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Abstract

The watchman route problem is to find a shortest route in a simple polygon such that each
point in the interior of the polygon is visible fromat least one point along the route. The best time
bound for this problem among three existing watchman route algorithms is O(n?), where n is the
number of vertices of the given polygon. However, an error in the analysis of time complexities of
those algorithms was recently pointed out. In this paper, we revise the method for analyzing the
time complexities of the existing watchman route algorithms, and show that their time bounds

are still correct.

1 Introduction

The watchman route problem [1, 2, 8, 9], an interesting variation of the well-known art gallery
problem, deals with finding a route (actually a cycle) in a simple polygon with n edges so that each
point in the interior of the polygon can be seen from at least one point along the route. Two points
inside a polygon are said to be mutually visible if the segment between them lies entirely in the
polygon. The objective is to minimize the length of the route. The watchman route problem deals
with visibility as well as metric information.



We consider the watchman route problem for simple polygons that have a starting point s specified
on their boundaries, i.e., watchman routes start at s and also end at s. In 1991, Chin and Ntafos [2]
presented an O(n*) time algorithm for constructing shortest watchman routes in simple polygons.
Their algorithm first finds an initial watchman route and then computes the shortest watchman
route by repeatedly adjusting the current one. An adjustment always produces a new and shorter
watchman route. Tan et al. improved the time bound to O(n%) [8] and later to O(n?) [9]. It is shown
in [8] that a one-place-adjustable watchman route can be quickly adjusted into the shortest one.

However, an error in the analysis of time complexities of those algorithms was recently pointed
out by Hammar [6]. In this paper, we revise the method for analyzing the time complexities of the
existing watchman route algorithms, and show that their time bounds are still correct.

2 Definitions

Let P be an n-sided simple polygon, given by the sequence of its vertices in the clockwise order from
s. A vertex is reflez if the internal angle is strictly greater than 180°. P can be partitioned into two
pieces by a “cut” that starts at a reflex vertex » and extends either edge incident to v until it first
intersects the boundary of P. We say a cut is a wvisibility cut if it produces a conver angle (< 180°)
at v in the piece of P containing s. In order to see the corner incident to a visibility cut, a watchman
route needs to visit at least one point on that cut. The piece of P containing s is called the essential
piece of C. All visibility cuts can be found in O(nlogn) time using the ray-shooting algorithm [3].

We say cut C; dominates cut C; if the essential piece of C; contains that of C;. Clearly, if C;
dominates C;, any route that visits C; will automatically visit C;. A cut is called an essential cut
if it is not dominated by any other cuts. The watchman route problem is now reduced to that of
finding the shortest route that visits all essential cuts. In the rest of this paper, we consider only
the essential cuts. Let m be the number of essential cuts and let Cy, Cs, - -+, C,, be the sequence of
essential cuts indexed in the clockwise order of their left endpoints. A cut can intersect with some
cuts and is thus divided into several segments. We call these segments the fragments of a cut. We say
fragment f (point p) dominates cut C if f (p) lies in the non-essential piece of C. That is, any route
that visits f (p) also visits the cut C. We also say fragment f dominates fragment g if f dominates
the cut to which g belongs.

Lemma 1 (Chin and Ntafos [2]) The shortest watchman route should visit the cuts in the order in
which they appear in the boundary of P.

Depending on whether a watchman route goes over a cut (as viewed from s) or just reflects
on a cut, we say that the watchman route makes a crossing contact or a reflection contact with
the cut, respectively. The degenerate cases of reflection contacts and crossing contacts, where the
watchman route shares a line segment with the cut, are called tangential contacts (see also [2, 8]
for exact definitions). For a watchman route, the set of the fragments with which the route makes
reflection contacts is called the watchman fragment set. With respect to a watchman fragment set,
we distinguish a fragment as an active or inactive fragment according to whether it belongs to the
fragment set or not. A cut is active if it contains an active fragment. Otherwise, it is inactive.

