Y X LA 55—8
23)

7 N T
(1997. 1.

HESGOMEBEHEES O VA LR AEEATIE

magsEn! A Akl m st
T BRAEEAVERIRAT L b AT 5 —
P EART7 A4 ¥ — - T BEEsesT

Abstract, 2—7 v F FERAD Zo0HEE P,Q XL T, K4 OHAEES T, EVRIZEFZHD
ZIBHSEEL VS, IORITIREABRAROIERESLETET L& (LCP) 2E8ET 5, £07:
DI, EREHENS MVOPROBRETEA L, FOBTETE Y, 85I BRTOBAIL. TOWHE
OB HEET S, WEOMEIZHT 2 ERELAWT. LCPOBERBELRETT2E0MES, ZORAR
BTIX, R—VHIBROEST 4 KT LOBEDFROMEIIE (.

Distribution of Distances and Triangles in a Point Set and Algorithms
for Computing the Largest Common Point Set

Tatsuya Akutsul !, Hisao Tamakit and Takeshi Tokuyamat
! Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo 108, JAPAN
M Tokyo Research Laboratory,Yamato 242, JAPAN

Abstract. This paper considers the following prob]ém which we call the largest common point set
problem (LCP): given two point sets P and @ in the Euclidean plane, find a subset of P with the
maximum cardinality which is congruent to some subset of Q. We introduce a combinatorial-geometric
quantity A(P, @), which we call the inner product of the distance-multiplicity vectors of P and @, show
its relevance to the complexity of of various algorithms for LCP, and give a non-trivial upper bound on
A(P, Q). We generalize this notion to higher dimensions, give some upper bounds on the quantity, and
apply them to algorithms for LCP in higher dimensions. Along the way, we prove a new upper bound
on the number of congruent triangles in a point set in the four-dimensional space (which we omit in this
abstract). Table 1 summarizes the algorithmic results of this paper, where we omit logarithmic factors
and K denotes the size of the largest common point set. We have included some results on the largest
similar point set problem (LSP), congruent copy detection (CCD) and the similar copy detection problem
(SCD), where n = |P|, m = |Q|.

Dimensions 2 3 4 >5

LCP B ISR nlem2e 4 o3 728t Lot | pd-imd 4 nd
LSP n?m?(trivial) n7/3m8/3 4 n3 n®m* + nt nd4~Imd 4 nd
LCP(Rand'zd) | LCP/K LCP/K? NA NA

€-approx LCP/K? LCP/K? NA NA

CCD i {a B mO7 3w} | 0l 3m®® + min{n?®, ndm- 2} | nds nd

SCD nm? [18] n3/Tm?2/3 4 pdm -2 nt né

Table 1: Time complexities for LCP problems (logarithmic terms are omitted)-

1 Partially supported by the Grant-in- Aid for Scientific Research on Priority Areas,” Genome Informatics”, of the Ministry

of Kducation, Science and Culture of Japan.

1 Introduction

Matching of points sets in the plane or space is an important problem that arises, in various forms,
in computer vision [14] and computational biology {2, 22, 17]. In the simplest form of the problem, we
are asked if two finite sets of points P and @ are congruent, i.e., there is a transformation T consisting
of translation, rotation, and possibly reflection such that T(P) = Q [5, 19, 4]. A generalization of
this question is to ask if @ is congruent to some subset of P (congruent copy detection or CCD for
short)|[7, 12, 18]. We consider in this paper yet further generalization: we ask for a set R of the maximum
cardinality that is congruent to some subset of P and to some subset of @ at the same time. We call
such R the common point set between P and Q and this problem the largest common point set problem
or LCP. A version of LCP, in which congruence is replaced by similarity (i.e., we allow scaling as well)
is previously considered by [15]. We set n = |P|, m = |Q| and assume without loss of generality that
n > m.

To solve LCP, we consider two standard schemes for point matching problems, namely voting and
alignment. We consider both deterministic and randomized algorithms based on these schemes. Since
the randomization techniques we use are also rather standard, our focus is on combinatorial-geometric
analyses of the performance of those algorithms. In particular, we study a quantity which we call the
inner product of distance-multiplicity vectors of two point sets. This quantity is naturally related to the
running time of the algorithms for LCP we consider. We derive a new upper bound on this quantity and
hence new upper bounds on the running times of those algorithms.

