7 N T Y X A -7
(1996. 10. 17)

T AT O BB USSR ANRIE % O (mn) BRI TR 7L T X4

AEF A, KA BF
FEKSE TEseh BB TEHE
T 606-01 HEHT AKX & HAHR

BE G=(V,BE,cq) *LIIFFBADEREEA R FOEBINT T 7 T5, GDEANBICEA
ERMLCY 77 OB EEE RIS E SN/ HEHELICHEINSC2MEREX 2, COLE
TZICMR AEADBERIRNMNITELDOET S, 20 G OLBEEEY HICBEINX W5 012
MEREEADR/NLERBY Ag(k) LEEL. G* (k) TREIDEREE S kIZSE72 (120)

"I TERRTET R, L. 5FAONSTT GIIT A EAc(k), k € [0,+o0] ZRET
% O(nm +n?logn) MO TN T) XLAPREEINZ, TIT, n=|V|,m=|E|. FHET
. BBAGERET 270 IIBVONFT =5 IZEDTIE, TRTD k€ [0, +o00] AT 55
BfE G*(k) & O(nlogn) BOMEE LTKRATE, 20X) LHKES % O(nm + nllogn)
BB CRIETE A L ®RT,

Augmenting Edge-Connectivity over the Entire Range
in O(nm) Time

Hiroshi NAGAMOCHI and Toshihide IBARAKI

Department of Applied Mathematics and Physics
Graduate School of Engineering
Kyoto University
Kyoto, Japan 606-01

Abstract For a given undirected graph G = (V, E, ¢g) with edges weighted by nonnegative
reals cg : E — R*, let Ag(k) stand for the minimum amount of weights to be added to make
G k-edge-connected; and G*(k) be the resulting graph obtained from G. Recently, it is shown
that function Ag over the entire range k € [0, +00] can be computed in O(nm + n?logn)
time, where n and m are the numbers of vertices and edges, respectively. This paper shows
that all G*(k) in the entire range can be obtained from O(nlogn) weighted cycles, and such
cycles can be computed in O(nm + n? log n) time.

1 Introduction

Let G = (V, E,cg) be an edge-weighted undirected
graph with a set V of vertices, a set E of edges, and a
weight function cg : E — R™Y, where R* denotes sets
of nonnegative reals. We denote n = |V| and m =
|E|. An edge with end vertices u and v is denoted
by (u,v). A singleton set {z} may be simply written
as 7, and “ C ” implies proper inclusion while “ C”
implies “ C ” or “ = ”. For two disjoint subsets,
X,Y C V, we denote by Eg(X,Y) the set of edges,
one of whose end vertices is in X and the other is
in Y, and define dg(X,Y) = ¥ cp;(x,v)ccle). A
cut is defined as a subset X of V with 0 # X # V,
and the size of cut X is defined by dg(X,V — X),
which may also be written as dg(X). For a subset
X C V, define its inner-connectivity by Ag(X) =
min{d(X") | ® # X' C X}. In particular, Aa(V)
(i.e., the size of a minimum cut in G) is called the
edge-connectivity of G. G is called k-edge-connected
if A\g(V) > k. For example, the graph G in Fig. 1
has Ag(V) = 7.

Figure 1: An edge-weighted graph G.

Given a graph G = (V,E,cg) and a k €RT,
the edge-connectivity augmentation problem asks to
make G k-edge-connected by adding weights to the
edges in G, where the weight of any edge in E can

be increased and new edges not in E may be intro-

duced. Let Ag(k) denote the smallest total amount
of weights added to make G k-edge-connected. We
call Ag(k) for k > O the edge connectivity augmen-
tation function of G, which is clearly nondecreasing
and convex. Since Ag(k) can be written as the objec-
tive function of a linear programming problem with

parameter k > 0, it is piecewise linear. For example,:

Fig. 2 illustrates function Ag(k) of the graph G in
Fig. 1.

Given a graph G = (V,E,cg) with an integer-
valued weight function ¢cg : E —Z% and an in-
teger k €Z1, where Zt denotes the set of non-
negative integers, the integer version of the edge-
connectivity augmentation problem asks to make G
k-edge-connected by adding integer weights to the
edges in G. Let Ag(k) denote the smallest total

amount of the integer weights added to make G k-
edge-connected.

Aglk)

e : break points

(16,17)

(14,12)

0,0) k

Figure 2: Edge connectivity augmentation function

A (k) of G in Fig. 1.

Watanabe and Nakamura [8] first proved that the
integer version of the edge-connectivity augmenta-
tion problem can be solved in polynomial time for
any given integer k. Different from the approach by
Watanabe and Nakamura, Cai and Sun [1] pointed
out that the augmentation problem for a given k
can be directly solved by applying the Lovasz edge-
splitting theorem. Based on this, Frank [2] gave an
O(n®) time augmentation algorithm. Afterwards,
Gabow [3] improved it to O(mn?log(n®/m)). Re-
cently, Nagamochi and Ibaraki [5] gave an O(n(m +
nlogn)logn) time algorithm. Note that all these al-
gorithms can compute the set of edges to be added
to make G k-edge-connected. If only the value Ag(k)
is required, the problem becomes slightly easier be-
cause [5] also says that Ag(x) for a given k can be
computed in O(n(m + nlog ng) time.

Clearly, Ag(k) > Ag(k) holds for all k. However,
Ac(k) is almost the same as Ag(k) since Ag(k) can
be obtained just by rounding up Ag(k).

Lemma 1 [1, 2] Let G = (V, E, cg) be a graph with
an integer-valued weight function cg : E —»Z% and
k €Z+ be an integer with k > max{2, Ag(V)}. Then
2Ag(k) is an integer, and Ag(k) = [Ag(k)] holds.
[m]

Recently, [6] reported the following result of Ag(k)
(hence of Ag(k)).

Theorem 1 Function Ag for the entire range k >

.0 can be deterministically computed in O(n(m +

nlogn)) time.) m]

To show the above results, they modified the
O(n(m + nlogn)) time algorithm in [5} that com-
putes Ag(k) for a given k, so that the single run of
the algorithm simulates its execution for the entire
range of k > 0 (they do not rely on any parametric
search technique of mathematical programming).