Given a watchman fragment set, we can construct the corresponding (optimal) watchman route
in polygon P. Specifically, the non-essential pieces of all active cuts are removed (since the optimal
watchman route never needs to enter them) and the resulting polygon P’ is then triangulated. The
active fragments are used in order as mirrors to “roll-out” the triangulation of P’. Now, the optimal
watchman route can be determined by finding the shortest route between s and the image t of s



in the rolled-out polygon; and by folding back the shortest route along the active fragments. The
whole procedure takes O(n) time since a simple polygon can be triangulated in linear time [4] and
the shortest path between two points in a triangulated polygon can be found in linear time [5]. (See

- {2] for details.) We call this method as the rolled-out method. Note that the watchman route found
by the rolled-out method is optimal only with respect to the given watchman fragment set. It is thus
possible to make it shorter by changing the watchman fragment set.

Definition 1 A watchman route R is adjustable on an active cut C if (i) R makes a reflection
contact with C, (ii) the incoming angle of R with C is not equal to the outgoing angle and (iii) the
contact point of R with C is not the endpoint of C. (That is, we can adjust the contact point on C
to get a shorter watchman route.)

Definition 2 A watchman route R is one-place-adjustable if R is adjustable only on one active cut.

As shown in [2], there are three types of adjustments on an active cut C;. In Fig. 1, the incoming
angle of the current route R' with C; is assumed to be smaller than the outgoing angle. (The
symmetric case is omitted.) Thus, we should adjust the reflection contact of C; to the left. The bold
and discontinuous segments in Fig. 1 stand for the active fragments before and after an adjustment,
respectively. A possible next route R'*! is also shown. An adjustment occurs only at the intersection
of two essential cuts and causes some changes in the watchman fragment set. For such ‘a change,
we have to compute the new watchman route by the rolled-out method. Depending on the change
of the number of active fragments, we call them as (-1)-adjustments (Fig. 1a), 0-adjustments (Fig.
1b), (+1)-adjustments (Fig. 1c) and (+1)-switches (Fig. 1d), respectively. Note that a (+1)-switch
occurs only when the incoming angles of R’ with two considered cuts are smaller than the outgoing
angles. In this case, R' = R*! and furthermore it follows a (—1)-adjustment in B! that makes C;
inactive.

Theorem 1 (Chin and Ntafos [2]) There is a unique non-adjustable watchman route in a simple
polygon P. '

Lemma 2 (Chin and Ntafos [2]) A watchman route R is a shortest watchman route if and only if
R is non-adjustable.

3 Time analysis of watchman route algorithms
We first define the direction of adjustments on an active cut.

Definition 3 The direction of an adjustment on an adjustable cut C is the shift direction of the
reflection points on C.

Chin and Ntafos’ algorithm first finds an initial watchman route and then computes the shortest
watchman route by repeatedly adjusting the current one with the adjust at the first choice selection
rule. That is, the adjustment on the cut of the smallest index is done first. In the proofs of Lemma
8 and Theorem 2 of [2], Chin and Ntafos made an observation that the adjustments resulting from
an adjustment on C; should be all in the same direction on the previous cuts. Tan et al. dealt with
an initial one-place-adjustable watchman route and made the similar argument in the time analysis
of their algorithm (Lemmas 5 and 6 of [8]). However, Hammar recently pointed out that Chin and
Ntafos’ observation was not generally true and the adjustments on the cuts of lower indexes would



change their directions because of a (+1)-adjustment [6]. (Actually, such phenomenon also occurs
for a (—1)-adjustment.)

In the following, we show that the mistake found by Hammar is not so serious. Let R® denote
a one-place-adjustable watchman route. We will show that in the process of computing the shortest
watchman route from R®, although a 0-adjustment at the same place (cut intersection) may be
repeatedly performed several times, neither (+1)-adjustments nor (~1)-adjustments can be repeated.
Hence, at most O(m) (+1)- and (~1)-adjustments and O(m?) 0-adjustments can be made. Note
that (+1)-adjustments and (—1)-adjustments are time-consumed; each of them requires to redraw the
rolled-out polygon and thus spends linear time, but a 0-adjustment can be implemented in constant
time by the new technique introduced in this paper. Thus, the above mistake can be corrected by
changing the method for analyzing the time complexities of the existing watchman route algorithms.

