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Covering points in the plane by k-tours:
a polynomial time approximation scheme for fixed k

Tetsuo Asano Naoki Katoh

Dept. of Engr. Informatics Dept. of Management Science

Osaka Electro-Communication University Kobe University of Commerce
Hisao Tamaki Takeshi Tokuyama

IBM Tokyo Research Laboratory

Abstaract: Let S be a set of points in the plane. A k-tour through S is a tour
in the plane that starts and ends at the fixed origin and visits at most k points of S.
Our goal is to cover all the points of S by k-tours while minimizing the total length
of the tours. When k is fixed, a polynomial time approximation scheme (PTAS) due
to Haimovich and Rinnooy Kan is known. We give an alternative PTAS for fixed
k. This result extends to the d-dimensional space, as long as d is a constant. In
contrast, we show that the non-geometric version of this problem, in which the points
are placed in a general metric space, is APX-complete for any fixed k.
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1 Introduction

Suppose a positive integer k, a set of n nodes V, a special node s called the source not in V, and the
distance w(u,v) between each pair in V U {s} are given. We wish to cover all the nodes of V by tours,
each of which contains s and at most k nodes of V, so that the total length of the tours is minimized.
We call such tours k-tours and this problem the k-tour cover problem. Clearly, the n-tour cover problem
is nothing but the celebrated traveling salesman problem (TSP).

A natural interpretation of the k-tour cover problem is to view it as a special case of the vehicle routing
problem (VRP). VRP has been extensively studied over these thirty years in the field of operations
research. (See the following references[Lun, Gol84, GA88, Fis]. In particular, [Lun] collects more than
300 papers related to VRP.) According to the constraints and objectives that arise in real applications,
there is a wide variety of problem formulations. Also, many heuristic and exact algorithms have been
proposed.

The simplest form of VRP is formulated as follows. A set of customers is given, each with a demand
of goods to be delivered from a central depot. The goods are to be delivered by vehicles with an identical
capacity. Each vehicle starts from the depot, delivers goods to a subset of the customers, and returns to
the depot. The objective is to minimize the delivering cost incurred by vehicles (usually cost is measured
by the traveling distance) so as to meet the demands of all customers. If the demands of all the customers
are equal, say the unit quantity, and the capacity of each vehicle is k units, then this version of VRP
is equivalent to our k-tour cover problem. Although this condition of unit demands may appear an
oversimplification, we note that the general demand case can be reduced to the unit demand case if each
demand is an integer and is allowed to be broken up into integral pieces to be satisfied by separate tours:
we represent a customer with demand ¢ by ¢ customers with a unit demand each. The plausibility of such
a model depends on particular applications.

The 2-tour cover problem can be solved easily: since the edge from s to each v € V must be included in
any 2-tour cover of V, the problem reduces to finding a minimum weight matching among the nodes of V',
When £ > 3, the k-tour cover problem is NP-hard. Thus, our interest is directed to the approximability
of the problem.

In recent years, a considerable amount of work has been done in classifying combinatorial optimization
problems with respect to their approximability. (For literature, see a compendium by Crescenzi and
Kann[CK].) For a combinatorial optimization problem, an algorithm is said to be an a-approzimation
algorithm, where a > 1, if the value of the solution produced by the algorithm is always within a factor
of o from the optimal solution. A problem belongs to the class APX, if it has a polynomial time c-
approximation algorithm for some constant c. A problem has a polynomial time approzimation scheme
(PTAS), or belongs to the class PTAS, if it has a polynomial time (1 + €)-approximation algorithm for
every constant € > 0. A problem P is APX-hard if every problem @ in APX is PTAS-reducible to
P, ie., there is a reduction from Q to P that turns any PTAS of P into a PTAS of Q. It is APX-
complete if it is in APX and is APX-hard. The recent developments in the theory of approximability
[PY91, ALMSS92, KMSV94, CT94] have established that any APX-hard problem does not admit a PTAS
unless P = NP.

An interesting issue in the study of approximability is the role of geometry. For example, the set
cover problem, which is believed to be not in APX[LY94, Fei96], has some geometric versions that admit
PTAS[HMS85], some geometric versions in APX ([Mat93, GL95]), and yet some other geometric versions
that are not known to be in APX. Another prominent example highlighted recently is TSP. The metric
TSP, i.e., TSP with a distance function satisfying the triangle inequality, has been known to be APX-
hard[PY93]. On the other hand, it had been open for a long time whether TSP with Euclidean distance
admits a PTAS, until very recently Arora [Aro96] has answered the question in the affirmative (for the
2-dimensional case), showing that geometry indeed helps in approximating TSP.