This paper presents how to construct graph G*(k)
which has edge-connectivity k and is obtained from
G by adding new Ag(k) weights. We shows that all
G*(k) in the entire range k € [Ag(V),+00] can be
compactly represented by G and a set of O(nlogn)
cycles Il = (C},C3,...,C;), (p = O(nlogn)) on V,
each C} of which has arange [A;_;,\;]i=1,2,...,p
such that AG(V) = Ao < Al < - <)‘p'I < Ap =
+o0o0: G*(k) for a k > Ag(V) is obtained from G by
increasing the weights of edges in C} by (A;—A;—1)/2
fori=1,2,...,1 and weight of edges in C}, ,, uni-
formly by (k — A;,)/2, where iy is the largest index
i such that A; < k. This hierarchical structure of
optimal solutions over all k is known so far only for
the integer version of the edge-connectivity augmen-
tation problem [7].

Theorem 2 Given an edge-weighted graph G =
(V, E, cg), there is a set

o= {(C},[M-1,M]) |i=1,2,...,p}

of p < 8nlogn weighted cycles that represent all
optimal graphs G*(k) in the entire range k €
[Ac(V),+00]. Such II can be computed in O(mn +
n?logn) time. o

Our new algorithm runs faster by factor of
O(logn) than the previously fastest algorithm [5] for
the augmentation problem for a single fixed k.

2 Preliminaries

For an edge-weighted graph G = (V, E,cg), its ver-
tex set V and edge set E may also be denoted by
V|[G] and E[G], respectively, and the weight co(e) of
edge e = (u,v) by cg(u,v). Without loss of gener-
ality, we assume that G has no multiple edges. For
a subset X C V, G[X] denotes the subgraph of G
induced by X. For a vertex v € V, a vertex u # v
adjacent to v by an edge is called a neighbor of v in
G, and Tg(v) = {w € V| (v,w) € E} denote the set
of all neighbors of v in G.

We say that a cut X separates two disjoint subsets
Yand YV of VY C Xand YV C V- X (or
Y CV—-Xand Y C X) hold. In particular, a
cut X separates z and yifz € X andy € V- X
(ory € X and z € V — X). We say that a cut X

divides a subset Z CVif X - Z #0# Z-X.

The local edge-connectivity Ag(z,y) for two vertices
z and y is defined to be the minimum size of a cut
that separates z and y (i.e., divides {z,y}).

Let us review an optimality condition of the edge-
connectivity augmentation problem.

Let s € V be a designated vertezin G. A cut X is
called s-properif @ # X C V —s. Ag(V —s) (i.e., the
size of a2 minimum s-proper cut) is called the s-based-
connectivity of G. Obviously Ag(V) = min{Ag(V —
s),dg(s)}. Afamily X = {X;,X;,...,Xp} (possibly
p = 0) of disjoint subsets X; C V — s is called a

collectionin V —s. If 3°F_, dg(s, X;) = dg(s) holds,
then X is called covering (i.e., every neighbor of s is
contained in some subset X; € X'). An s-proper cut
X is called (k, s)-criticalin G if it satisfies dg(s, X) >
0, dg(X) = k and Ag(X) > k. A collection X in
V — s is called (k, s)-critical in G either if X =0 or
if all X; € X are (k, s)-critical.

Lemma 2 [1] Let G = (V,E,cg) be an undirected
graph, and k be a nonnegative real. If a new verter
s and a set E'(s) of weighted edges incident to s can
be added to G so that the resulting graph G' = (V U
{s}, EUE'(s),ce) satisfies the following conditions
(i)-(ii), then Ag(k) = dg'(s)/2.

() Aar(V) 2 k.

(ii) G’ has a (k, s)-critical covering collection X. 0O

3 Computing Ag(k) for All k&

This section briefly reviews how to compute Ag(k)
over the entire range k € [0, +o0]. Since it is known
in [6] that all break points of Ag occur in the range
[0,2max,cv dg(v)], we only consider reals k such
that 0 < k < K, where

K=1+ Z?Ea‘;dg(v). (1)

We treat the weight cg(e) of each edge e € Eq(s)
as a set R(e) of ranges, defined in the following, so
that Ag(k) for an arbitrary k < K can be effectively
retrieved.

3.1 Ranged graph

For two reals a,b € Rt with a < b, the interval [a, b}
is called a range, and its size n([a,b]) is defined as
b—a. Let R = {[a1,b1],[a2,b2],...,[ae, b:]} be a set
of ranges. The size of R, denoted by 7(R), is defined
as the sum of all range sizes in R:

a(R) = (b —a1) + ...+ (b — ay).

For a given k € RT, we define the following opera-

tions on a set R of ranges. For a § ER™, we say that

range [a — 6,5 — 6] is obtained by lowering [a, b] by &.

The upper k-truncation of a range [a, b] is defined by
fa,b]|* = { [a,min{b,k}] ifa<k

’ 0 otherwise,

where (D) is defined to be 0. Based on this, the
upper k-truncation of a set R of ranges is defined by

RI* = {[a;,b)|* # 0| [ai,b;] € R}.

Similarly, the lower k-truncation of a range [a,b] is
defined by
[a,b]lkz{ ifb>k

otherwise,

[max{a, k}, b]
0

and the lower k-truncation of a set R of ranges is

defined by

Rl = {[ai, bi]le # 0] [a;,b:] € R}

We may write (R|*)w (k' < k) as R|E,.

From a graph G = (V, E,cg), construct another
graph G' = (V' =V U {s},E' = EU E'(s),cq, Rg')
with a designated vertex s such that (a) G’ has edges
between s and all vertices v € V (ie, E'(s) =
{(s,v) | v € V}), (b) cg is a weight function on
E, and (¢) Rg/(v) is a set of ranges associated with
each vertex v € V. We call such a graph as a ranged
graph. In a ranged graph, we define the weight of
edge e = (s,v) € E'(s) by n(Rg'(v)). Based on this
definition, we can extend cg and Rg into a weight
function cgr : B’ = R*, such that cgi(e) = cgle) if
e € E and cgi(e) = n(Rg(v)) if e = (s,v) € E'(s).
Then de/ (X,Y) is similarly defined by using cgr.

For notational convenience, U,exRg/(z) for a
subset X C V may be written as Rg/(X). The
ranged graph (V',E’' cg,Rg:|*) obtained from a
ranged graph G’ by upper k-truncating Rg(v) for
all v € V is denoted by G'|*.