Assume that C; is the only adjustable cut of route R and r; is the reflection point on C;. To
find the shortest watchman route from R°, we first generalize the adjust at the first choice rule to
what we call the adjust at the first/last choice rule. That is, an adjustment on C; is made only when
the current route is one-place-adjustable, and the adjustments on two parts, one from s to r; and
the other from r; to t, are performed using the adjust at the first choice and adjust at the last choice
selection rules, respectively. Thus, the reflection point on C; can not oscillate. The first and last
adjustments (not on C;) can be performed simultaneously, as the adjusting effect is isolated by C;.

Without loss of generality, we assume that the adjustable cut C; remains active in the whole
adjusting process. (If C; becomes inactive because of a (—1)-adjustment, then the act of C; is replaced
by the other active cut. Thus, this assumption can always be satisfied.) To catch characteristics of
(+1)- and (—1)-adjustments, we slightly deform the rolled-out method as follows. Instead of starting
from s in the original method, we begin with cut C;, and roll-out the portion of the watchman route
from 7; to s to the left side of C; and the portion from r; to ¢ to the right side of C;, respectively.
In this way, the position of C; is always fixed, but the positions of both s and t are often changed
in the rolled-out polygons. Since R° is one-place-adjustable, the rolled-out version of R® can be
topologically considered as two line segments 37; and 7,t (in the sense neither of them can further
be shortened), and is thus a convex chain. Note that the line segment sf can be considered as the
target that the current watchman route tries to reach. In the following, we show that the rolled-out
version of the route R' (I > 0) always appears as a convex polygonal chain in the adjusting process,
and the change of positions of both s and ¢ in the rolled-out polygons is opposite to the direction in
which r; moves.

Since a 0-adjustment does not change the set of active cuts, the rolled-out versions of routes R!
and R™! (I > 0) before and after the adjustment are superimposed with R'*! interior to R'. Thus
for a 0-adjustment, the positions of s and ¢ are not changed and the convexity of the rolled-out routes
is simply kept. ‘

Consider now (+1)- and (—1)-adjustments. Assume first that a (+1)-adjustment (Fig. 1lc) on
C; is chosen to be done. Note that the current route R' is one-place-adjustable in this case. Let
C; denote the other participating cut. If i < j, then the incoming angle of R’ with cut C; has to
be greater than the outgoing angle (see also Fig. 1c). So C; is added as a new mirror when we
use the rolled-out method to compute R'*1. It results in a reflection of the segment ;% along C; in
the rolled-out polygon. For comparison, two routes with the same length, immediately before and
after the (+1)-adjustment, are shown in Fig. 2. Since the incoming angle of R' with C; is greater
than the outgoing angle, both the line segment 7, and its reflection image lie in one side of the line
extending 37;. Clearly, t moves to a new position in the direction opposite to which r; moves, and
the rolled-out route R'! remains as a convex polygonal chain (Fig. 2). Similarly if ¢ > j, then the
incoming angle of R! with cut C; has to be smaller than the outgoing angle, and the line segment



37; is reflected along C; in the rolled-out polygon.

Let us consider now the (+1)-switch and the (—1)-adjustment occurred on C;. Note that a (+1)-
switch should be followed by a (—1)-adjustment, and that C; can take part in a (—1)-adjustment
only after a (41)-switch on C; is performed and this (—1)-adjustment makes C; inactive (see also
Fig. 1d). Let C; denote the cut participating the (+1)-switch and the (—1)-adjustment. In this
case, the incoming angles of R’ with C; and C; are smaller than outgoing angles. It acts to switch
the only adjustable cut of the current route from C; to C;. Switching from C; to C; asks s to jump
to a new position opposite to the direction in which r; moves in the rolled-out polygon. See Fig. 3.
For convenience, the image of s before reflecting the part from s to r; along C; or C;, denoted by ¢/,
is also shown in Fig. 3. Again, the convexity of the new rolled-out route is kept.