The goal of this manuscript is to point out a similar phenomenon on the k-tour cover problem, when
k is fixed. Haimovich and Rinnooy Kan [HR85] constructed a PTAS for the geometric version while
we show that the general metric version is APX-complete. We also give a PTAS based on an approach
different from that of the above authors.

It is interesting to note that the approximability question on the k-tour problem is resolved in a similar



fashion in both of the opposite extremes: when k is a constant and when k£ = n (Arora’s TSP result). In
fact, Arora’s technique can be extended to give a PTAS for the k-tour cover problem for k£ = Q(n). The
question is open for a general k in between.

2 A PTAS for the Euclidean k-tour cover problem

In this section, we consider the k-tour cover problem where the weight function is the Euclidean distance
in the plane. Thus, an instance of the problem is given by a triple (V,s,%), where s is the source, V is
the set of nodes to be covered, and 4 : V U {s} — R? is an embedding of the nodes into the plane. We
assume that the source is always mapped to the origin of the plane. Distinguishing between a node v
and its location ¥(v) in the plane will turn out useful, since our technique forces us to deal heavily with
multiple nodes placed on a single point.

The rest of this section is devoted to an alternative proof of the following theorem due to Haimovich
and Rinnooy Kan.

Theorem 2.1 When k is fized, the Euclidean k-tour cover problem admits a PTAS.

The constants in the following subsections will in general depend on k as well as on ¢, the bound on
the relative error of the approximate solution with respect to the optimal.

2.1 Overview of the algorithm

Suppose an Euclidean instance (V, s,v) of the k-tour problem is given. We normalize the distance so
that the smallest enclosing circle of the points of (V) centered at the origin has radius 1. OQur goal is
to find a k-tour cover of V which approximates the optimal solution within a relative error of e.

Our approach is to first perturb the given embedding ¢ into a highly degenerate embedding 1 so that
the number of distinct points in the image ¢'(V) is O(logn). We keep the perturbation small so that the
weight of any k-tour cover after the perturbation closely approximates its weight before the perturbation.
Then we exactly solve the k-tour cover problem under this perturbed embedding, using a dynamic
programming approach. The running time of this computation is exponential in m = |¢'(V')| = O(logn),
which is polynomial in n. A key in establishing this time bound is Lemma 2.1 which essentially states
that, in any optimal k-tour cover of V under embedding ', at most O(m) k-tours are non-trivial, i.e.,
visit more than one point of ¥'(V).

The following subsections provide the details of the algorithm.

2.2 Perturbing the embedding

We first note that, in constructing the k-tour cover, we may ignore the nodes in V' that are mapped into
the vicinity of the origin or, more specifically, within distance €/2n of the origin. This is because such
nodes can be covered by 1-tours of weight at most €/n each and thus at most € in total. Since the length
of the optimal k-tour cover of V is at least 2, separately dealing with these nodes cannot incur a relative
error that is greater than ¢/2. In the following, we assume that 1 maps each node in V' to a point at a
distance of at least €/2n from the origin and try to achieve an approximate solution with a relative error
of at most €/2.

Let § = €/4k and L = 1+ log, _s(e/2n). Draw L circles Cy, Cy, ..., Cp, centered at the origin, with
geometrically reducing radii 1, (1 —§6), ..., (1 — 8)*~! = ¢/2n. Also draw M = 27/6 rays from the
origin so that the angle between two consecutive rays is §. Let T be the set of the “grid points”, i.e., the
intersections of the above circles and rays. Note that m = |I'| = LM = O(logn). Define ¢’ by setting
9'(v) to be the point of I' closest to ¥(v), for each v € V.

The embedding 1’ approximates 1) well in the following sense. For each v € V, let 7, denote the
distance of 9 (v) from the origin and d, the distance between ¥ (v) and 9'(v). Then, from the construction
of the grid we have d, < ér, for each v € V. Recall here that our assumptions put ¥(v) for every v e V
in the annulus bounded by C; and Cp.



Let Z be an arbitrary k-tour cover of V. Then, the difference of the weights of Z under the embedding
¥ and under the perturbed embedding ¢’ is at most 233 ., dy < 263 ¢y v Since the weight of Z
under the embedding 1 is at least %Zvev T4, this difference amounts to a relative error of at most
k6 = €/4. Let Zgy be a k-tour cover of V that is optimal under the perturbed embedding 4. Then, the
weight of Z, is within relative error of €/4 compared to the optimal solution with respect to the original
embedding 1. When we measure the weight of Z; with respect to ¢, there is an additional relative error
of at most e/4. Therefore, Z; is an approximate solution to the original problem with a relative error of
at most €/2.