Now we say that two range sets R and R’ are equiv-
alent if 7(R|*) = w(R'|¥) holds for all k €R*. A
set R of ranges is called gapless if 7(R|*) < =(R|*')
holds for any min{a | [a,b] € R} < k < k' < max{b |
la,b] € R}.

Given a gapless set of ranges R = {[a1, b1], [az, b2],

, [at, 8]}, in which b < by < --- < b, is as-
sumed without loss of generality, we modify R into
another set of ranges R' = {[a; — 61,b; — &y],
laz — 62,b3 — 63),..., [as — &8;,b; — 8:]} by lowering
each range [a;,b;] € R by 6; > 0, such that R’ satis-
fies 61 =0 (i.e., bt = b*), and b,’ - 61‘ = Qi1 — 0441
fori=1,...,t -1 (i.e.,, R’ is equivalent to a single
range [b* — w(R), b*]). We call such R' an alignment
of R. By definition, an alignment R’ is equivalent to
a single range [b* — w(R), b*].

3.2 Totally optimal ranged graph

We now extend the optimality condltlons in Lemma 2
to a ranged graph.

Definition 1 For a given graph G = (V,E,cg), a
ranged graph G' = (V U {s},E U E'(s),cq,Re),
where s is a designated vertez and E'(s) = {(s,v) |
v € V}, is called totally optimal if G’ satisfies
the following conditions (i) and (i) for all k with
0<k<K.

(i) Agr!k(V) > k.
(i) G'|* has a (k, s)-critical covering collection X'*.
m]

If such a totally optimal ranged graph G' =
(Vu{s},E U FE'(s),cq,Rg') is obtained, then, by

Lemma 2, we can easily compute Ag(k) for any
k eR* by

, , k

AG(IC) - dG g(S) — W(RGZ(V)l) (2)

We describe in the next section how to compute a
totally optimal ranged graph G’ from a given graph
G. To prove total optimality of a ranged graph G',
we need to show the existence of a (k, s)-critical cov-
ering collection X* of G'|* for all k with 0 < k < K.
Although (k, s)-critical covering collections X* may
be different for different k, we are able to show that
a set of (k, s)-critical covering collections A'* for all k
can be compactly represented by using the following
notion. A pair (X, [a,b]) of a cut X and a range [a,]
is called a ranged cut, and a set

X = (X [abi) |i=1,2,...,7)
of ranged cuts is called a ranged collection if
X = (X | (X, a0, b)) € X, a<k<b}

is a collection (i.e., X;’s in X|* are disjoint) for all
real k with 0 < k < K. A ranged collection X
is called totally ' critical covermg (with respect to a
ranged graph G') if X|¥ is a (k, s)-critical covering
collection in G'|*.

3.3 Algorithm SIMUL-AUGMENT

Given a graph G = (V,E,cg), the following al-
gorithm SIMUL-AUGMENT [6] constructs a to-
tally optimal ranged graph G' = (V U {s},E U
E'(s),cq, Rg') and a totally critical covering ranged
collection X of G'.

Algorithm SIMUL-AUGMENT

Input: A weighted graph G = (V, E, cg).

Output: A totally optimal ranged graph G' =
(Vu{s},EUE'(s),cg, Rg') for G, a totally criti-
cal covering ranged collection X' of G’, and a set of
ranges R* which is equivalent to Rg (V).

begin
1 V':=Vu{s} E'(s)={(s,v) |veV}
2 K:=1+4+2maxyevde(v); X :=10;
3 for each vertex u € V do
4 Ro(u) = {ldo(u), K}
5 X == X U {({u}, [de(u), K])}
end; { for }
6 LetG = (V’,E' =FU E’(s),cc, RGr)
be the obtained ranged graph;
7 H:=G';
8 while |V[H]| >4deo
9 Find vertices v,w € V[H] — s such that

A (v,w) 2 k, 0< k L K;
10 Contract v and w into a vertex z*;
11 Ry (z*) := Ry(v) U Rg(w);
{ Assume Rg(z*) = {[ai1, K], [as, K],
.,|[ar, K]}, wherea; < ---<a, }

52

12 Let H be the resulting ranged graph;
13 k* :=dp(z*, V[H] - {s,z*});
14 if &* < a; then

15 Let X* CV —s be the set of vertices
contracted into z* so far;
16 Find k' such that 7(Ry (z*)|F) = k' — k*;
17 Ry (z*) := (Ru(z*) —{[ar, K]})|w
U{[+*, K1};
18 Ay = Rer(u)|¥ for each u € X*;
{ k* + 7(Uyex-Ay) = k' holds }
19 Align A = U,ex~ 4, into [k*, k'], and

let Uyex- Al be the resulting set of
ranges, where A/ is obtained from
A, in the alignment;

20 Re/(u) i= A!, U R (u)|¢ for each u € X*;
21 X:={(X, e, b])eX]XcV—X*}
U{(X*, [da(X™), K]}
U{(X, [max{a, '}, 8]) |

(X [a,b]) EX, X C X, kK <b)
22 end; { if }
23 Denote the ranged graphs resulting from
H and G', respectively, as H and G’ again
24 end; { while }
25 Output G', X and R* = Rg(V[H]| —s)
26 end. { SIMUL-AUGMENT }

4 All Optimal Solutions over
the Entire Range

From the discussion given so far, an optimally aug-
mented graph G*(k) with edge-connectivity k can
be constructed once a totally optimal ranged graph
G' = (VU{s},EUE’(s),cg, Rg') is given. Such G’
can for example be obtained by Algorithm SIMUL-
AUGMENT with lines 18-20 (line 23 is necessary
only to compute a totally critical covering ranged
collection X'). For the above example example, we
have Rg (u1) = {[10,27]}, Re:(u2) = {[8,27]},
Re(u3) = {[10,27]}, Re(u4) = {[7,10],[14,27]},
Re(us) = {[7,10], [16,27]}, Rg'(us) = {[10,27}}.

We first show the next. For a range 7 = [a,b], a
(resp., b) is called the bottom (resp., top) of r, de-
noted by bot(r) (resp., top(r)).

Lemma 3 Aligning A = Uyex+A, in line 16 can be
carried out in O(|R|) time, where R is the set R (V)
of ranges obtained after line 17.

