7 Iy X b b6—-4
(1997. 3. 14)

o k-RO—IbBmT v F 27
ENAF TNV Azt BBe B Rk

tRIE KRR F BB
IR AR ERNEEET LY ¥ —

777 GOETODRIEEBDOIRVEMT S, £V ill2WT, i LYV KELT
NVDEEETGEPORELALLE, FEBRIET RV i OB EB 4B LI 120
Wb, ZOFTUHTE BTy 7T v, 2T XEEKET 2, B/hD
BED T RVTERG kK% BRI V7T T HEEARB7VT) X2 2 KL G X5,
CCTEREHLT S, 1-m7 VI HFRBICET V7T LN B 35, KD T7 VT
VAR, 1-BI VIR FTEROBIBEROT VT XA LV HETH S,

Generalized Vertex-Rankings of Partial k-Trees

Md. Abul Kashem!, Xiao Zhou! and Takao Nishizekit

tGraduate School of Information Sciences
*Education Center for Information Processing
Tohoku University, Sendai 980-77, Japan.
E-mail: kashem@nishizeki.ecei.tohoku.ac.jp, zhou@ecip.tohoku.ac.jp, nishi@ecei.tohoku.ac.jp

Abstract. A c-vertex-ranking of a graph G for a positive intéger ¢ is a labeling of
the vertices of G with integers such that, for any label 4, deletion of all vertices with
labels > ¢ leaves connected components, each having at most ¢ vertices with label i. We
present a polynomial time algorithm to find a ¢-vertex-ranking of a partial k-tree using
the minimum number of ranks for any positive integer ¢ and any bounded integer k.
Our algorithm is faster than the best algorithm known for the ordinary vertex-ranking,
that is, 1-vertex-ranking,.

Key words: Algorithm, Partial k-tree, Separator tree, Treewidth, Vertex-ranking.

1 Introduction

An ordinary vertez-ranking of a graph G is a labeling (ranking) of vertices of G with positive
integers such that every path between two vertices with the same label i contains a vertex
with label j > 1 [6]. Clearly a vertex-labeling is a vertex-ranking if and only if, for any label i,
deletion of all vertices with labels > i leaves connected components, each having at most one
vertex with label i. The integer label of a vertex is called the rank of the vertex. The vertez-
ranking problem is to find a vertex-ranking of a given graph G using the minimum number
of ranks. The vertex-ranking problem has applications in VLSI layout and in scheduling
the parallel assembly of a complex multi-part product from its components [6]. The vertex-
ranking problem is NP-hard in general (3, 10], while Iyer et al. presented an O(nlogn)
time algorithm to solve the vertex-ranking problem for trees [6). Then Schiffer obtained a
linear-time algorithm by refining their algorithm and its analysis [12]. Recently Deogun et

(3)
DN C. 1D

ARG CIICD
®)

Figure 1: (a) An optimal 2-ranking of a graph G and (b) a 2-vertex-separator tree of G.

al. gave algorithms to solve the vertex-ranking problem for interval graphs in O(n®) time
and for permutation graphs in O(n®) time [5]. Very recently Bodlaender et al. have given a
polynomial-time algorithm to solve the vertex-ranking problem for partial k-trees of bounded
treewidth k [3].

A natural generalization of an ordinary vertex-ranking is the c-vertex-ranking [14]. For a
positive integer ¢, a c-vertez-ranking (or a c-ranking for short) of a graph G is a labeling of
the vertices of G with integers such that, for any label ¢, deletion of all vertices with labels
> i leaves connected components, each having at most ¢ vertices with label i. Clearly an
ordinary vertex-ranking is a 1-vertex-ranking. The minimum number of ranks needed for
a c-vertex-ranking of G is called the c-vertez-ranking number (or the c-ranking number for
short), and is denoted by r.(G). A c-ranking of G using 7.(G) ranks is called an optimal
c-ranking of G. The c-ranking problem is to find an optimal c-ranking of a given graph G.
The problem is NP-hard in general since the ordinary vertex-ranking problem is NP-hard
[3, 10]. Zhou et al. have obtained a linear-time algorithm to solve the c-ranking problem
for trees [14]. Fig. 1(a) depicts an optimal 2-ranking of a graph G using three ranks, where
vertex numbers are drawn in circles and ranks next to the circles.

The c-vertex-ranking problem of a graph G is equivalent to finding a c-vertex-separator
tree of G having the minimum height. Consider the process of starting with a connected
graph G and partitioning it recursively by deleting at most ¢ vertices from each of the re-
maining connected components until the graph becomes empty. The tree representing the
recursive decomposition is called a c-vertez-separator tree of G. Thus a c-vertex-separator
tree corresponds to a parallel computation scheme based on the process above. Fig. 1(b)
illustrates a 2-vertex-separator tree of the graph G depicted in Fig. 1(a), where the vertex
numbers of deleted ones are drawn in ovals.