2.3 A characterization lemma

The following lemma, which characterizes the structure of the optimal k-tour cover of V' with respect to
the perturbed embedding ', forms a basis of our dynamic programming computation. Call an edge of a
k-tour lateral if neither of its endnodes is the source.

Lemma 2.1 Any optimal k-tour cover of V with respect to the embedding ¥’ contains at most O(m)
lateral edges with positive length, where m = |T|.

Intuitively, what this lemma says is plausible: in our situation where each grid point contains a large
number of nodes (on average), most k-tours in an optimal k-tour cover visit only one grid point touching
k nodes in one shot. The proof, however, is not trivial, especially when it is done for a general constant
k. We prove this lemma for k = 3 below and omitt the general proof. Although the general case is
considerably more involved, most of the proof ideas can be found in this special case.

Proof: (For k = 3). In this proof, we assume that each 3-tour in the optimal 3-tour cover of V under
consideration visits exactly 3 nodes of V. If this is not the case, i.e., some of the 3-tours visit less than 3
nodes, then we may add appropriate copies of some nodes of V so that our assumption is satisfied; the
result for the modified node set readily translates into the result for the original node set V.

Let Z be an arbitrary optimal 3-tour cover of V with respect to the embedding 1. For each 3-tour
$,v1,v9,v3, s of Z, we call v; and vy its knees and v, its mid-node. We also say that the gridpoint ¥ (va)
owns these knees v; and vs. A knee v owned by p is external if ¥'(v) # p. Since each lateral edge with
positive length (when k = 3) is between a mid-node and an external knee, it suffices to show that the
number of external knees owned by a single gridpoint is bounded by a constant. Although we can in fact
show the upper bound of 6 by a method specialized to k = 3, we prove the result for a larger constant
using an approach that extends to the case where k is a general constant.

Let p € I'. We say that two knees owned by p are paired by Z if they belong to the same 3-tour in
Z. It is important to observe that the particular pairing of the knees owned by p is not essential. For
example, suppose that p owns four knees vy, vs, 23, and uz and that Z pairs v; with v, and u; with us.
In other words, Z has 3-tours s,v;, Vg, va, 8 and 8,u;, ug, Uz, S, Where vg and ug are nodes placed on p by
¥'. A variant of Z that pairs v; with u; and vy with u,, i.e., that has 3-tours, say, s,v1,%0, 1,8 and
s, U, Ug, Uy, s instead of the above two, is clearly equivalent to Z in the sense that it covers the same set
of nodes and has the same weight. In general we may create a variant of Z in a similar fashion that pairs
the knees owned by p in an arbitrarily prescribed way.

Now, suppose p owns more than 18 external knees. We will derive a contradiction by locally modifying
Z to produce a 3-tour cover of V with weight strictly smaller than that of Z. By a simple averaging
argument, there must be a cone of angle smaller than 7/3 with apex at p, that contains three external
knees vg, v;, and v, owned by p. Denote ¢'(v;) by ¢;, 0 < i < 2, and assume that go is the closest to p
among the three points. We may assume, by the above observation on pairing, that v; and v, are paired
by Z. That is, there is a 3-tour T : s, v, 4,2, s of Z where ¢/(u) = p. Let U : 5,v,ug, v, s be the 3-tour
of Z that contains knee ug. We modify Z by trading u and v, between T and U. More precisely, let T"
be the 3-tour s,v1, Vo, V2, s and let U’ be the 3-tour s,v,uq,u,s. See Figure 1. Then, let Z' be obtained
from Z by replacing T and U by 7" and U’. Clearly Z' covers the same set of nodes as Z.