Proof: During execution of SIMUL-AUGMENT,
we maintain a list List[Rg/ (V)] of the ranges in
Rg/(V), where the ranges are arranged in the non-
decreasing order of their tops, and each element
r in the list has two data, its bottom bot(r) and
the vertex u, with r € Rg/(ur). To compute
A = UyevA, := UgevRe (u)|¥, we first remove
ranges [a,,b,] € Rg(u) with a < k < b (if any)
fro all w € X* from List[Rg (V)] by traversing the

list, and add ranges [a,, k'], [k’,b] for those u € X*
to the resulting list. This can be carried out in
O(|Re (V)| + | X*|log|X*|) time. We then divide
the list List{Re: (V)] into two lists List[Ra:(X*)|¥]
and List[Rg (X*)|r U Re'(V — X*)], where each
of these lists is sorted with respect to the tops of
ranges. This can be done in O(|Rg(V')|) time. By
traversing the list List{Rg:(X*)|¥'], we can obtain
two sorted lists List[Rg: (u)|*'] and List{Re (u)[x] in
O(|[Rg(V)]) time. Based on the list List[Rar (u)|*'],
we can align A = Uyex+Ay = Re(u)]* and obtain
a sorted list List[A'] of the resulting set A" of ranges.
in O(|A]) time. The list for the resulting entire set
R := A'URg (X*)|i UList{Rg (V — X*) can be up-
dated in O(|R|) time by merging all these sorted lists
into a single list. Therefore, aligning A = Uy,ex+A,
in line 16 can be done in O(|R|) time. 8]

If we take this approach, the entire running time
of Algorithm SIMUL-AUGMENT (with lines 18-20)
becomes O(mn + n?logn + nrme;) = O(mn + n?)
time, where T.,,,, denote the maximum number
of ranges in R/ (V) attained during execution of
SIMUL-AUGMENT. Note that 7pma, < n? obviously
holds since at most | X*| new ranges in Rg/(V) are
created in each iteration of the while-loop.

However, we can modify the alignment opera-
tion in lines 18-20 so that 7,4, = O(nlogn) holds,
which improves the above running time of SIMUL-
AUGMENT as stated in the next theorem.

Theorem 3 There is a totally optimal ranged graph

G = (Vu {s},E U E'(s),cq,Rg’) such that
|RG,(V)| < (3n—1)+(2n—3)log,(n — 1), and such
G’ can be obtained in O(mn + n?logn) time.

Proof: See Appendix for a proof sketch. m}

Our next step is to consider how to compute
an optimally augmented graphs G*(k) for the en-
tire range of k. Given a totally optimal ranged
graph G' = (VU {s}, EUE'(s),cg, Re') and a fixed
k > XAg(V), our discussion so far tells that graph
Gj = (VU {s},EU E'(s),cg,) in Lemma 2 is com-
puted by setting G, = G’|¥. Then by Lovész's edge-
splitting theorem, graph G*(k) can be obtained from
G} by splitting off the edges incident to s. Since
an O(n(m + nlogn)logn) time edge-splitting algo-
rithm is known [5], an optimal solution for each fixed
k can be obtained O(nm + n?log®n) + O(n(m +
nlogn)logn) = O(mnlogn + n?log? n) time. How-
ever, this requires to invoke the edge-splitting algo-
rithm for all k, and provides no structural informa-
tion of optimal solutions in the entire range of k.

In this section, we show that optimal solutions for
all k can be represented by a set of p = O(nlogn)
cycles C7,C3,...,C; on V, each C} of which has a
range [Ai—1,A:] @ = 1,2,...,p such that Ag(V) =
Xo < A < -0 < Aoy < Ay = +o0; optimally
augmented G*(k) for each k is obtained from G
by increasing the weight of the edges in C} by

(A = Aic1)/2fori=1,2,...,1 and weight of edges
in C; ,, by (k- X;,)/2, where iy is the largest index
i such that A\; < k.

Let Rg/(V) be a range set of an totally optimal
ranged graph G’ = (V U {s},E U E'(s),cq, Re'),
where we assume without loss of generality that
RG:(V) contains no range [a, b] with a = b. Let {}; |
i =0,1,...,p} = {top(r), bot(r) | r € Re:(V)},
where A\; < Ai41,7=10,1,...,p— 1. For example, we
have Ao = 7, Al = 8, Az = 10, A3 = 14, A4 =16 and
As = 27 in our running example. By Theorem 3, we
can assume

p < 6n+44nlog,n

Without loss of generality, we also assume that each
Rg (v) contains no range [a,b] with a < A; < b for
any J;; if necessary, split each [a,b] with a < X; < b
into [a, /\1] and [);, b], which may increase the number
of ranges in Rg'(V'), but does not change the above
p. Then, we consider a sequence of p+1 graphs G'|M |
z'=01 .,p. For each : =0,1,. —-1,1et G} =
(V,E, cG-) denote a graph obta,med from G'|* by
spllttmg off the edges incident to s and removing the
designated vertex s. We can assume Ag: (V) > k by
Lovasz’s edge-splitting theorem. In fact, Ag:(V) =
); holds for all 4, since G'|* has a ()i, s)-critical
covering collection.

Then G}, i = 0,1,...,p satisfy G} = G*(k) for
k = X;. We now show that such G} can be easily
obtained from G}_, without really applying splitting
algorithms, and that all G} can be characterized by
cycles C} as noted above. In other words, a totally
optimal ranged graph G’ contains all the information
necessary to construct G*(k) for the entire range of
k.

We first show an important property of G;. Let
Wi, Vs, ..., V,, be different subsets of V in G} such
that each V}, j = 1,2,..., h satisfies

Agr(u,v) > A forallu#v €V, or WVil=1,

and is maximal (with respect to |V;|) subject to this
property. By Ag:(V) = A;, we have h > 2. Each V;
is called a A; component of G}, and a X -component
V; is called a A;-leaf if dc;;(V) = A, (i.e, V] itself is
a minimum cut in G}). From definitions, we easily
see that the following properties hold:

(i) The set of A;-components is a partition of V.

(ii) For any two A;-components V; and V;, G¥ has
a minimum cut X, ; which separates V; and V;.
(ili) Every minimum cut X in G} contains a A;-leaf
V; € X, since any minimum cut X’ C X with
the minimal cardinality |X'| is a A;-leaf of G}.
Lemma 4 Let V; be a Aj-component in G}. Then
dg: (X) = dg»i (X) holds for any cut X C V;.

