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Abstract

Koch curve is known as a typical self-similar set on Euclidean plane. Koch island is a closed set
surrounded by three copies of Koch curve. We investigate them from the viewpoint of computabil-
ity. In this paper, we define computability of a curve and that of a closed set as an application of
classical computable analisys to Euclidean spaces and show that Koch curve is a computable curve
and both Koch curve and Koch island are computable closed sets.

1 Introduction we should define computability of a curve and com-

putability of a closed set by using the terms on classical

Our aim in this paper is finding fundamental mathe-
‘matical tools to investigate self-similar sets from the
viewpoint of computability.

First of all, we should determine what “com-
putability” means. We have already obtained a math-
ematical theory to investigate computability of real
functions[6}{7], which is often referred as “classi-
cal computable analysis”. To investigate curves and
closed sets in Euclidean spaces from the viewpoint of
computability, we should apply classical computable
analysis to curves and closed sets. In other words,

—1—

computable analysis.

Defining computability of a curve is a straightfor-
ward task. A curve is (or can be identified with) a con-
tinuous function from an interval. We define a curve to
be computable if it is a computable function from the
interval [0, 1].

For example, any segment with computable end-
points is constructed from a computable curve since it
is constructed from a computable function £ : [0,1] —
R? such that f(t) = (1 — ¢)a + tb where a and b are
the endpoints.



There is no loss of generality in the restriction
of the domain to [0,1]. If [a,}] is an interval with
computable endpoints, then the computability of f :
{a,b] — R? is equivalent to the computability of
f :[0,1] — R? defined by f(t) = f(a+ (b—a)t)
fort € [0, 1].

On the other hand, it is not so straightforward in
case of closed sets. Let X be a closed set on R?. De-
fine fx : R? = R by

0 ifze X,

1 ifz¢X. o)

fx(ic)={

Since any computable function is continuous, fx is
not computable unless X is either § or R?. This func-
tion fx is useless for our aim.

Rather than (1), we may find, for a closed set X on
R, a computable function g : R9 — R satisfying

g(z) =0 ifrz e X, @
g(z) #0 ifz ¢ X.
For example, for {{z1,z2) € R? : z:% + 2.2 =1},

the function ¢ : R?2 — R defined by g(z1,z2) =
z12 + 2% — 1 is such a function.

It may thus be useful for our aim to define a closed
set X on R? to be computable if there exists a com-
putable function satisfying the condition (2).

Be careful that these definitions are position-
sensitive. In other words, all of the curves (closed sets)
congruent to a computable curve (closed set) are not
computable. For example, let a be an uncomputable
real. Then, {(z1,22) € R? : (z1 — )’ + 252 = 1}
is not a computable closed set although it is congru-
ent to the computable closed set {(z1,z2) € R? :
T2+ 1022 = 1}

Finding a function satisfying the condition (2) has
the following application. Let X be a closed set on
RY such that there exists a function ¢ : RY — R
satisfying (2) and z a computable point on R?. If
z ¢ X, then there exists an effective procedure
that shows this. More precisely, there exists a semi-
algorithm that terminates with returning false for
an input (n1,...,nq) € N if (z1,...,24) ¢ X
where zy,...,z, are the computable reals indexed
with ny, ..., ng respectively.

There is however no semi-algorithm that termi-
nates with returning true for an input (ny,...,n4) €
N? if (z1,...,44) € X where z1,...,z4 are the
same as above since there is no semi-algorithm that
terminates with returning true for an inputn € N
if n indexes 0. There is either no semi-algorithm

that terminates with returning false for an input
(na,...,nq) € N if and only if (z1,...,2¢) ¢ X
where z1,...,Z, are the same as above since “there
exists a computable real that is indexed with n” is not
a recursively enumerable predicate on n.

Incase of X = {(z1,23) € R? : 2,2 + 2,2 =1},
and g : R? — R defined by g(z1, z2) = 712 +z22 -1,
the closed set X is a Jordan closed curve and the com-
putable function g satisfies a stronger condition:

g(z)=0 ifzison X,
g(z) <0 if z is inside X, 3)
g(z) >0 if z is outside X.