It remains to compare their weights. Clearly, the weight of U’ is no greater than that of U. The
comparison of the weights of 7 and 7' amounts to comparing Pg; + Pgz and g1 + Qogz, because the
edges from the source are common to both 7" and T'. To compare pg; with Gggr, let 7 be the point on
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Figure 1: Reducing the weight of the 3-tour cover

the segment pg; such that pgp = Pr. Because go and g; are in a cone of angle smaller than /3, we have
ot < P and hence Gog; < Pqy. Similarly, we have Tz < Pgz. Therefore, the weight of T is strictly
smaller than that of T, a contradiction. a

Remark 1 In the above proof for the case k = 3, we did not need the fact that the distance between
two points of ' cannot be arbitrarily small. For the general case, where k is an arbitrary constant, we
do use this fact. e

Remark 2 We suspect that a stronger version of Lemma 2.1 holds: for any optimal k-tour cover
with respect to embedding %', each grid point (individually rather than merely on average) is incident
to O(1) lateral edges with positive length. While such a stronger version would simplify the dynamic
programming computation described in the next subsection, the proof would be probably more involved, -
if possible at all.

2.4 Dynamic programming

Our dynamic programming computation is rather standard. However, an entirely naive approach may
result in a m@™) running time rather than the desired 20(m)  We sketch below how this can be avoided.

Let Q be an arbitrary subset of T', the set of grid points. Given a k-tour cover Z of V, define the
Q-part of Z to be the set of subpaths of the k-tours of Z induced by QU {s}. The interface between the
Q-part of Z and the remaining part may be specified by the following parameters.

1. fpi, for each p € Q and integer i, 1 <7 < k—1: fp; is the number of k-tours of Z whose ith visited
node is mapped to p by ¥ and whose (i + 1)st visited node is mapped by ¢’ to a point in T’ \ Q.

2. gpi, for each p € Q and integer 7, 2 < i < ki g, is the number of k-tours of Z whose ith visited
node is mapped to p by 1’ and whose (i — 1)st visited node is mapped by ¢ to a point in I'\ Q.

We call the tuple of the above parameter values the Q-interface of Z. Note that if Z and Z' are two
k-tour covers of V that have identical Q-interfaces then their Q-parts are interchangeable: Z with its
Q-part replaced by the Q-part of Z' is a k-tour cover of V. Given a Q-interface I, call a set of paths
a partial solution conforming to I if it is a Q-part of some k-tour cover of V. A dynamic programming
approach naturally suggests itself: starting from a small subset Q to larger ones, compute the minimum
weight partial solution conforming to each of all possible Q-interfaces.

The number of parameters to be specified in a Q-interface is at most 2km = O(m). Moreover, due
to the characterization lemma in the previous subsection, the sum of all the parameter values is at most
O(m), if the Q-interface is that of an optimal k-tour cover. Therefore, for each @, the number of distinct
Q-interfaces that must be considered in the dynamic programming computation is 20(m); the number of
ways to distribute O(m) indistinguishable balls to O(m) bins.

Our dynamic programming computation proceeds as follows. List the grid points of I" in an arbitrary
fixed order as py, ..., pm. Let @; = {p1,...,pi} be the set of first i points of T.



1. For each @Q;-interface I that must be considered, compute the unique partial solution conforming
to I (if any). Set ¢ = 1.

2. Repeat the following until i = m. For each Q,+1-interface I that must be considered, compute the
partial solution conforming to I (if any) that has the minimum weight. This is done by going through
all the Q;-interfaces I’ with associated optimal partial solution for the interface and computing the
best way to extend the partial solution for I' to a partial solution for I. Increment ¢ by 1.

Once we have completed the computation, the optimal k-tour cover can be obtained as the partial solution
conforming to the I'-interface that have all parameter values set to 0.

We claim that the running time of the above computation is 22("). The running time of the first step
is clearly bounded by 2°(™) since the number of Q;-interfaces to be considered is at most 2°(™)_ In the
induction step, since the number of Q;-interfaces and the number of Q,;-interfaces to be considered are
both 2°(™) it suffices to show that, for each pair of a Q;-interface I’ and a Q,yi-interface I, the best
way to extend a partial solution for I’ to one for I can be computed in 2°(™) steps. But this can be done
by checking all the possible ways of placing O(m) edges between p;;; and the points of Q; (which are
fewer than m): at most 2°(™) possibilities.

3 General metric case: APX-completeness

In this section, we consider the k-tour cover problem in the general metric case. An instance of the k-tour
cover problem is given by a triple (V, s, w), where s is the source, V is the set of nodes to be covered,
and w : VU {s} x VU {s} — R is a symmetric weight function that satisfies the triangle inequality:
w(v,u) = wlu,v) < wlu,t) +w(t,v).

We first recall the following result due to Haimovich and Rinnooy Kan that the metric k-tour cover
problem is approximable within a factor of 2.5 — 1.5/k. This result, unlike others in this paper, works
even when k depends on n. For a tour T, we denote by w(7T) the weight of the tour, i.e., the sum of the
weights of the adjacent node pairs in the tour.