Given a set P of n points in the plane and a positive real I, we define the multiplicity of distance [
in P, denoted by Hp(l), to be the number of ordered pairs (p,q) of P such that the distance between p
and q is [. The distance-multiplicity vector of P, denoted by M(P), is the vector (Hp(l),...,Hp(l,))
where Iy, ..., I, is the list of distinct distances with positive multiplicities, sorted in a non-decreasing
order of their multiplicities in P. Erdés [9] asked for theoretical bounds on v = v(P), the number of
distinct distances in P, and Hp[];], the largest multiplicity of a distance in P; currently, the best known
upper bound on Hp[l;] is O(n*/2) and the best known lower bound on v(P) is 2(n*/5) [20, 21].

Given two point sets P and Q, we define A(P,Q) = ¥, Hp[l]Hg[ll, where the summation is taken
over all distances occurring in P or in Q. We call A(P, Q) the “inner product” of the distance-multiplicity
vectors M (P) and M(Q), a natural terminology if we regard M(P) as a finite representation of a vector
in (Z+)R. Since A(P, Q) represents the number of matches between the distances in P and those in Q,
it is not difficult to imagine that this quantity may play an essential role in the complexity analysis of
algorithms based on distance comparisons — the more distance matches we have, the more potential
congruences we have to consider. We will see that this is indeed the case for both voting- and alignment-
based algorithms.

Let A(n, m) = max|p|=n,jg|=m A(P, @). The trivial upper bound on A(n, m) is O(n?m?), while a result
of Erdés[9] implies that A(r,m) > Q(nm?\/log m). The above known bound of O(n*/3) on the maximum
multiplicity of a distance immediately implies that A(n, m) = O(n*/3m?). Our result is a stronger upper
bound of O(n**3m!-77). Note that his is an improvement for all values of n > m. This bound is proved
by extending the technique of Székely, who has recently developed simplified proofs of the O(n*/3) bound
on the maximum multiplicity and the Q(n*/%) bound on the number of distinct distances. A(n,m). We
remark that further improving our upper bound, especially the special case of O(n%?) on A(n,n), is
arguably difficult, because it would mean improving the best known lower bound Q(n*/%) on v(P), a
long standing open problem. Indeed, if there is a point set P with only O(n%/®) distinct distances, then
AP, P) is Q(n®/5(n/5)2) = ((n32).

Similarly to the importance of the distance multiplicities in the plane, the multiplicity of distances

and triangles plays an important role in the analysis of LCP algorithms in the three-dimensional space.
Here, the multiplicity of a triangle ABC (not necessarily degenerate) in a point'set P is defined to be the
number of ordered triples (p, g,) of P such that pgr is congruent to ABC. Triangle-multiplicity vectors
and their inner-products are defined analogously to distance-multiplicity vectors. Given point sets P and
Q in the three-dimensional space, let A®U(P, Q) (A®2)(P,Q), resp.) denote the inner-product of the
distance-multiplicity (triangle multiplicity, resp.) vectors of P and Q. Let A®U(n,m) and A32 (n,m)
be defined as before, taking the maximum over P and Q with |P| = n and |Q} = m. Our upper bounds
are A@H(n,m) = n32m?(log” n)°®) and A®? (n,m) = nl¥m28(log® n)°®), These notions naturally
carry over to higher dimensions: for a points set in R¢.

