(n)

work.

The correctness of this algorithm follows from
that of the algorithm for the basic case. Clearly,
the algorithm takes altogether O(logn) time and
O(nlog(1/h)) work on the EREW PRAM.

3.3 The Case with 1 < A < n/k

When 1 < h < n/k, the problem is that of parti-
tioning the k sorted columns C; of size n/k each
into O(n/(hk)) ordered subsets of size @(hk) (>
O(k)) each. We solve this case in O(logn) time
and O((n/h)logh) (> O(klogh)) work, as fol-

OWS.

1. Choose n/(hk) elements from each sorted col-
umn Cj;, such that these n/(hk) chosen ele-
ments together partition C; into n/(hk) or-
dered consecutive blocks of size i each. Let
these n/(hk) elements of C; form a sorted col-
umn C}. From all the k columns C;, we have
chosen n/h elements, and these n/h elements
form a matrix @ of k sorted columns C of size
n/(hk) each. This step can be easily done in
O(1) time and O(n/h) work.

2. Use the algorithm for the basic case to parti-
tion the k sorted columns C! (of size n/(hk)
each) of @ into O(n/(hk)) ordered subsets
Q. of size ©(k) each, in O(logn) time and
O(n/h) work. Let @’ be the sorted set of the
O(n/(hk)) elements of Q that delimit the or-
dered subsets @, of . Then for any two
consecutive elements z and y of Q’, there are
O(k}g‘elements of @ that are in between z and
y. Furthermore, by Lemma 1, for any two
consecutive elements z and y of Q’, there are
O(hk) elements of § that are in between z
and y.

3. Use the elements of @’ to partition § into
O(n/(hk)) ordered subsets of size O(hk
each. Thisis done by partitioning each sorte
column C; of § with the elements of ', as fol-
low. Perform a parallel binary search on each
column C; for all the elements of Q' by using
Chen’s EREW PRAM algorithm for parallel
binary search on sorted arrays [6]. The par-
allel binary search on each column C; takes
O(logn) time and O((n/(hk))logh) work.
Hence this step altogether takes O(logn)
time and O((n/h)logh) work.

4. Union the resulted O(n/(hk)) ordered sub-
sets (of size O(hk) each) of S as in Step 5 of
Phase I of the algorithm for the basic case,
such that each such subset of § is of size
O(hk). This step takes O(logn) time and
O(n/h) work.

The correctness of the above algorithm follows
from that of the algorithm for the basic case and
from Lemma 1. The algorithm obviously takes
altogether O(logn) time and O((n/h)logh) work
on the EREW PRAM.

Finally, we should point out that it is an easy
matter to reduce the maximum size of the resulted
ordered subsets of the partition by a chosen con-
stant factor. For example, by letting h’ = h/c for
some constant ¢ > 1 and using A’ instead of A in
our partition algorithm, the maximum size of the
resulted ordered subsets is reduced by a constant
fraction depending on ¢, in the same asymptotic
complexity bounds.

We now summarize the results of this section in
the following theorem.

Theorem 1 Given an n-element set S that is
organized as k sorted columns of size n/k each
and given a parameter h with 1/k < h < n/k,
suppose the following partitioning on S is to be
done: Partition S into g = O(n/(hk)) subsets
Dy, D,, ..., D, of size O(hk) each, such that
for any two indices i and j with 1 < i < j
< g, no element in D; is bigger than any el
ement in D;. Such a partition of § can be
obtained in O(logn) time and O(min{(n/h) *
max{log k, 1},n x max{log(1/k),1}}) work on the
EREW PRAM.

References

[1] M. Ajtai, J. Komlos, and E. Szemeredi.
“Sorting in c¢logn parallel steps,” Combina-
torica, 3 (1983), pp. 1-19.

{2] M.J. Atallah, R. Cole, and M.T. Goodrich.
“Cascading divide-and-conquer: A technique
for designing parallel algorithms,” SIAM J.
Computing, 18 (3) (1989), pp. 499-532.

[3] G. Bilardi and A. Nicolau. “Adaptive bitonic
sorting: An optimal parallel algorithm for
shared-memory machines,” SIAM J. Com-
puting, 18 (1989), pp. 216-228.