Theorem 3.1 A metric instance of the k-tour cover problem can be approzimated within a factor of
2.5 — 1.5/k in polynomial time.

Now we turn to the hardness of the metric k-tour cover probleh.
Theorem 3.2 Let k > 3 be fizred. Then, the k-tour cover problem is APX-complete.

The proof is the reduction from the following problem. For given graphs G and H, an H-matching of
G is a set of vertex-disjoint subgraphs of G each of which is isomorphic to H.

Maximum H-Matching-B: Let H be a fixed graph and B some positive constant. The
maximum H-matching-B problem is, given a graph G with maximum degree at most B, to
find a H-matching of G with the largest possible cardinality.

The following theorem is due to Kann [Kan94]:

Theorem 3.3 If H has a connected component containing at least three vertzces then there is a constant
B such that the mazimum H-matching-B problem is APX-hard.

Proof of Theorem 3.2.: Fix k > 3 and let H = Cy be a chain consisting of k vertices. Let B be a
constant in Theorem 3.3 so as to make the maximum H-matching-B problem APX-hard for this choice
of H. We reduce this problem to the k-tour cover problem.

Let an instance G = (V, E) of the maximum H-matching-B problem be given. From G, we construct
a complete weighted graph U(G) satisfying triangle inequality, such that an approximate solution to
the k-tour cover problem on U(G) gives an approximate solution to the H-matching problem on G. We
assume that G is connected; otherwise, we work on connected components of G separately. An immediate



consequence of this assumption and the bound B on the degree of G is that the cardinality of the optimal
solution to the H-matching problem is 2(n).

Let the vertices of V enumerated as V = {21,...,2,}. The node set U(V) of U(G) consists of the
source s and {v;,u; : 2 = 1,2,..,n}, where u; is a multiple vertex with multiplicity k¥ — 1. Let » be a
real number in the range 1 < r < 3/2 whose value will be specified later. The edge weight function w is
determined such that w(v;,v;) =7 if (2;,2;) € E, and w(s,w;) = 1/4 and w(u,,v;) = 3/4 fori =1,2,..,n.
The weights of the other edges are the shortest path weight generated from the weights defined above.
Indeed, w(s,v;) =1fori=1,2,.,n, and w(v;,v;) =2 if (2;,2;) € E.

We focus on the following three types of tours. A straight tour is a round trip tour from the source to
some v; that picks the (k — 1) copies of u; on its way. A mini-tour is a round trip tour to u; picking its
(k—1) copies. An h-chain tour, where 2 < i < k, is based on a chain z,, .., 2, of length h in G and visits
Utys---,Vy, in this order, without picking any u;. Given any k-tour cover of U(G), we can transform the
cover into a “canonical form” that contains only tours of the above three types without increasing the
weight: first remove redundant visits to each v; by short-cutting and then add mini-tours to cover u;’s
that have become unvisited due to the short-cutting. Thus, we may assume in the following that any
k-tour cover is in the canonical form in this sense.

We compare an h-chain tour, together with the associated h mini-tours, to the h straight tours that
cover the same set of vertices. The weight of the h-chain tour plus mini-tours is 2 + (h — 1)r + A/2 while
the weight of the straight tours is 2h. We choose r so that the former weight is smaller than the latter if
and only if A = k. It can be easily verified that 7 = (3k — 7)/(2k — 4) satisfies this requirement. Thus, for
this choice of r, any optimal k-tour in the canonical form contains only straight tours and k-chain tours
with accompanying mini-tours. 3

Suppose the cardinality of an optimal solution of the H-matching problem for G is I. Then, an optimal
k-tour cover of U(G) contains [ k-chain tours. Suppose we have an approximate solution to this optimal
k-tour cover with relative error of €’. Since ! > Q(n) as noted before, this k-tour cover must contain
I" > (1 — €)l k-chain tours if ¢ is taken sufficiently small depending on e. From these k-chain tours
we can trivially obtain a H-matching of cardinality I’. Thus, our construction gives the required PTAS
reduction. a

4 Open problems

As noted in the introduction, the approximability of the k-tour cover problem for a general k depending
on m is an interesting open question. Probably it is not very difficult to show that the metric version is
APX-complete. Constructing a PTAS for the Euclidean version seems to be a more challenging problem.
It does not seem likely that the Arora’s approach for TSP, that works for £ = Q(n), and our approach
for a constant k can be combined to produce a PTAS for a general k.
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