If the adjustment to be made occurs on the cut Cj, (h # i), we assume without loss of generality
that h < ¢ and that C}, is the only adjustable cut in the part of the current route from s to r;. Let Ci
denote the other cut taking part in the (+1)- or (—1)-adjustment on Cj. If it is a (+1)-adjustment,
then C}, is active in both R’ and R*+! (Fig. 4a and Fig. 4b), and two active fragments of Cj and Cj,
have to be interior to the convex chain of the route shown in Fig. 4b. Since r; is closer to C} than
Ck in the rolled-out figure when both Ci and C}, are active, index k is smaller than index h. Thus,
the line segment 377 is reflected along Cy to account for the (4+1)-adjustment. As the incoming angle
of R! with Cy (C}) is smaller (greater) than the outgoing angle in this case, 37 and its reflection
image lie in one side of the line extending 7,7;. Hence, the convexity of the rolled-out route R s
kept, and s jumps to a position opposite to the direction in which r moves (Fig. 4). Similarly, for a
(—1)-adjustment, Cj, is active in both R' and R™*! (Fig. 5a and Fig. 5d), and two active fragments
of Ck and C}, have to be outside of the convex chain of the route shown in Fig. 5a. In this case, index
k is smaller than index h, and the incoming angle of the route with Cj, is smaller that the outgoing
angle (Fig. 5a-b), even after Cy becomes inactive (Fig. 5c-d). Again, 37} is reflected to account for
the (—1)-adjustment, and the convexity of the current rolled-out route is kept. In order to show the
new position of s after the (—1)-adjustment, two intermediate steps are shown in Fig. 5b-c. (As a
result, the position of segment 377 in Fig. 5d can be simply obtained by reflecting segment 37 along
Ct in Fig. 5a.)

Since Cj, is the first adjustable cut in route R' and the rolled-out version of R’ is a convex chain,
the discussion above also works if the assumption that C} is the only adjustable cut in the part from
s to r; is removed. In summary, we have the following result.

Lemma 3 Let R® be a one-place-adjustable route and let C; be the only adjustable cut of R®. Every
(+1)- or (—1)-adjustment chosen by the adjust at the first/last choice rule asks s or t to move
in the reverse direction of adjustments on C;, and the convezity of the rolled-out routes is kept in the
whole adjusting process.

By now we can give our main result.

Theorem 2 The shortest watchman route can be found from a one-place-adjustable route in O(n?)
time using the adjust at the first/last choice selection rule.

Proof. Let R° denote the one-place-adjustable route, and let 7; be the reflection point on the
adjustable cut C; of R®. For simplicity, assume that the adjust at the first/last choice rule first selects
the adjustments in the part of R! from s to r; and then in the part from t to r;. When there exist
no adjustments in both parts, the adjustment on Cj, if exists, is made.

First, let us consider the number of (+1)- and (—1)-adjustments required in the process of
computing the shortest watchman route from R°. We claim that once an active cut becomes inactive



because of a (—1)-adjustment in the adjusting process, it can never be active again. If the (—1)
adjustment occurs on C;, then as discussed above, C; has to become inactive. Since the route after
the (—1)-adjustment is adjustable only on the other participating cut (e.g., C; in Fig. 3), C; can
not be active again. Assume now that the (—1) adjustment on cut Cy makes cut Cj inactive and
that h,k < i. See Fig. 5 for an example. From Lemma 3, the active fragment of C}, will dominate
Cy since then (Fig. 5d). If C) becomes inactive because of a (—1)-adjustment on a cut Cj, then
Cy will dominate Cj and C. By a simple induction proof, we can conclude that Cj can never be
active again. Thus, the claim is proved. It then follows that the total number of (+1) and (~1)-
adjustments in the whole process is O(m), which takes O(mn) time. (The same observation is also
made in Lemma 6 of [8].)