From a practical point of view, one might question the relevance of the running time upper bounds
of the LCP algorithms obtained from our combinatorial-geometric analyses, because they depend heavily
on the exactness of the input and computation. Because of the inevitable errors in the input and com-
putation, several authors formulate point matching problems as that of approximate matching4, 7, 12].
For example, CCD is formulated as asking for a transformation 7" that minimizes the directed Hausdorff
distance from T(Q) to P, i.e., max,eg minyep dist(T(g), p) [7). Although this is a mathematically clean
formulation and adopted by many authors, the time complexity of solving CCD in this model is rather
high (the best known upper bound for the 2-dimensional case is O(n2m3log?n) [7]). Goodrich et al, [12]
propose to give up exact minimization and to look for a transformation that achieves a Hausdorff distance
that is within some constant times the minimum possible, obtaining an algorithm with a reduced running
time of O(n?mlog®n) . It is not clear, however, if this approach can be extended to general LCP to
produce algorithms with a practical running time. In fact, it is not even clear how we formulate LCP in
this model, since we have two quantities to optimize (the subset size and the Hausdorff distance between
the subsets).

A more heuristic approach for approximate matching is to take an algorithm for the exact matching
model and use its approximate version, where approximate equality is used instead of exact equality
to test matches. This is the approach taken by [L5] and probably the one preferred in practice. The
generalized Hough transformation method[6] commonly used in computer vision may be interpreted as
belonging to such.an approach. Our position is that it is meaningful to analyze idealized algorithms
as long as their approximate versions are used in practice. The hope that such an analysis will tell us
something about the performance of the approximate versions is only heuristic, as much as the hope that
such approximate versions produce answers of any well-defined correctness.

Because of page limitation, we omit most of proofs in this version.

2 Algorithms

The goal of this section is to motivate our combinatorial-geometric analysis of the inner product of
the multiplicity vectors by showing how it is related to the analysis of several algorithms for LCP. We
will consider algorithms based on a voting scheme and algorithms based on an alignment scheme. In the
description of the following algorithms, we will consider congruence transformations that consist only of
translations and rotations, since reflections can be taken care of by running the algorithm once for P and
Q and once for P and the mirror image of Q. We will refer to such congruence transformations simply
as transformations. We will use K to always denote the size of the largest common point set between P
and Q.

2.1 Voting scheme

In this and the next subsection, we assume that the point sets P and @ are in the plane. Let dist(z, y)
be the distance between points and y. Consider pairs p,p’ and q, ¢’ of points of P and @, respectively.
If dist(p,p') = dist(q,q'), these four points determine a unique transformation T such that T'(p) = ¢
and T(p') = ¢’. This transformation is denoted by T[p,p’;q,¢'].

For each pair (p, q) of points p € P and q € Q, and each transformation T, we define multp,q(T) to be
the number of pairs € € P and y € @ satisfying that T[p,x;q,y]=T. If |T(P)NQ| = k, it is easy to see
that multp,q(T) = k-1 for any g € T(P)NQ and p = T~'q. Hence, maxp,q(maxy multp,q(T)) = K -1
and the transformation achieving this maximum is the transformation that gives the largest common point
set. ’

For each pair p € P and ¢ € Q, maxy multp,q(T) can be computed by considering all matching pairs
of edges (pz, qy), © € P, y € @, and letting each pair cast a vote to the transformation T'[p, z;q,y]. We
call this process the local voting for pair (p, q).

A similar voting idea is used in the generalized Hough transformation [6], where a vote is cast to a
bucket in the transformation space rather than to an individual transformation as in our case. In other
words, our scheme may be viewed as a limit of a version of the generalized Hough transformation as the
bucket size goes to zero.

In the deterministic version of the algorithm, we need to execute the local voting process for each pair
(p,q), with p € P and q € @, and take the best result. The total number of votes cast in the algorithm
execution is A(P, @), because each matching pair (pp’,qq’) of edges contributes exactly one vote, namely
in the local voting for the pair (p,q). Thus, A(n,m) bounds the essential term in the running time, with
a multiplicative factor of O(logn) that accounts for the table maintenance for counting a vote.

