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Graph coloring is an assignment of positive integers to vertices of a graph so that adjacent
vertices receive different values. The minimum chromatic sum problem is to find a coloring
where the sum of the values assigned to the vertices is minimized.

We describe a number of applications of this measure, especially with respect to minimizing
average processing times, and survey known results. We present a number of improved results
on approximability and non-approximability. In particular, line graphs can be approximated
within a factor of 2 in parallel, bounded-degree graphs within (A + 2)/3, and bipartite graphs
within 9/8. On the other hand, we show that for general graphs are hard to approximate
within n!~¢, for any € > 0.



1 Introduction

Graph coloring is a problem that formalizes a large class of practical problems, particularly
those dealing with the scheduling of pairwise incompatible items. We are given a graph, in
the form of a base set and a collection of pairs from this base set (representing conflicts), and
we are to assign positive integers to the elements so that no conflicting pair gets assigned the
same value.

The standard measure of a coloring of a graph is the number of colors used, or the largest
positive integer assigned. This corresponds to the length of the schedule; if elements assigned
value ¢ are processed at step ¢, then the number of colors equals the maximum number of steps
needed to process any element. The focus of the current paper is to study another measure of
a coloring: the sum of the values assigned to the vertices, or alternatively, the average number
of steps until an element is processed.

This measure is known as the chromatic sum, and has, as its clean definition suggests,
applications in many fields of computing. It has apparently been rediscovered many times,
with disparate results. Here are some examples:

Distributed resource allocation [1]: A set of distributed processors compete over resources,
which is modeled by a conflict graph, where nodes represent processors and edges repre-
sent competition on a resource. A coloring of this graph yields a schedule of allocation
of a static set of resources. The sum of the coloring corresponds exactly to the average
response time of the jobs.

VLSI routing [11]: In a design problem, known as Over-The-Cell Routing, we are given a
set of two-terminal nets and a set of parallel, horizontal tracks of distance d = 1,2,3,...
from the baseline where the terminals lie. The nets are routed with a vertical connection
from each terminal to the assigned track along with a horizontal connection within the
track. No overlapping nets can be routed within the same track. The objective is to
minimize the total wiring length, which, in addition to the fixed and pre-determined
horizontal costs, equals twice the sum of the distances from the nets to the assigned
tracks.

. Register allocation Modern RISC design endow processors with ample registers, not all of
which may be immediately accessible. It is logical to assume that the access times of
the registers may vary. Furthermore, if we can determine the frequency with which
each variable is accessed, the vertices of the variable-conflict graph may be given weights
accordingly. We want to assign variables to registers so that variables with overlapping
lifespans do not share a register, with the objective of minimizing the total cost of access.
This corresponds to finding a “low-cost” coloring of a vertex weighted graph, where the
colors have different weights.

Bus rentals We are to schedule a collection of trips at predetermined time periods. The
buses we can rent have different costs, depending on the rental company and/or cost--
effectiveness of the model. A schedule the trips onto the available buses therefore corre-
sponds to a coloring minimizing the sum of the costs of the trips. Since the trips conflict
only in time, the conflict graph here can be seen to be an interval graph.

The case of interval graphs is known as the Fixed Interval Scheduling Problem with
machine-dependent processing costs [8]. We shall focus on the pure combinatorial version,
the chromatic sum problem, where the costs correspond to the sequence of positive integers,
and the elements/vertices are unweighted.



Problem definition Given a graph G = (V, E), a vertez coloring is a function ¥ : V —
N such that adjacent vertices are assigned distinct numbers (colors). The Minimum Color
problem is to find a vertex coloring which uses the minimum number of colors. In this paper
we consider a related problem known as Minimum Chromatic Sum (MCS) problem [9, 10].

Given a graph G = (V, E), find a vertex coloring ¥ : V — N for G such that
Y vev ¥(v) is minimized.

Previous results The chromatic sum problem has been introduced directly or indirectly by
various papers in the past. It has been shown to be NP-hard for general graphs [10] and line
graphs [1], and it is also easy to show for circular-arc graphs. The case is open for interval
graphs, but the cost-dependent version has been shown to be hard.