Proof: Let AE} denotes the set of edges e whose
weights have been increased by the edge splitting op-
eration to obtain G} from G'|*, i.e.,

AE; = {e€E]|cqg:(e) >cale)}

U{BEE:—EICG:(C) >0}

(note that cg(e) = cgpife), e € E). Then it is
sufficient to show that AE; contains no edge (u,v)
such that the both end points 4 and v belong to some
V;. Since there exists a critical covering collection
XM in G'|*, the end points w and v of any edge
e = (u,v) in AE} must belong to different critical
cuts X', X" € X, respectively, in order to make G

edge—connected That means that Ag; (u,v) = /\
holds for each e = (u,v) € AE}. Therefore, the
lemma follows. @]

We next introduce another sequence of graphs,
which are used to construct G} for all i. Let Gy,
i =0,1,...,p — 1 denote the graph obtained from
G} by putting ba.ck vertex s and edges (s, v) with

weights ﬂ(RG/(u)l 1) for all v € V; e, Giy1 =

(Vu{s}, E*UE’(s),cG o) with B'(s) = {(s,v) |v €
V} and
Xiv1 — A if e =(s,v) € E'(s) and
Re[3* (v) # 0
g, (6)=4¢ 0 if e =(s,v) € E'(s) and
Ro/fy*(v) =0
cg;(e) ifec E}.

In other words, éi+l is a graph obtained from
G'|*i+* by splitting those edges (s,u), u € V with
weight R (u)|™ at s, leaving the remaining weight
Rei(u) ;‘:‘“ in each edge (s,u).
claims that the graph G¥,, defined in the above
maintains the optimality of G/|*+1.

The next lemma

Lemma 5 For eachi=0,1,...
A;, then /\éi+1 V)2 Ait1-

Proof: Consider the set s, (s)(# @) of the neigh-
bors of s (vertices a{lja.cent to s by an edge wigh a
positive weight) in G,y;1. From definitions of G4,
and G}, for any cut X C V,

dg,,,(X) = de:(X)+1Xn I‘Gm(s)| (i1 — Ai)

holds. Then, if X N I‘éiﬂ(s) # 9, then déa-u(X) >
Ais1 holds by Ag:(V) > A;. Therefore, we assume
that G-i+1 has a cut Z such that

ZCV-Te,,,(s) and dg,,,(2) (= da;(2) < Aisn,

®3)
and derive a contradiction.

We first show that cut Z in (3) is not con-
tained in any M;-component V;. If Z C V; for
some);-component Vj, then dg:(Z) = dgip(2)
by Lemma 4, and hence dg (Z) = dg;(2) =
depi(Z) = dgpisa (Z) by Z ﬂFG (s) = 8. How-
ever, dg,» s (Z) = dg,, (2) < ’\1-+1 would contra-
dict that the totally optimal ranged graph G’ sat-
isfies)\G,‘;H,(V) > Aiy1- Hence, Z € V; for any
A;-component Vj.

12 Let H be the resulting ranged graph;
13 k* :=dp(z*, V[H] - {s,2*});
14 if k&* < a; then

15 Let X*CV —s be the set of vertices
contracted into z* so far;
16 Find &’ such that 7(Ry(z*)|*') = k' — k*;
17 Ry(z*) == (Ru(z*)—{[a1, K]})|e
u{k*, K1}
18 A, = Rg (u)|* for each u € X*;
{ k¥ + m(Uyex-Au) =k holds }
19 Align A = Uyex- A4, into [k*, k'], and

let Uyex-A. be the resulting set of
ranges, where A/, is obtained from
A, in the alignment;
20 Rg/(u) := A, U Rg/ (u)|p for each u € X*;
21 X:={(X,[a,b])€ X | XCV-X"*}
O{(X*, [do(X7), K))}
O{(X, fmax{a, ¥}, 1)) |
(X,[a,b]) € X, X C X*, K <b);
22 end; { if }
23 Denote the ranged graphs resulting from
H and G, respectively, as H and G’ again
24 end; { while }
25 Output G', X and R* = Ry(V[H| - s)
26 end. { SIMUL-AUGMENT }

4 All Optimal Solutions over
the Entire Range

From the discussion given so far, an optimally aug-
mented graph G*(k) with edge-connectivity k can
be constructed once a totally optimal ranged graph
G' =(VU{s},EUE'(s),cg, Rg') is given. Such G’
can for example be obtained by Algorithm SIMUL-
AUGMENT with lines 18-20 (line 23 is necessary
only to compute a totally critical covering ranged
collection X'). For the above example example, we
have RG/ (ul) = {[10,27}}, Rgl(’u,g) = {[8, 27]},
RGI(U;;) = {[10,27]}, RG!(u4) = {[7, 10],[14,27]},
R (us) = {[7,10],[16,27]}, Rg' (ug) = {[10, 27]}.

We first show the next. For a range r = [a,}], a
(resp., b) is called the bottom (resp., top) of r, de-
noted by bot(r) (resp., top(r)).

Lemma 3 Aligning A = Uyex+ A, in line 16 can be
carried out in O(|R|) time, where R is the set Rg/ (V)
of ranges obtained after line 17.

Proof: During execution of SIMUL-AUGMENT,
we maintain a list List[Rg (V)] of the ranges in
Rg:(V), where the ranges are arranged in the non-
decreasing order of their tops, and each element
r’in the list has two data, its bottom bot(r) and
the vertex u, with r € Rg(ur). To compute
A = UuevA, = UyevRe (u)|F, we first remove
ranges [a,,b,] € R (u) with @ < k < b (if any)
fro all w € X* from List[Re (V)] by traversing the

list, and add ranges [a,, k'], [k',b] for those u € X*
to the resulting list. This can be carried out in
O(|Ra (V)| + | X*|log|X™*|) time. We then divide
the list List[Rg: (V)] into two lists List{Rg (X*)|¥']
and List[Re (X*)|xw U Rgr(V — X*)], where each
of these lists is sorted with respect to the tops of
ranges. This can be done in O(|Rg'(V)|) time. By
traversing the list List{Rg/ (X*)[¥'], we can obtain
two sorted lists List[Rg (u)|’°'] and List[Re: (u)|r] in
O(|Re(V)]) time. Based on the list List[Rg: (u)|*'],
we can align A = Uyex-Ay = Re(u)]¥ and obtain
a sorted list List[A'] of the resulting set A’ of ranges.
in O(|A|) time. The list for the resulting entire set
R:= A'URg (X*)|i UList[Rg (V — X*) can be up-
dated in O(|R|) time by merging all these sorted lists
into a single list. Therefore, aligning A = Uy,ex+ Ay
in line 16 can be done in O(|R|) time. =]

If we take this approach, the entire running time
of Algorithm SIMUL-AUGMENT (with lines 18-20)
becomes O(mn + n?logn + nrpm.,) = O(mn + n?)
time, where 7,,,, denote the maximum number
of ranges in Rg/ (V) attained during execution of
SIMUL-AUGMENT. Note that 7me; < n? obviously
holds since at most | X*| new ranges in Rg/(V) are
created in each iteration of the while-loop.