Theorem 1 In an efficient implementation, the deterministic voting algorithm computes the two-dimensional
LCP in O({A(n,m) + n?) logn) time and O(n) space. '

Proof: For each p € P, we first sort the set {(p,)|z € P} of pairs in terms of dist(p,) and store it
in a binary search data structure Dp(P). This needs O(nlogn) time for each p € P. In the local voting
for a fixed pair (p,q), we search dist(q,y), for each y € Q, in the data structure Dp(P) in O(logn)
time to obtain the matches in P of the edge gy. This needs O(m logn) time for each of nm local voting
processes. The rest of the running time is at most O(log n) per vote. Thus, the overall running time is
O((A(n, m) + nm? + n?) log n) but we have A(n,m) = Q(nm?) as noted earlier. We omit how to reduce

the space complexity to O(n). a

Observe that, in the above deterministic voting algorithm, the optimal transformation 7' receives the
maximum vote of K — 1 in the voting process for each (p;,T(p;)), i = 1,..., K, where {p,} is the largest
common point set. This is a redundancy which is difficult to avoid deterministically. We can reduce
the redundancy, however, at the cost of a small failure probability using a standard random sampling
-procedure: sample a random subset R of P with size cn/K, for some sufficiently large ¢, and do local
voting only for pairs in Rx Q. Here, once we fix a pair p € R and g € R, the local voting for (p, ¢} is done
exactly as before, scanning the entire sets P and @ (not restricting to R). This speeds up the algorithm by
a factor of |P|/|R] = ¢/K: the terms n?logn and nm?logn of the deterministic time becomes |R|nlogn
and |R|mlog n, respectively, and the expected total number of votes cast is (¢/K)A(P, Q). The algorithm
makes an error only when R is disjoint from the largest common point set. The probability of this is at
most e °.

So far, we have assumed that we know the value of K, which is not the case in general. However,
we can efficiently and with high probability estimate A" within a factor of, say, 2, using the randomized

approximation scheme described below.

Theorem 2 LCP can be solved in Ofc(A(n,m) + n?)K~!logn) time with probability 1 — 27¢, if K >

log® n.

If we can be satisfied with an approximately optimal solution, that has size at least (1 — €) times the
optimal, we can further reduce the running time by a different sampling strategy. We sample Pcp
with an points and Q C Q with 3m points, where ag = clog n/K for some sufficiently large constant c,

and compute the largest common set between P and Q.

Theorem 3 For any fized ¢ > 0, we can find, with high probability, a common point set between P and
Q of size at least (1 — €) times the largest in expected O((M(n, m) + n?)K~?log® n) time.

2.2 Alignment scheme

In the alignment scheme, we consider each pair of edges pp’ from P and gq’ of @ with equal length,
align pp’ with gq’, and count the number of points of P that now coincide with a point of @. In other
words, we count the size of the intersection T(P) N @, where T = T[p,p’;q,q']. In the deterministic
version, we need to consider A(P, Q) alignments and the counting for each alignment takes O{mlogn)
time. Alignments can be enumerated in a manner similar to the voting-based algorithm. Thus, we have a
running time bound of O((A(n, m)ym+n?) log n).- This is worse than the voting-based algorithm. However,
when we apply random sampling (for exact optimization), the rate of reduction in running time is larger
in this case. Sample a subset R of P with size cn/K, with sufficiently large c so that R contains at least
2 points of the largest common point set with high probability. Then, we need only to consider each edge
pp’ in R for alignment. This is in contrast with the voting case, where we need to consider each edge
pp' with p € R and p’ € P for voting. Thus, the first term of the running time is reduced by a factor
of ¢?/K? and, when K is close to m, is comparable with the voting scheme. Irani and Raghavan [15]
apply random sampling to an alignment scheme for LSP; this is reasonable because K is linear in m in
the applications they intend.

For CCD, where our goal is to determine if A = m, the alignment scheme has an advantage of giving
a fast Las Vegas algorithm (i.e. an algorithm that does not risk an error), in contrast to the voting
scheme that gives a Monte Carlo randomized algorithm (i.e. an algorithm that has some probability of
making an error). The idea is to sample from @ rather than from P. The reason we sample from P for
the general LCP is because we want to reduce the n?log n term in the deterministic time, which accounts
for the preprocessing of distances in P . For CCD, this preprocessing can be avoided and sampling from

@ turns out advantageous.

Theorem 4 CCD can be solved in O(n*/3*mlogn + n*/3log®> n) deterministic time and in
O(min{\(n, m)m~!logn,n*/3mlog n} + n*3log®* n) Las Vegas ezpected time.