Polynomial time algorithms are known for trees [10], and these can be extended to k-
outerplanar graphs. It is also easily solvable on co-bipartite graphs, and more generally,
co-triangle-free graphs by matching, since each color class can contain at most two vertices.

Several results are also known about approximability. We say that a class of graphs can be
approximated within a factor of p if there is an algorithm which on any instance in the class
will output a coloring whose sum is at most p times the (optimal) chromatic sum.

Halldérsson and Radhakrishnan [7] gave a general theorem that showed that the approx-
imability of MCS was always at most that of the INDEPENDENT SET problem, within a constant
factor. That is, the natural algorithm known as MaxIS that finds (or approximates) a maximum
independent set, colors it with the first color, and then iterates, attains this bound. This shows
that MCS is approximable within: O(n/log?n) on general graphs [5], O(Aloglog A/log A)
on graphs of maximum degree A [12], O(n'?13) on 3-colorable graphs [3], and O(1) on all
perfect graphs and partial k-trees, among others.

Shachnai et al. [1) improved the constant of the MaxIS algorithm from 12 to 4. They also
introduced a still simpler algorithm, known as compact coloring, which they showed to achieve
a ratio of 6 on line graphs. They also gave an algorithm that approximates bipartite graph
within 7/6. Kubicka et al. [9] showed that compact coloring approximates sparse graphs within
a factor of (d + 2)/2, where d is the average degree. Nicoloso et al. [11] gave a 2-approximate
algorithm for interval graphs.

On the hardness side, it was shown in [7] that there was a constant € > 0, such that it
was N P-hard to approximate the chromatic sum of an arbitrary graph within a factor of n.
Previously, [9] had shown weaker hardness of an additive term.

Results presented here =We present the following results:

1. The performance ratio of compact coloring is:

(a) At most 2, on line graphs,
(b) Precisely (A + 2)/3, on bounded-degree graphs, and
(c) No better than (d+ 2)/2, on sparse graphs.

2. The performancei ratio of the MaxIS algorithm is:

(a) At least 3.39 times the ratio of the independent set algorithm ﬁsed, improving the
bound of [1] of 2. ‘ B



(b) At least 1.74 on interval graphs, and conjecture it to be exactly 2.
3. Bipartite graphs can be approximated within 9/8.

4. MCS is hard to approximate on general graphs within n1~¢, for any € > 0.

Some of these results will appear in [2].

This is a partial step in a project to classify the solvability and approximability of the
chromatic sum problem on important classes of graphs, and analyze the performance of these
simple, natural, and efficient algorithms.

2 Compact Coloring

A coloring ¥ : V — {1...k} is compact if C; = {v € V | ¥(v) = i} comprises a maximal
independent set in G'\ U<, Cj, for every 1 < i < k. Alternatively, a coloring ¥ is compact if
and only if every vertex v with ¥(v) = ¢ has a neighbor u with ¥(u) = jforall1 <j <i-1.

This suggests a greedy algorithm, often referred to as firsi-fit: Process the vertices in an
arbitrary order and assign a vertex to the smallest color with which none of its preceding
neighbors have been colored. This method has the advantage of being on-line, processing
resource requests as they arrive.

The following general upper bound on the chromatic sum has been observed several times
in the past. Let m denote the number of edges in the graph.

Lemma 2.1 ([4, 9]) The sum of any compact coloring is at most m + n.

This bound is tight for disjoint collection of cliques. It can be attained by a parallel
algorithm [6].

Bounded-degree graphs

Theorem 2.2 Any compact coloring of a graph G = (V, E) provides a %-approzimation to
MCS(G), and that is tight.

Proof: All edges have at least one endpoint outside the first color class of the optimal
solution. Thus, when maximum degree is bounded by A, there are at least [m/A] vertices
outside the first color class. That is, we have: MCS(G) > n+ m/A.

Thus, by Lemma 2.1, the performance ratio of a compact coloring is at most

m+n d/2+1
n+m/A " 14d/(2A)

This is maximized at d = A, for a ratio of (A + 2)/3.