However, we can modify the alignment opera-
tion in lines 18-20 so that 7mq; = O(nlogn) holds,
which improves the above running time of SIMUL-
AUGMENT as stated in the next theorem.

Theorem 3 There is a totally optimal ranged graph
G = (Vu{s},E U E'(s),cg,Re’) such that
|[Ra (V)| € (3n— 1) + (2n — 3) log,(n — 1), and such
G' can be obtained in O(mn + n?logn) time.

Proof: See Appendix for a proof sketch. 0

Our next step is to consider how to compute
an optimally augmented graphs G*(k) for the en-
tire range of k. Given a totally optimal ranged
graph G’ = (VU {s}, EUE'(s),cG, Rs') and a fixed
k > Ag(V), our discussion so far tells that graph

¥ =V U{s}, EUE'(s) cc) in Lemma 2 is com-
puted by setting G, = G’}*. Then by Lovisz's edge-
splitting theorem, graph G*(k) can be obtained from
G}, by splitting off the edges incident to s. Since
an O(n(m + nlogn)logn) time edge-splitting algo-
rithm is known [5], an optimal solution for each fixed
k can be obtained O(nm + n?log®n) + O(n(m +
nlogn)logn) = O(mnlogn + n?log® n) time. How-
ever, this requires to invoke the edge-splitting algo-
rithm for all k, and provides no structural informa-
tion of optimal solutions in the entire range of k.

In this section, we show that optimal solutions for
all k can be represented by a set of p = O(nlogn)
cycles CY,C;,...,C; on V, each C of which has a
range [A;—1,A;] 1 = 1,2,...,p such that Ag(V) =
Ao < A < -0 < Apog < Ap = +4o00; optimally
augmented G*(k) for each k is obtained from G
by increasing the weight of the edges in C} by

(A= Xim1)/2for i =1,2,...,% and weight of edges
in C; ,, by (k—X;,.)/2, where i, is the largest index
i sucﬁ that A; < k.

Let Rg/(V) be a range set of an totally optimal
ranged graph @' = (V U {s}, E U E'(s),cq,Re'),
where we assume without loss of generality that
Rg/ (V) contains no range [a,b] with a = b. Let {A; |
it = 0,1,...,p} = {top(r), bot(r) | € Ra(V)},
where A\; < Ai41,72=0,1,...,p— 1. For example, we
have Ao = 7, A; = 8, Ay = 10, A3 = 14, A\y = 16 and
As = 27 in our running example. By Theorem 3, we
can assume

p < 6n + 4nlog, n.

Without loss of generality, we also assume that each
Rg (v) contains no range [a,b] with a < A; < b for
any J;; if necessary, split each [a,b] with a < A; < b
into [a, A;] and [A;, b], which may increase the number
of ranges in R (V'), but does not change the above
p. Then, we consider a sequence of p+1 graphs G'|*i,
1=0,1,...,p. Foreach ¢ =0,1,...,p—1,let G} =
(V, E},cg:) denote a graph obtained from G'|* by
splitting off the edges incident to s and removing the
designated vertex s. We can assume Ag: (V) > k by
Lovész’s edge-splitting theorem. In fact, Ag: (V) =
A; holds for all 4, since G'|* has a ()i, s)-critical
covering collection.

Then G¢, i = 0,1,...,p satisfy G} = G*(k) for
k =)A;. We now show that such G} can be easily
obtained from G}_, without really applying splitting
algorithms, and that all G} can be characterized by
cycles C} as noted above. In other words, a totally
optimal ranged graph G’ contains all the information
necessary to construct G*(k) for the entire range of
k.

We first show an important property of G;. Let
Vi, Vs,...,V, be different subsets of V in G} such
that each V}, j = 1,2,..., h satisfies

Ag:(u,v) > X forallu #v € Vj, or [V;| =1,

and is maximal (with respect to |V}|) subject to this
property. By Ag:(V) = X;, we have h > 2. Each V;
is called a \;-component of G}, and a A;-component
V; is called a A;-leaf if dg: (V) = Ai (ie., V; itself is
a minimum cut in G}). From definitions, we easily
see that the following properties hold:

(i) The set of \;-components is a partition of V.

(ii) For any two A;-components V; and V;, G} has
a minimum cut X, ; which separates V; and V.
(iii) Every minimum cut X in G} contains a A;-leaf
V; C X, since any minimum cut X' C X with
the minimal cardinality |X’| is a A;-leaf of G}.

Lemma 4 Let V; be a A;-component in G;. Then
dg:(X) = dgrpi (X) holds for any cut X C V.

Proof: Let AE} denotes the set of edges e whose
weights have been increased by the edge splitting op-
eration to obtain G} from G'[M, i.e.,

AE! = {e€E|cq(e) > co(e)}

u{e € Ef — E | ca: (e) > 0}

(note that cg(e) = cgpi(e), e € E). Then it is
sufficient to show that AE? contains no edge (u,v)
such that the both end points « and v belong to some
V;. Since there exists a critical covering collection
X% in G'}*, the end points u and v of any edge
e = (u,v) in AE? must belong to different critical
cuts X', X" € X|*, respectively, in order to make G
A;-edge-connected. That means that Ag: (u,v) = A;
holds for each e = (u,v) € AE;. Therefore, the
lemma follows. a

We next introduce another sequence of graphs,
which are used to construct G} for all . Let éH—l,
i =0,1,...,p — 1 denote the graph obtained from
G* by putting back vertex s and edges (s,v) with
weights ﬂ(RG'(U)Ii:+1) for all v € V; ie., Giyr =
(VU{s},E{UE’(s),c&_H) with E'(s) = {(s,v) |v €
V} and

Xis1 — A ife=(s,v) € E'(s) and
Ra/[y* (v) #0
C(-;,+1 (e) = 0 ife= £§,v) € E’(s) and
RG’|,\:+1(U) =0
CGy (e) ifee E}.