Similarly to the case of condition (2), finding a
function satisfying the stronger condition (3) has the
following application. Let X be a Jordan closed curve
such that there exists a function ¢ : R — R sat-
isfying (3) and z a computable point on R?. If z
is not on X, then there exists an effective procedure
that determines whether z is inside X or outside X.
More precisely, there exists a semi-algorithm that ter-
minates with returning inside or outside for an

input (n1,...,nq) € N?if (z1,...,Z,) is inside X or
outside X respectively where z,, ..., z, are the com-
putable reals indexed with ny, ..., n, respectively.

The next thing we should do is recalling what “self-
similarity” means. A set is self-similar if it is con-
structed from some miniatures of the whole[3}{4]{5]}.
More precisely, for any finitely many contractions
Fy,...,F,, onRY, the set equation

X =F(X)U- -UFr(X)

has a unique nonempty compact solution. Any set that
is a solution of a set equation of this form is called a
self-similar set{4][5].

We will introduce three closed sets named Koch
curve, Koch coastline, and Koch island. Koch curve
is a self-similar set. Koch coastline and Koch island
are closed sets constructed from Koch curve. The
first closed set we introduce is Koch curve. In Fig-
ure 1, let Aabe be an isosceles triangle with lengths
la—bl| = |la—c|| = 1/v/3and ||b — ¢|| = 1. Let a;
and ay be the points trisecting the edge bc. Let Tp and
T, be the similarity transformations that map Aabc
onto Aaiba and Aasac respectively. Koch curve is
the unique nonempty compact solution of the set equa-
tion

X = To(X) UTL(X).

Figure 2 illustrates Koch curve.



v ay [

Figure 1: Similarity transformations for constructing
Koch curve

We now briefly recall some of the properties of
Koch curve. Koch curve is a self-similar nonempty
compact set. Although Koch curve has a null area,
it has an infinite length. Koch curve is a Jordan arc.
There is no differentiable curve that constructs Koch
curve. These properties can be easily checked from
the definition.

The second closed set we introduce is Koch coast-
line. Koch coastline is a closed set constructed from
three copies of Koch curve as Figure 3. Koch coastline
is a Jordan closed curve.

Figure 2: Koch curve

Figure 3: Koch coastline

The last closed set we introduce is Koch island.
Denote Koch coastline by 7 and the inner domain of
by D. Koch island is defined to be v U D.

We can easily show that a segment with com-
putable endpoints is constructed from a computable
curve. Then a question arises; how about Koch curve?
Both a segment and Koch curve are Jordan arcs. One
of the major differences between a segment and Koch
curve is that Koch curve is a totally non-differentiable
curve while a segment is a differentiable curve. An-
other is that Koch curve has an infinite length while a
segment has a finite length. Do these differences affect
to the computability of Koch curve? The same ques-
tion arises on Koch coastline comparing with a circle.
A similar question on computability of closed sets also
arises on Koch island comparing with a closed disc.

We have obtained the answers to these questions.
Koch curve is constructed from a computable curve.
So is Koch coastline. Koch island is a computable
closed set. One of the most important facts in showing
this is that each of these closed sets is a limit of unions
of computable segments or computable triangles.

2 Preliminary

We use the terminology on classical computable anal-
ysis in [6]. We will identify a point (z,y) and a vector

(;) throughout this paper. We write:

Ro = (cos 8

sin @

o= ().

First, we will define Koch curve.

-—sinﬂ)’ 7 =

cos @

Definition 2.1. With Ty, T; : R? - R? defined by

1
TO(‘T) = —Rw/Ssz

V3

1
R_W/GJ(Z - 61) + e,

Ti(z) = 7

Koch curve is the unique nonempty compact solution
of the equation

X = Tp(X) UTy(X).



There are many ways to construct Koch curve. We
will introduce one which starts with a segment. With
the transformations Ty and T in Definition 2.1, we de-
fine I',, recursively by

I ={(t,0): t € [0,1]},
Fn+1 = To(Fn) UTI(F",)

Then Koch curve coincides with (oo ; Une . In.

Calculation of some of the beginning terms yields
the following.

o I} is a segment connecting (0, 0) and (1, 0).

e It is a polygonal line connecting (0,0),
(1/2,1/24/3), and (1, 0) in this order.

e I is a polygonal line connecting (0,0),
(1/3,0), (1/2,1/2+/3), (2/3,0), and (1,0) in
this order.

e Iy is a polygonal line connecting (0,0),
(1/6,1/6v3),  (1/3,0),  (1/3,1/3V3),
(1/2,1/2v3),  (2/3,1/3V3),  (2/3,0),
(5/6,1/6+/3), and (1,0} in this order.

e Iy is a polygonal line connecting (0,0),
(1/9,0), (1/6,1/6v3), (2/9,0), (1/3,0),
(7/18,1/6v/3), (1/3,1/3V3), (4/9,1/9V3),
(1/2,1/2v3), (5/9,1/9V3), (2/3,1/3V3),
(11/18,1/6v/3), (2/3,0), (7/9,0).
(5/6,1/64/3), (8/9,0), and (1,0) in this
order.