Proof: We randomly sample a pair g, ¢’ of points from @. Using the the methods of Agarwal et al. [1],
we find all occurrences of the distance dist(q,q') in P in O(n*/31og®/® n + klogn) time, where k is the
number of occurrences of the distance. In the worst case, we have k = O(n*/3), from the bound on the
repeated distances, and the expected value of k is A(P,Q)/m?2. For each such occurrence pp’, we align
gq' with pp’ and test if the entire @ is matched into P, using O(mlogn) time. The total running time
is O(kmlogn + n*/3 log®3 n), from which the claim follows by plugging in the bounds on k. m]

2.3 Higher dimensions

Both the voting and alignment schemes easily generalize to higher dimensions. We only discuss the
voting scheme in three dimensional case here, because of page limitation. The generalization of the
alignment scheme (and especially its specialization to CCD) can be done similarly.

Let the point sets P and @ be in the three-dimensional space. The local voting is now done fixing
a pair of edges pp’ from P and qq’ from Q of equal length. Each pair of points € P and y € Q
such that the triangles pp’z and qq’y are congruent casts a vote to the transformation that matches
the triangles. When these triangles are degenerate, i.e., z lies on line pp’ and y on line q¢’, and hence
does not determine a transformation, the vote becomes “public”?, i.e., it conceptually adds a count to
every candidate in this particular local voting process. Public votes are counted separately and added
to the maximum vote count in the end of the local voting. We do the local voting for every matching
pair (pp’,qq’) of edges and take the transformation with the maximum vote count. It is clear that the
maximum vote count is K — 2.

The number of local voting processes to be performed is bounded by A®1)(n,m) and the number of
total votes cast by A3 (n, m). To enumerate matching pairs of edges for which to perform local voting,
we use a sorted list of distances in P as we did in the planar case: O(n?logn) preprocessing time and
O(nm?logn) query time. To enumerate matching triangles that cast votes, we similarly use a sorted list
of triangles: O(n®logn) preprocessing time and O(A(®V)(n, m)mlogn) query time. Thus, we have:

Theorem 5 LCP in the three-dimensional space can be solved in time O((AG?) (n,m) + A®V (n, m)m +
n3) log n).

When we use our current bounds on A3 (n,m) and A4 (n,m) that are roughly O(n!#m?8) and
O(n!*m?) respectively, it turns out that the second term is subsumed by the first. The random sampling
approaches also work for the three-dimensional space and gives a speed up of roughly K? for exact

optimization and K2 for approximate optimization. We omit the details.

3 Bounding A(n,m)

We now turn to the combinatorial-geometric analysis of the inner-product of multiplicity vectors. We

start with the planar case.
Theorem 6 A(n,m) = O(n!*3m!77),

We need some lemmas due to Székely (21, 16] (Lemmas 1 and 2 below), which he used in proving the
Q(n*/®) bound on the number of distinct distances in an arbitrary set of n points.
A crossing number of a drawing of a graph G on a plane is the number of intersections of drawn edges.

Let ¢r(G) denote the minimum of the crossing numbers over all drawings of G.

Lemma 1 In the graph G with n vertices and t edges, if each edge has at most y edges parallel to it,
then cr(G) = Q(t3/yn?) - O(y?n)

Recall the notation in the introduction: v(P) is the number of distinct distances in P, D(P) =
{liy Py} is the set of such distances listed in a non-increasing order of multiplicity, and Hp[l] is
the multiplicity of the distance / in P. Let 1 < k < v(P). We consider the subset {l;, ..., {4} of D(P),
consisting of the first k entries, and let f(k) = ZLI Hp(l;). We create k concentric circles of radii /,..,/}
around each point of P. Hence, we have nk circles in total: let C(k) denote the set of these circles.