M. Blum, R.W. Floyd, V.R. Pratt, R.L.
Rivest, and R.E. Tarjan. “Time bounds for
selection,” J. of Computer and System Sci-
ences, 7 (4) (1972), pp. 448-461.

[5] R.P. Brent. “The parallel evaluation of gen-
eral arithmetic expressions,” J. of the ACM,
21 (1974), pp. 201-206.

[6] D.Z. Chen. “Efficient parallel binary search
on sorted arrays, with applications,” IEEE
Trans. on Parallel and Distributed Systems,
6 (4) (1995), pp. 440-445.

[l W. Chen, K. Wada, and K. Kawaguchi. “A
parallel method for finding the convex hull of
discs,” IEEE 1st International Conf. on Al-
gorithms and Architectures for Parallel Pro-
cessing, 1995, pp. 274-281.

[8] R. Cole. “An optimally efficient selection al-
orithm,” Information Processing Letters, 26
%1987/1988), pp- 295-299.

[9] R. Cole. “Parallel merge sort,” SIAM J.
Computing, 17 (1988), pp. 770-785.

[10] R. Cole and U. Vishkin. “Deterministic coin
tossing and accelerating cascades: Micro
and macro techniques for designing paral-
lel algorithms,” Proc. 18th Annual ACM

(4

==

(11]

12

(13]

[14]

(1]

(16]

(17]

(18]

(19]

[20]
[21]

(22)

[23)

(24]

(25]

[26]

g%np Theory of Computing, 1986, pp. 206~

G.N. Frederickson and D.B. Johnson. “The
complexity of selection and ranking in X +
Y and matrices with sorted columns,” J.
of Computer and System Sciences, 24 (2)
(1982), pp. 197-208.

T. Hagerup and C. Rub. “Optimal merging
and sorting on the EREW PRAM.” Informa-
izsosn Processing Letters, 33 (19893, pp. 181-

J. JaJa. An Introduction to Parallel Al-
gorithms, Addison-Wesley, Reading, Mas-
sachusetts, 1992.

D.B. Johnson and T. Mizoguchi. “Selecting
the Kth element in X+Y and X;+ X2+ -+
{g,g, SIAM J. Computing, 7 (1978), pp. 147-

R.M. Karp and V. Ramachandran. “Paral-
lel algorithms for shared-memory machines,”
Handbook of Theoretical Computer Science,
J. van Leeuwen geds.), Vol. 1, Elsevier Sci-
ence Publishers, 1990.-

D.E. Knuth. The Art of Computer Program-
ming, Vol. 1, Fundamental Algorithms, Sec-
ond Edition, Addison-Wesley, Reading, Mas-
sachusetts, 1973.

C.P. Kruskal. “Searching, merging and sort-
ing in parallel computation,” JEEE Trans. on
Computers, C-32 (10) (1983), pp. 942-946.

C.P. Kruskal, L. Rudolph, and M. Snir. “The
power of parallel prefix,” IEEE Trans. on
Computers, C-34 (10) (1985), pp. 965-968.

R.E. Ladner and M.J. Fischer. “Parallel pre-
fix computation,” J. of the ACM, 27 (1980),
pp- 831-838.

T.H. Merrett. Relational Information Sys-
tems, AFIPS Press, Reston, Virginia, 1984.

K. Nakano and S. Olariu. Private communi-
cation (1996).

S. Olariu and Z. Wen. “An efficient parallel
algorithm for multiselection,” Parallel Com-
puting, 17 (1991), pp. 689-693.

S. Olariu and J.L. Schwing. “A faster sort-
ing algorithm in the broadcast communica-
tion model,” Proc. 9th International Parallel
Processing Symp., 1995, pp. 319-323.

J.H. Reif. “An optimal parallel algorithm
of integer sorting,” Proc. 26th IEEE An-
nual Symp. Foundations of Computer Sci-
ence, 1985, pp. 496-504.

G. Salton. Automatic Text Processing: The
Transformation, Analysis, and Retrievel of
Information by Computer, Addison-Wesley,
Reading, Massachusetts, 1988.

Z. Wen. “Multi-way merging in parallel,” to
appear in IEEE Trans. on Parellel and Dis-
tributed Systems.