In other words, Giy; is a graph obtained from
G|+t by splitting those edges (s,u), u € V with
weight Rg/(u)|* at s, leaving the remaining weight
Rgr(u)ﬁ\j“ in each edge (s,u). The next lemma
claims that the graph G}, defined in the above
maintains the optimality of G'|}i+1.

Lemma 5 For eachi=0,1,...,p—1, if Ag: (V) >
>\i; then)‘éi+1 (V) 2 A,’.‘.].

Proof: Consider the set I'g, | (s)(# 9) of the neigh-
bors of s (vertices adjacent to s by an edge with a
positive weight) in G;;;1. From definitions of G4,
and G}, for any cut X C V,

déH-l (X) = dG: (X) + |X Al F(-}‘;+,(S)I . (AH-I - /\1)

holds. Then, if X N Féa+1(s) # 0, then dc-;iH(X) >
Ait1 holds by /\G‘—,(V) > X;. Therefore, we assume
that éi.,.l has a cut Z such that

ZCV-Tg, (s) and dg,, (Z) (= dg;(2)) < Air,

Git1
(3)
and derive a contradiction.

We . first show that cut Z in (3) is not con-
tained in any A;-compoment V;. If Z C V; for
some \;-component V;, then dg:(Z) = dg) (2)
by Lemma 4, and hence dg, , (2) = dg:(Z) =
dgpi(2) = dgpisa(Z) by Z Nlg,, (s) = 0. How-
ever, dg, x4 (2) = dg,,,(Z2) < Aipx would contra-
dict that the totally optimal ranged graph G’ sat-
isfies ’\G'|"-'+1 (V) > Aiy1. Hence, Z € V; for any
Ai-compomnent V.

Now choose a cut Z with the minimum dg;(Z)
among all those cats Z in (3), and assume further-
more that Z has a minimal cardinality |Z| with this
property. Then dg:(Z) < dg:(Z') holds for any
nonempty and proper subset Z’ of Z. Since Z is not
contained in any A;-component, there are at least
two A;-components V; and V, such that V; N Z #
® # Vo n Z. By the property (ii) of A;-components,
G7 has a cut X C V with dg-(X) = A; that sepa-
rates V; and V;. We show that two cuts Z and X
cross each other. From property (iii), X contains at
least one \;-leaf V,, for which Vc,ﬂl“éi+1 (s) # 0 must
hold, because VoNI'g, (s) = 0 and Lemma 4 would
imply A = dG‘f (Va) = dGr‘»\, (Va) = dG']"i+1 (Va) <
Ai+1, a contradiction to Agr s (V) > Xiy1. Hence,
X-ZD2V, ﬂréi“(s) # 0 by an‘ém(s) =0
Similarly for (V — X) — Z # 0, since V — X is also
a minimum cut in G}. Therefore, two cuts Z and X
cross each other, and inequality

dgy(Z) + dgy (X) 2 dg; (Z — X) +dg: (X - Z)

always holds. Note that dg; (X) = X, dg: (X ~Z) >
A: (by Ag:(V) > X\;), and dG?(Z - X) > dG:(Z)
(from the choice of Z) hold. These, however, contra-
dict the above inequality. Therefore, there is no cut
Z satisfying (3) and the lemma is proved. O

Next we consider how to split the edges incident
to s in Gyy; in order to obtain G}, - Lemma 5 as-
serts that any cut X with X nTs, (s) = 0 satisfies
dg,,,(X) 2 Aiya. Foracut X DT (s), we con-
sider cut X’ = V — X, which satisfies X'nlg,,, (s) =
0 and dg (X) > dg,, (X') 2 Aiya. That is, any
cut X not dividing I'g,, (s) satisfies dg (X) >
Ait+1. Then we describe a way to increase the weight
of every cut dividing Fé‘,“(s) at least by X411 — A
This will mean that the resulting graph can be con-
sidered as G}, because /\G:_H (V) > Ais1 holds by
assumption Ag;(V) = A; and the above argument.
Now, arrange the vertices in Pc-;.“(s) in an arbitrary
order, say

ui'l,ui,g, ey Ugg,
delete all edges (s,u), u € T'&,,.(s), and increase the
weights of edges e in E as follows, where ¢ +1 =1
alld 6i+1 = ()\H'l -)\z)/2
car (e) + 6i+1 ife= (ui,j, u,-,j+1),
7=1,...,qis an

edge in G},
ey, (€) =4 it if e = (uij,uij41),
j=1,...,qis not
an edge in G7,
ca: (e) otherwise.

In other words, G}, , is obtained from G} by adding
a cycle Ci*+1 = U;1,Ui9,...,U8,, of weight 6;4,.

Clearly, any cut X that divides Féi+1(8) has the de-
sired property, dg: (X) > dgy (X) + 26;41 > Aita.

In th above construction also says that, for any
intermediate k with A\; < k < A;;1, we can obtain an
optimally augmented graph G*(k) by adding a Cf,,
of weight (k — A;)/2.

Now we are ready to describe optimal solutions for
the entire range of k € [Ag(V), +).

For each \;,i=1,2,...,p (for a technical reason,
we redefine A,(= K) by A, := +o00), choose a cycle
C} that visits all the neighbors of s in G'R:_l. Then
set

II={(C;,[A\i-1,A]) |i=1,2,...,p}

of pairs cycles C; and ranges [A;—1, A;] characterizes
all optimal solutions for the entire range of k: Given
a k, G*(k) can be obtained by finding the maxi-
mum ¢ such that A;;, < k, and by increasing the
weights of edges along all cycle C} by (A\; — Xi—1)/2
i1=1,2,...,ix and along cycle C}, ;; by (k— A,)/2.
Clearly, since each cycle C} can be obtained in O(n)
time, IT can be constructed in O(np) = O(n?logn)
time. Together with Theorem 3, this finally estab-
lishes Theorem 2.