The circles in C(k) have 2f (k) incidences with the point set P. We delete circles containing at most
two points of P and let C'(k) denote the set of remaining circles. Each circle of C'(k) contains at least
three points of P and these points cut the circle into at least three arcs. If we let 4 denote the set of
these arcs coming from all the circles of C’'(k), then | 4] is equal to the number of incidences between the
circles of C'(k) and the points of P, and hence, is at least 2f(k) — 2kn. Define a multigraph G(k) whose
vertices are points of P, and whose edges are arcs of 4. Since each pair of at most kn circles of C' (k)
intersect at most twice, the crossing number cr(G(k)) of G(k) is at most k?n2,

The following lemma is due (in a slightly different form) to Székely.

Lemma 2 For each y, the number of edges in G(k) having at least y edges parallel to them is at most
O(n%k/y? + knlogn).

Proposition 1 f(k) = O(min{n?%7k5/7 n?}).

Proof: O(n?) is a trivial bound. The O(n*®7k%/7) bound needs to be proved for k < n*/3, where we
can assume that f(k) > knlogn.

We construct G(k), set y = m for some constant C, and delete all edges of multiplicity
larger than y. From Lemma 2, at most f(k) edges are removed, if we set C sufficiently large. Then,
we have a graph G with Q(f(k)) edges, whose edge multiplicity is at most y. From Lemma 1, k*n? >
(@) = Q(f(k)3/yn?) — O(y*n). Hence, k*n? = Q(f(k)3%/n2k%%) (the O(y*n) term is negligible). It
follows that f(k)3® = O(k*°n®) and hence f(k) = O(n'%/7k5/7). o

Tt is an easy excercise to obtain Theorem 6 from the above lemma.

4 Bounding A3 (n,m) and A3 (n,m).

We now turn to the three-dimensional space. In the following, O'(f(n)) will abbreviate (log* n)°1) f(n),
i.e., it hides polynomial factors of log® n. It is known that the number of occurrence of a given dis-
tance in a set of n points in the three dimensional space is O'(n*?) [8]. This trivially implies that
A8 (n, m) = 0'(n3/?m?). In the following, we derive an upper bound on A2 (n, m).

For each triangle A, let Hp(A) denote the multiplicity of A in P (i.e., the number of ordered triples
of P forming an occurrence of A) and recall that A& (P,Q) = 3", Hp(A)Hg(A). An upper bound on
Hp(A) can be obtained by considering the following circle-point incidence problem. Let A = ABZ be
an arbitrary triangle and h be the distance from Z to the line AB. For each pair p, q of points of P with
dist(p,q) = dist(A, B), the trajectory of the vertex Z of a triangle congruent to A locating 4 and B at
p and q, respectively, forms a circle of radius h. Thus, if N = O'(n3/ 2) is the multiplicity of distance
dist(A, B) in P, the multiplicity of A is at most the number of incidénces between N circles and n points.

Lemma 3 Given a set of N circles and n points in the d-dimensional space for d > 3, there are O(N +
n + min{ N2/3n, Nnl/2, N4/503/5log™ N}) circle-point incidences.

Proof: Consider the bipartite graph H = (V,W, E), where V corresponds to the set of circles, W
corresponds to the set of points, and F is the edge set, where a vertex of V and a vertex of W are
connected with an edge if the corresponding circle and point are incident. Since two circles intersect at
most two points (in any dimensional space), graph does not contain K3 3. Thus, we have O{N + n +
min{~N?/3n, Nn'/2}) bound (a Canham-like bound). By projecting the figure to a two-dimensional plane,
so that no pair of points overlap, we have an arrangement of ellipses. Now, similarly to [8]; we can use
cutting theory of arrangements, and obtain the O(N*/5n3/5]og” N) bound. u}

From this lemma, it immediately follows that Hp(A) = O'((n?¥/2)%/5n3/%) = O'(n!®) and hence
AMn,m) = O'(n'#m3). We show below that this bound can be slightly improved, using an idea similar

to the one used in the analysis of A(n, m).
Theorem 7 A3 (n,m) = O'(n!¥m?%).

Note: Erdés and Purdy [11] gave an O(n3~!/3) bound for the number of triangles with a given volume
in the space, and asked a question about the number of pairwise congruent triangles, for which we have
an O'(n!®) bound as a byproduct of the above Theorem (precisely, as a corollary of Lemma 3). We can

similarly obtain an O'(n??) bound on the number of pairwise similar triangles in the space.