This ratio is tight for the graph B, , formed by a complete bipartite graph from which a
single bipartite matching has been removed. Namely, the graph contains vertex set {vy,...v,,
%1,...up} and the edge set {(v;,u;) |1 < i< j< p,i+# j}. One compact coloring contains p
classes with 2 vertices each, for a cost of 2(") = p(p+ 1) versus an optimal coloring of cost 3p,
for a ratio of (p+1)/3 = (A +2)/3. a



Sparse graphs It follows from Lemma 2.1 that the performance rati6 of compact coloring
on sparse graphs is at most (d + 2)/2, where d is the average degree of the graph. We show
that this is in fact tight, within a lower order term.

Theorem 2.3 The performance ratio of compact coloring is no better (d + 2)/2 — O(1/d).

Proof: Consider the following bipartite graph, with vertices u; ;,i=1,...,p,7=1,...,d+1
and vg,k = 1,...d, and edges (uij,vx) if £ < j or (¢ = 1 and k # j). The number of edges
equals p(“}") + (2) = (n — 1)d/2. Hence, the average degree equals d(1 — 1/n).

One compact coloring has d + 1 classes, with the :-th class containing %, ,j = 1,...,p, as

well as v; when ¢ < d. All vertices are adjacent to exactly one vertex in each of the previous
classes, hence the cost of the coloring equals m + =.

The optimal solution is of cost n + d = n + d(1 + 1/n) and the performance ratio is

m+n d+2
n+d 2+ 2d/n+ 2d/n?

which is asymptotically (d + 2)/2. O

Line Graphs We show below that for the subclass of line graphs, compact coloring is a
2-approximation to the chromatic sum.

Given a graph G = (V, E), the line graph of G, denoted by L(G) is the intersection graph
of E: The vertices in L(G) are the edges of G. Two vertices in L(G) are adjacent whenever
the corresponding edges in G are. We say that G is a line graph, if there exists some graph
G', such that G = L(G").

We use the property of line graphs that its edge set can be partitioned into cliques, such
that each vertex belongs to at most two cliques.

Theorem 2.4 Any compact coloring of a line graph G is a 2-approzimation to MCS(G).

We prove a stronger ratio of 2 — 2/(d + 4), which follows from the combination of Lemma
2.1 and the following lemma.

Lemma 2.5 For a line graph G, MCS(G) > (m + 2n)/2.

Proof: Let Qq,Q3,...Q; be the clique partition of G, with ¢; denoting the size of each clique.
Extend the partitions so that each vertex appears exactly twice, by adding singleton cliques
for those vertices that appeared only once. Let @ denote the set of all 2n pairs (¢, v) where v
is contained in clique Q;.

We define a clique labeling to be an assignment of positive integers to the pairs of Q such
that, for each @; and each distinct u,w in Q;, (i,v) and (%, w) have different labels. The cost
of a clique labeling is the sum of the labels. Let CL(G) denote the optimal clique labeling
of line graph G. The minimum cost clique labeling has the labels involving a given clique Q;
arranged to be exactly the first ¢; positive integers. Hence,

ce) =y (q‘ ; 1) =3 (‘;) ta=Y IBQ)I+ V@) =m+2n. (1

i



Intuitively, we have a labeling of the vertices, where each vertex may receive two labels,
one for each of its cliques. An ordinary vertex coloring can easily be extended to a clique
labeling by doubling each label. Thus, the optimal chromatic sum is at least half the cost of
an optimal clique labeling, i.e. CL(G) < 2- MCS(G). The lemma now follows from (1). [

This has an application to the corresponding edge coloring problem.

Corollary 2.6 Any compact edge coloring of a graph G is a 2-approrimation to the minimum
edge coloring sum of G.

3 The MaxIS algorithm

The following theorem [1, 7] illustrates the versatility of the MaxiS algorithm for the MCS
problem.

Theorem 3.1 When using a p-approzimate independent set algorithm, the MaxIS algorithm
is a 4p-approzimation to the MCS.