Figure 4 illustrate these steps.
By using Koch curve, we will establish the follow-

ing definition.

Definition 2.2. With T', 7" : R? — R? defined by

T(z) = R_a5/3% + €1,
T'(I) = Rzrr/a(z —ey),

Koch coastline is v U T'(y) U T'(7y) where vy denotes
Koch curve.

~
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Figure 4: Some beginning steps of construction of
Koch curve

Koch coastline is a Jordan closed curve. Thus the
following is well-defined.

Definition 2.3. Denote the inner dg_main of Koch
coastline by D. Then, Koch island is D.

3 Computability of curves and
closed sets

3.1 general results

As explained in the introduction, our first task is defin-
ing the computability of curves and closed sets on an
Euclidean space. We proceed this task by using the tra-
ditional definitions on the computability of real func-
tions.



In this paper, we consider a curve on R? to be a
continuous function from an interval to R?. We say a
curve f constructs a set -y if f(I) = - where I is the
domain of f.

In addition, we define computable curves and com-
putable closed sets as follows.

Definition 3.1. A computable curve on RY is a com-
putable function f : [0, 1] - R9.

Definition 3.2. A computable closed set on R? is a
subset of R? such that there exists a computable func-
tion g : R — R satisfying

g(z) =0
g(z) #0

A computable closed set is a closed set since it is an
inverse image of a closed set by a continuous function.

For a nonempty subset S of R?, we define dg :
R? - Rby

ifr e X,
ifzg X.

ds(z) = inf{llz - y|| : y € S}.

The function d is well-defined since the set {|jz—y]| :
y € S} is nonempty and bounded below.

Lemma 3.1. Let {S,} be an arbitrary sequence of
nonempty subsets of R9. Then, the sequence of func-
tions {d s, } is effectively uniformly continuous.

Proof. Let x and y be arbitrary points on R?.
Forany n € N and any ¢ > 0, there exists u € S,
such that [ly — u|| < dg_(y) + €. Then we have

ds,(z) —ds, (v) <z —ull = lly —ull +¢
<llz -yl +e.

From the arbitrariness of &, we obtain
ds, (z) — ds, (y) < llz ~yll.

By exchanging z and y in this argument, we obtain
ds,(y) - ds, (z) < llz -yl

Hence we have
lds, (z) — ds, W) < llz —yl.

This implies that {dg_} is effectively uniformly con-
tinuous. O

Theorem 3.1. Any computable curve on R? con-
structs a computable closed set.

Proof. Let f : [0,1] — RY be a computable function.
We will show that d¢(jo,17) 1s @ computable function
satisfying the condition in Definition 3.2.

It is immediate from f([0, 1]) being a closed set
that d (o 47)(z) = 0 iff z € £([0,1]). We easily obtain

at dg(o,1)) is effectively uniformly continuous as a
special case of Lemma 3.1. The remaining is sequen-
tial computability of d ;o 1)

Let {z,} be an arbitrary computable sequence of
points on R?. We will check that {d 0,17)(%n) }nen
is a computable sequence of reals in order to show
that dg (0,1} is sequentially computable. Define g, :
[0,1] » R forn € N by

9n(t) = llzn — F(O)]-

It is obvious that {g,} is a computable sequence of
functions. By using the effective version of Max-
Min Theorem, we obtain that {min,cjo 1) gn(t) }nen
is a computable sequence of reals. Namely,
{ds(j0,1)(zn)} is a computable sequence of reals.
Hence d(o,1)) is sequentially computable.

Now we have established that 20,17 1s 2 com-
putable function satisfying the condition in Defini-
tion 3.2, Thus f([0,1]) is a computable closed set.

O

3.2 Koch curve and Koch coastline

We are now ready to investigate computability of Koch
curve, etc.