23 Xk

[1] P. Agarwal, B. Aronov, M. Sharir, and S. Suri, “Selecting Distances in the plane” Algorithmica vol 9, pp.
495-514, 1993.

[2] T. Akutsu, “Substructure search and alignment algorithms for three-dimensional protein structures,” Proc.
SIGAL-41, pp. 1-8, IPSJ, 1994.

[3] T. Akutsu, “On determining the congruency of point sets in higher dimensions,” Proc. ISAAC’94 (LNCS
834), pp- 38-55, 1994.

[4] H. Alt, K. Melhorn, H. Wagener and E. Welzl. “Congruence, similarity, and symmetries of geometric objects,”
Discrete & Comput. Geom., vol. 3, pp. 237-256, 1988.

[5] M. Atkinson, “An Optimal Algorithm for Geometric Congruence” J. Algorithms vol. 8 pp. 159-172, 1987.

[6] D. H. Ballard, “Generalizing the Hough Transformation to Detect Arbitrary Shapes”, Pattern Recognition,
13-2(1981), pp. 111-122.

[7] P. Chew, M. Goodrich, D. Huttenlocker, K. Kedem, J. Kleinberg, and D. Kravet, “Geometric Pattern Matching
under Euclidean Motion” Proc. 5th CCCG pp. 151-156 (1993)

[8] K. Clarkson, H. Edelsbrunner, L. Guibas, M. Sharir and E. Welzl, “Combinatorial complexity bounds for
arrangements of curves and spheres,” Discrete & Comput. Geom., vol. 5, pp. 99-160, 1990.

[9] P. Exdés, “On the set of distances of n points”, Amer. Math. Monthly vol 53, pp.248-250 (1946).

[10] P. Erdos, “On the set of distances of n points in Euclidean space”, Magyar Tud. Akad. Mat. Kut. Int. Koz1. 5
(1960) pp.165-169. Also in Paul Erdos: The Art of Counting (Selected Writing) (J. Spencer, ed.) pp. 676-679,
MIT Press, 1973.

[L1] P. Erdos and G. Purdy, “Some extremal problems in geometry”, J. Comb. Theory vol 10-3, pp. 246-252
(1971).

[12] M.T. Goodrich, J. S. B. Mitchell and M. W. Orletsky, “Practical methods for approximate geometric pattern
matching under rigid motions,” Proc. 10th ACM SCG, pp. 103-112, 1994,

[13] P. J. Heffernan. “Generalized approximate algorithms for point sets congruence,” Proc. Workshop on Algo-
rithms and Data Structures, pp. 373-384, 1993.

[14] J. E. Hopcroft and D. P. Huttenlocher, Geometric invariance on computer vision, chapter 18, pp.354-374.
MIT Press, 1992.

15} S.Irani and P. Raghavan, “Combinatorial and experimental results for randomized point matching algorithms

3 P 5
” Proc. 12th ACM SCG, pp. 68-77, 1996.

[16] J. Matousek, “Combinatorial and algorithmic geometry”, Unpublished lecture notes.

[17] R. Motowani et al., “Hashing Molecules for Common Substructures” Working paper, 1996.

[18] P. J. de Rezende and D. T. Lee, “Point set pattern matching in d-dimensions,” Algorithmica, vol. 13, pp.
387-404, 1995. .

[19] K. Sugihara, “An nlogn algorithm for determining the congruity of polyhedra® J.. Comput. and Sys. Sci,,
vol. 29, pp. 36-47, 1984.

[20] E. Szemerédi and W.T. Trotter, “Extremal problems in discrete geometry,” Combinatorica, vol. 3, pp. 381~
392, 1983. '

[21] L. Székely, “Crossing numbers and hard Erdés problems in discrete geometry” Manuscript, 1996.

[22] G. Vriend and C. Sander, “Detection of common three-dimensional substructures in proteins,” PROTEINS:
Structure, Function, and Genetics, vol. 11, pp. 52-58, 1991.