For our running example, we have Il = {(C} =
{us,us}, [7,8]), (C3 = {uz,uq,us}, [8,10]), (C5 =
{’11,1,142,11,3,116}, [101 14]): (C: = {ula Uz, U3, u43u6}1
[14,16]), (C¥ = {u1, ua, u3,ua, us,us}, [16,+00])}.

5 Concluding Remarks

In this paper, we consider the edge-connectivity aug-
mentation problem which asks to add the minimum
amount of weights to a given graph G = (V, E, c¢) to
make G k-edge-connected, and present an O(mn +
n? logn) time algorithm for finding optimal solutions
G*(k) in the entire range k € {0, +oc], where n = |V]
and m = |E|. The argument developed in this paper
can be applied to the following slightly more general
augmentation problem, which is studied in [2]. It
has lower and upper bound constraints for each ver-
tex v € V; we have to add new weights to G so that
the resulting graph G’ satisfies

ve(0) < Y (cor(v,w)—cg(v,w)) <TE(v), vEV,
weEV —v

where vc(v) < Te(v), v € V are given constants (pos-
sibly ve(v) = +o0o or Be(v) = +oo, and cgr (v, w)
(resp., cg(v, w)) is considered to be zero if (v,w) ¢
E(G') (resp., (v,w) € E). Let

w(G) = min{de(X,V-X)+)_ we(z)|0# X CV}
zeX

(Note that u(G) can be easily computed as the s-
based-connectivity of the graph G” obtained from G
by adding a new vertex s and edge (s, v) with weight
c(v) for each v € V.) Then clearly, for any & > u(k),
G cannot be augmented to be k-edge-connected by

adding new weights. With a slight modification, our
algorithm can find optimal solutions in the range k €
[0, #(@)] in the same time complexity.

Note that the problem of finding a complete feasi-
ble splitting in a given edge-weighted graph H with
a designated vertex a can be reduced to the prob-
lem of augmenting the edge-connectivity of graph
H — a with vertex constraints vc(v) = 0 and T¢(v) =
cy(s,v), v € V(H) — a. Therefore, we can find
a complete feasible splitting in a given graph with
n vertices and m edges in O(mn + n?logn) time.
This is faster by factor of O(logn) than the previous
fastest O((mn + n?logn)logn) algorithm due to [5].
However, for the integer version of splitting problem
where all weights in the resulting graph must be in-
tegers, their bound is still currently best.

Appendix:.

We replace lines 18-20 of SIMUL-AUGMENT
with the following procedure ALIGN to guarantee
that the number of ranges in the resulting G’ is
O(n). Let us call the resulting algorithm SIMUL-~
AUGMENT(ALIGN).

Procedure ALIGN
al Let amin = min{a | [a,k'] € Re/(X™*)}, and
let z,,.;n» be the vertex in X* such that
{aminy k,] € RG'(zmin)
a2 for each vertex u € X* — z,;, do
a3 if |Rg/(u)[*'| > 2 then
ad Let [a/,b'] be the range with the
maximum top b’ among those satisfying
b’ < a for the range [a, ¥'};
ad Ay = (Re (“)Ik’ —{[d', ¥, [a, K'|})U
't/ + (— a)]}
ab end { if }
a7 end { for }
a8 Sort ranges in A = Uyex+ A, in the non-
decreasing order of their tops, where
[@min, k'] € Ra/(2min)|¥ is be the last
range in the ordering;
a9 Align A = U,cx~ A, into [k*, k'], and let
Uyex+ AL be the resulting
set of ranges, where A} is obtained
from A, in the alignment;
Rg/(u) := A, U Rge(u){y for each u € X,
merging two ranges [a, k'] € A!, and
[£',b] € Rg(u)|e (if any) into a single
range [a,b] € Rg/(u);
{this merging occurs at least for u = Zmin}

al0

For the correctness of SIMUL-AUGMENT
(ALIGN), we only have to show that alignment of
A = Uyex+A, into [k* k'] in line a9 of ALIGN is
possible, i.e.,

Lemma 6 A = U,cx+A, in line a9 of ALIGN is
gapless.

Proof: We see RG;_I(X*) before line 18 is gap-
less. Since RG-'?‘I(X*) before line 18 of SIMUL-
AUGMENT is gapless and there is no range [a, k'] €
R(;;,_I(X*)Ik' with @ < @min, Where amin is cho-
sen in line al, we see that, for any k with min{a |
[a,b] € RG;,_I(X*)} < k < @min, there is a range
[@,b] € Rg,_ (X")|¥ with o' < k < B < K.
Hence, set A’ = {[a',¥] € Rgg_‘(X*)lkl | ¥ <
k'} U {[@min, K]} of ranges is gapless. Since only
ranges in Rgg_‘(X*)lkl — A’ are lowered in prepar-
ing each A, in line a5 of ALIGN, the resulting set
A = Uyex-A, in line a9 of ranges is still gapless. O

By the similar analysis in Lemma 3, we see that
aligning A = Uyex+A, in line a8 can be carried out
in O(|R|) time, where R is the set Rg/ (V) of ranges
obtained after line a9.

By analyzing how many ranges are created dur-
ing algorithm SIMUL-AUGMENT(ALIGN), we can
prove Theorem 3. The detail is omitted due to space
limitation.

References

[1] G.-R.Caiand Y.-G. Sun, The minimum augmen-
tation of any graph to k-edge-connected graph,
Networks, 19, 1989, 151-172.

(2] A. Frank, Augmenting graphs to meet edge-
connectivity requirements, SIAM J. Disc. Math.,
5, 1992, 25-53.

[3] H.N. Gabow, Efficient splitting off algorithms for
graphs, STOC, 1994, 696-705.

[4] L. Lovdsz, Combinatorial Problems and Exer-
cises, North-Holland 1979.

[5) H. Nagamochi and T. Ibaraki, Deterministic
O(nm) time edge-splitting in undirected graphs,
STOC, 1996, 64-73.

[6] H. Nagamochi, T. Shiraki and T. Ibaraki, Com-
puting edge-connectivity augmentation function
in O(nm) time, Tech. Rep. of Information Pro-
cessing Society of Japan, AL-53-7, 1996.

[7] D. Naor, D. Gusfield and C. Martel, A fast algo-
rithm for optimally increasing the edge connec-
tivity, FOCS, 1990, 698-707.

[8] T. Watanabe and A. Nakamura, Edge - connec-
tivity augmentation problems, J. Comp. System
Sci., 35, 1987, 96-144.