Lemma 3.2. In the notation of Definition 2.1, define
fn 1 [0,1] = R2 recursively by

50 = (3)

frt1(t) = {To(fn(2t)) ifte[0,1/2],

Ti(fa(2t - 1)) ifte[1/2,1).

Then, {f»} is a computable sequence of functions.

Proof. By induction on n, it is straightforward to show
that each f,, is well-defined and satisfies

fﬂ(t) = (Tbn_l 0---0 Tbo)(f0(2nt - K))
ift e [K/2, (K +1)/2"]

where by,...,bn_1

21y, =K.
Clearly, {f,} is effectively uniformly continuous.

We however find a difficulty here in showing that { f,,}

€ {0,1} and 2% + --- +



Calculation of an inte-
ybp_1 from a real ¢ is

is sequentially computable.
ger K and a bit string b, ...
not effective.

Take any computable sequence {tx} < [0,1].
There exists a double sequence of rationals {r;;} such
that r;, — t;, effectively in n, 7, and k as j — oo. To
overcome the difficulty, we shall investigate the triple
sequence of points { fn (%)}

‘We have
Frlri) = (To,_y 0 -+ 0 T ) (fo (27751 — K))
ifrj, € [K/2", (K +1)/27]
where b07"‘7bn—1 € {0,1} and 20170 + -+
2n=1p, . = K. In this case, computation of K
and bg,...,b,_1 from n, j and k is effective since

the relation < in Q is effective. More precisely,
we can construct a recursive function that computes
(K,bg,...,bn-1) from n, j, and k by using a recur-
sive function that corresponds to the relation < in Q.
Hence {f,(r;k)} is a computable triple sequence of
points.

We are ready to show sequential continuity of
{fa(ts)}. Since rj;, — tj effectively in j and k as
j — oo and {f,} is effectively uniformly continuous,
we obtain that f,,(r;x) — fn(ts) effectively in n, j,
and k as j — oo. We conclude that {f,(tx)} is a com-
putable double sequence of points since it is a limit of
a computable and effectively convergent sequence of
points. O

Lemma 3.3. /n the notation of Lemma 3.2, the se-
quence of functions { fp} is effectively uniformly con-
vergent as n — 0.

Proof. As a preparation, we show, by induction on n,
that foranyn € Nand any ¢ € [0, 1],

10 - frn 1 < 0 (22)

For induction base, evaluate || fo(t) — f1(t)||. We
have
1 folt) = fu ()]l = 7 ift €[0,1/2],
15 - il = = ee /2
Thus, for all t € [0, 1],
I fo(t) — fr(Ol <

sI

For induction step, suppose for any ¢ € [0, 1],

16nl0) ~ @ < 5z (52)

and evaluate ||f41(t) — fas2(8)ll. From the induc-
tion hypothesis, we have
[ fa+1(t) = fata(B)]]
= 25 1u(2) = fr 0]
ift e [0,1/2],
| frt1(t) = fas2(B)ll
= a2t = 1) = fra(2¢ - 1)

ift € [1/2,1].

Thus for any ¢ € [0, 1]

1 1\""
£ra(®) = fraa(® € 372 (ﬁ) .

We have finished the preparation.

The result above implies that { f,} converges uni-
formly to a continuous function as n — oco. Using f
for the limit, we have

fol < Z Il £ (2)

k

1
< =
- k; (2\/3 (\/3 ) )
_V3+1 ( 1 )”
4 \Vv3
We hence conclude that {f,} is effectively uniformly
convergent as n — 00. O

1 fn(t) - — frrr (0]

Theorem 3.2, Koch curve is constructed from a com-
putable curve.

Proof. In the notation of Lemma 3.2, define f
[0,1] — R? by
f(6) = hm fo(t).
n [eo]

From Lemmas 3.2 and 3.3, we obtain that f is well-
defined and computable. Furthermore, f([0,1]) con-
structs Koch curve since

fO([07 1]) = {(t,O) (te {07 1]}1
fn+1([0’ 1]) = TO(fn([Ov 1])) ) Tl(fﬂ([oa l])),



and

X
(@

(0,1 = fn((0,1]).

x
1
-
3
It
=

O

We obtain the following two corollaries of Theo-
rem 3.2.

Corollary 3.2.1. Koch coastline is constructed from a
computable curve.

Proof. By using Patching Theorem. O

Corollary 3.2.2. Both Koch curve and Koch coastline
are computable closed sets.