We have shown the following corresponding lower bound, improving on the lower bound
of 2 of [1]. It is omitted for lack of space.

Theorem 3.2 The performance ratio of MaxIS on general graphs is at least 3.3912.

Interval graphs The special case of interval graphs is an important one, given the multitude
of applications of chromatic sums for that class of graphs. The independent set problem is
polynomial solvable for this class, and thus the MaxIS algorithm is a natural candidate. We
are only able to give a partial answer to the tantalizing question of the performance guarantee
of that algorithm.

Theorem 3.3 The performance ratio of MaxIS on interval graphs is at least 30/17 ~ 1.764.

Proof: Counsider the following bag of intervals: (1,4), (5,6),(7,11),(0,2),(3,8),(9,10),(3,8),
(9,10). An optimal coloring has the first three intervals in one color, the next three in the
second, and the remaining two in the last color, for a total cost of 15. MaxIS will produce
the coloring [(0,2),(5,6),(9,10)],[(1,4),(9,10)},((3,8)],[(3,8)],[(7,12)] for a total cost of 21.
Hence, a ratio of 7/5.

Now makes t copies of all these intervals. The optimal and heuristic solutions will simply
have all color classes repeated t times. E.g. the latter will have 5t classes with vertices, 2¢ classes
with two vertices, and t classes with three vertices. The cost of the optimal solution is now
(Y +2(*F) = 17/2¢2+7/2¢, while the cost of the heuristic solution is (*1)+(*1)+(*3}) =
15t2 + 4t. The ratio is then 30/17 — O(1/t) > 1.764.



4 Hybrid approaches

Approximating the Chromatic Sum for Bipartite Graphs In the following we describe
a modified algorithm that achieves a ratio of % for the MCS of bipartite graphs.

The algorithm colors the graph in two ways, and then chooses the coloring with a smaller
sum. One coloring is any two-coloring. The other coloring colors a maximum independent
set with the first color, and then two-colors the remaining vertices. Note that a maximum
independent set of a bipartite graph can be found in polynomial time by computing a maximum
matching.

Theorem 4.1 The above algorithm achieves a ratio of % to the MCS for any bipartite graph.

Proof: Let a be the size of the maximum independent set of the graph. The cost of our
former coloring is at most 3n/2 and the the latter coloring is at most a + (n — @) - 5/2 =
5n/2 — 3a/2. The cost of the optimal coloring is at least a + 2(n — a) = 2n — a. Hence, the
ratio is at most

min{ }

which is maximized when a —n/2 = n/2 — a/2 or @ = 2n/3, in which case the ratio is 9/8. O

3n/2 5n/2 - 3af2
2n-a’ 2n-a

a—nf2 nf2-af2
2n—a’ 2n-—-a

} = 1+ min{

5 Hardness of Approximation

Theorem 5.1 If there exists an f(n)-approzimate algorithm for MCS, then there exists an
O(f(n))-approzimate algorithm for MINIMUM COLOR.

Proof: Let G be a k-chromatic graph. Then CS(G) < kn, and the Sum Coloring algorithm
gives a coloring with a sum of at most knf(n). At least half of the vertices are colored with
the first 2k f(n) colors. Use those 2k f(n) color classes, and recursively color the remaining at
most n/2 vertices.

The total number of colors used is at most
o0
2k f(n/2).
=0
We know from previous results [7] that f(n) = Q(n%2%). Thus, the convex sum is at most
[ <]
1
arw-vel < -
2k§ a-oay f(n) < 15k f(n)

Thus, we can color every k-colorable graph with at most 15k f(n) colors, for a performance

ratio of O(f(n)). O
Feige and Kilian have recently shown that MINIMUM COLOR (and the chromatic number

determination problem) is hard to approximated within n1~¢ factor. We obtain strong hardness

bounds for MCS as a result.

Corollary 5.2 MCS cannot be approzimated within n'~¢, for any ¢ > 0, unless NP C ZPP.

The only drawback of this reduction is that it applies only to the (more interesting) con-
structive search problem; not the problem of approximating the minimum sum.
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