Let us now analyze the time required by 0-adjustments. Between two of (+1)- and/or (-1)-
adjustments, the set of active cuts is not changed. Since the current rolled-out route R' is a con-
vex chain and the directions of 0-adjustments all point to the line segment st, the direction of 0-
adjustments on any active cut can never be changed between two of (+1)- and/or (-1)-adjustments,
no matter which 0-adjustment is first performed (otherwise the length of the current route can not
be shortened). So the number of 0-adjustments between two of (+1)- and/or (-1)-adjustments is
bounded by number of fragments on active cuts. As active cuts forms several disjoint convex chains
within the given polygon, an inactive cut can intersect with at most two active cuts, and thus con-
tributes to at most two fragments on active cuts. So this number of fragments on active cuts is
bounded by O(m).

If we perform each 0-adjustment independently, then O(m) 0-adjustments take O(mn) time.
However, since the set of active cuts is not changed for these 0-adjustments, we can group them
together and adjust only once so that these adjustments can be made in linear time. First, since
the current rolled-out route R' is a convex chain and the directions of 0-adjustments all point to
the line segment st, the 0-adjustments on different active cuts can be grouped together. Such 0-
adjustments can be found in linear time using the adjust at the first/last choice selection rule. The
remaining problem is, if a 0-adjustment on an active cut C is found, then how many 0-adjustments (or
fragments) on C can be safely grouped together. If the whole cut C, instead of the active fragment
of C, is used in the rolled-out menthod, then the resulting route might not visit all of the cuts.
Therefore, we need to give a divide on cut C so that the fragments between the current reflection
point on C and the divide can be safely grouped together (i.e., the resulting route will reflect on C
at some point of that interval).

As discussed above, the divide on C is determined by the next possible (+1)-adjustment or (+1)-
switch on C. Let us consider the possibility for an inactive cut C’ to take part in a {(+1)-adjustment
or (+1)-switch on C. It may occur when the reflection point of the current route on C is the only
reflection point that lies in the non-essential piece of C’ and moves towards C’ (see also Fig. lc-d). So
we check the cut intersections in the adjusting direction on C to find the first inactive cut satisfying
the above condition. If such a cut C’ is found, then the intersection of C and C’ is the divide of
C. If no inactive cuts satisfy the above condition, then the whole cut C' can be used as a mirror
in the rolled-out method. It is easy to see that the divide on an active cut C can be found in time
linear to the number of inactive cuts intersecting C, provided that all fragments and the order of the
fragments on each cut are precomputed in O(m?) time. Thus, we can find the divides for all active
cuts in O(m) time. After the divides are found, we perform all of those (possible) 0-adjustments
once, which takes only O(n) time. Since there are at most O(m) (+1)- and (—1)-adjustments in the
whole adjusting process, the total time taken by 0-adjustments is O(mn). It completes the proof. O

If the method shown in Theorem 2 is used in the time analysis of existing watchman route
algorithms {2, 8, 9], then all of previous time bounds are correct. Thus, Tan and Hirata’s divide-and-



conquer algorithm [9] solves the watchman route problem in O(n?) time, which is the best bound of
three existing watchman route algorithms.

4 Conclusion

We have revised the method for analyzing the time complexities of watchman route algorithms, and
shown the correctness of time bounds of existing algorithms. Our analysis depends on the convexity
of watchman routes in the adjusting process, which is shown by slightly deforming the rolled-out
method. We also present a new technique for grouping a set of 0-adjustments as many as possible,
which ensures the efficiency of previous watchman route algorithms.

Carlsson, Jonsson and Nilsson have presented an O(n?) time algorithm for computing an overall
shortest watchman route without giving any start point, in which Tan and Hirata’s O(n?) time
algorithm is used as a subroutine. For detail, see [7].
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Fig. 1. Basic types of adjustments.
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Fig. 2. Two routes with the same length
before and after a (+1)-adjustment on C;.
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Fig. 4. A (+1)-adjustment on Cj with h < 1.
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Fig. 5. A (—1)-adjustment on C} with h < 1.