Proof. By using Theorem 3.1. O

3.3 Koch island and the Jordan domains
of Koch coastline

For arbitrary points a,b,c € R?, we denote by Aabc
the interior of the triangle whose vertexes are a, b, and
c.

Lemma 34. If{a,}, {b,}, and {c,} are computable
sequence of points on R?, then {dp, ; . }nen is a
computable sequence of functions.

Proof. It is immediate from Lemma 3.1 that
{dna,b,c,.} is effectively uniformly continuous. It
remains to show that {d,_, .} is sequentially com-
putable.

Since

nCn

Dapbrcn, = {an + t(bn — an) + u(c, — a,) :
t,u €[0,1]},

we have

dAa,.b,,c,. (:L‘)
=min {|lan + t(bn — an) + u(ch — an) — 2| :

(t,u) € [0,1] x [0,1]}.

From an argument similar to that in the proof of
Theorem 3.1, we obtain that if {z,} is a computable
sequence of points on R?, then, {da, , . (zx)}is a
computable double sequence of reals. Thus we have
established that {d, , .} is a computable sequence
of functions. 0O

In the notation of Definition 2.2 and Lemma 3.2,
define v, by

Tn = fon((0, 1) U T (f2n ([0, 1])) U T' (f2n ([0, 1])).

It is straightforward from the definition that each 7y,
is a Jordan closed curve. We denote the inner domain
of v, by D,.

Lemma 3.5. {dp_}isacomputable sequence of func-
tions.

Proof. Some tedious manipulation yields that there ex-
ist three sequences of points {a, }, {b,}. and {c, } and
a recursive function e : N — N such that
D, = U Aapbycy,.
k<e(n)

Thus

dp, (z) = kr(nin LiAa,.b,,c,.(m)-

(n)

From Lemma 3.4 and some manipulation on
“ming<e(n)”, we obtain that {dp_} is a computable
sequence of functions. a

We denote Koch coastline by v and the inner do-
main of y by D.

Lemma 3.6. The sequence of functions {dp_} con-
verges to dp, uniformly and effectively inn asn — oo.

Proof. Let n be an arbitrary nonnegative integer and z
an arbitrary point.
Some tedious calculation yields that D =
U2y Dx- Thus
dp(z) < dp, (7).

Some tedious calculation again yields that for any
y € Dy 44, there exists z € D, such that

||y—z|fsz—-1ﬁ(%)".

Forany z € R? and any € > 0, there exists y € D
such that

lz —yll <dp(z) +e.

For this y, since y € {Jro, Dn, there exists ng

€N
such thaty € D,,,. :

o Incase of ng < n,wehavey € D,. Thus

dp, (z) <z -yl
<dp(z) +e.



e In case of ng > n, we construct yx forn < k <
ny such as yx € Dy as follows.

— Define y,, = y.

— If we have already defined yx4+1 € Dg41,
then there is z € Dy such that

fykr — 2l < % (%)k

Choose one of such z to be y;.

Then, we have

dp, (z) < llz — yall
ng—1

<llz =yl + 3 llwess — well

k=n
‘ e TS TN
<dp(z)+e+ — (—) .
In both cases, we have

dp, (z) <dp(z) +e+

V3+1 ( 1 )”
4 v3/
Then, the arbitrariness of € implies

V3+1 ( 1 )"
4 v3)
Now we have established that
V3+1l ( 1 )"
d -d < — ] .
ldp, (=) ~ dp(@) < ¥ ( 5

This concludes that {dp, } converges to dp, uniformly
and effectively inn as n — oo. a

dp (z) < dplz) +

As an immediate consequence of Lemma 3.5 and
Lemma 3.6, we obtain the following theorem.

Theorem 3.3. dp, is a computable function.
The following corollaries hold.

Corollary 3.3.1. Koch island D is a computable
closed set.

Proof. Immediate from dp,(z) = 0 iffz € D. O

Corollary 3.3.2. Koch coastline v is a computable
closed set with a function g satisfying the condition:

g(z)=0 ifzisonvy,
g(z) <0 if z is inside 7y,
g(z) >0 if z is outside v.
Proof. Set g(z) = 2dp(z) — d,(z). O

4 Conclusion

Both Koch curve and koch Coastline are constructed
from computable curves. All of Koch curve, koch
Coastline and Koch island are computable closed sets.
Furthermore, there is a computable function which
separates inner and outer domains of Koch coastline.
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