Let M be a sparse symmetric matrix, and let M’ be a matrix obtained from M by
replacing each nonzero element with 1. Let G be a graph with adjacency matrix M’'. Then
an optimal c-vertex-ranking of G corresponds to a generalized Cholesky factorization of M
having the minimum recursive depth [9].

The edge-ranking problem [7] and the c-edge-ranking problem [13] for a graph G are
defined similarly. The edge-ranking problem, that is, 1-edge-ranking problem, is: NP-hard in
general [8], while de la Torre et al. obtained an algorithm to solve the edge-ranking problem
for trees in O(n3logn) time [4]. On the other hand, Zhou et al. gave an O(n’logA) time
algorithm to solve the c-edge-ranking problem on trees for any positive integer ¢, where A is
the maximum degree of T [13].

In this paper we give a polynomial-time algorithm to solve the c-vertex-ranking problem

on partial k-trees of bounded treewidth k for any positive integer c. It is the first polynomial-
time algorithm for the generalized vertex-ranking problem on partial k-trees, and is faster
than the best algorithm known for the ordinary vertex-ranking problem [3]. The result in
this paper implies a polynomial-time algorithm of the generalized vertex-ranking problem for
any class of graphs with a uniform upper bound on the treewidth, e.g., series-parallel graphs,
outerplanar graphs, k-outerplanar graphs, Halin graphs, graphs with bandwidth < &, graphs
with cutwidth < k, chordal graphs with maximum clique-size k, graphs that do not contain
some fixed planar graph as a minor [1].

2 Preliminaries

In this section we define some terms and present easy observations. Let G = (V, E) denote a
graph with vertex set V" and edge set E. We often denote by V(G) and E(G) the vertex set
and the edge set of G, respectively. We denote by n the number of vertices in G. An edge
joining vertices u and v is denoted by (u,v). We will use notions as: leaf, node, child, father
and root in their usual meaning.

A natural generalization of ordinary trees is the so-called k-trees. The class of k-trees is
defined recursively as follows [1]:

(a) A complete graph with k vertices is a k-tree.

- (b)If G = (V,E) is a k-tree and k vertices vy, vq,- -, v, induce a complete subgraph of
G, then G' = (VU {w}, EU {(vi,w) | 1 < i < k}) is a k-tree, where w is a new vertex
not contained in G.

(c) All k-trees can be formed with rules (a) and (b).

A graph is called a partial k-treeif it is a subgraph of a k-tree. Thus a partial k-tree G = (V, E)
is a simple graph without multiple edges or self-loops, and |E| < kn. In this paper we assume
that k is a constant. Figure 2(a) illustrates a process of generating a 3-tree, and Fig. 2(b)
depicts a partial 3-tree.

A tree-decomposition of a graph G = (V, E) is a pair (T, S) with T = (Vg, ET) a tree and
S = {Xz |z € Vr} a collection of subsets of V satisfying the following three conditions [11]:

4 U.’EEVT Xz = V;
o for every edge e = (v,w) € E, there exits a node =z € Vr with v,w € X;; and

o for all z,y,z € V7, if node y lies on the path from node z to node z in T, then
X:NnX; C X,
Figure 2(c) depicts a tree-decomposition of the partial 3-tree in Fig. 2(b). The width of a
tree-decomposition (T, S) is max |Xz| — 1. The treewidth of a grapk G is the minimum width
z€Vp

of a tree-decomposition of G, taken over all possible tree-decompositions of G. It is known
that every graph with treewidth < k is a partial k-tree, and conversely, that every partial
k-tree has a tree-decomposition with width < k. For any fixed k, determining whether the
treewidth of G is at most k and finding a corresponding tree-decomposition can be done in
O(n) time [2].

Consider a tree-decomposition (T, S) of G with width < k. We transform it to a binary
tree-decomposition as follows [1]: regard T as a rooted tree by choosing an arbitrary node as
the root, and replace every internal node z with d children, say y;,¥2, -+, %4, by d + 1 new
nodes z1,%2,'-,2441 such that X; = X, = X, = --- = zq41» Where 21 has the same
father as z, z; is the father of z;4; and the ith child y;, 1 < i < d, of z, and z44; is a leaf
of the tree. This transformation can be done in O(n) time. The resulted tree-decomposition
(T, S) of G = (V, E) has the following characteristics:

X7(1,2.3.6) XF6.47

Xg(3.4.5.8 Xg(1.5.9)
(b) ©

Figure 2: (a) 3-trees, (b) a partial 3-tree and (c) a tree-decomposition of the partial 3-tree.

o the width of (T, S) is < k, and the number of nodes in T is O(n);

e each internal node z of T has exactly two children, say y and 2, and either X, = X,
or X; = X,; and

o for each edge e = (v,w) € E, there is at least one leaf y in T such that v,w € X,.

Consider a rooted binary tree-decomposition (7', S) of a partial k-tree G. To each node z
of the rooted tree T, we associate a subgraph G = (V, E;) of G, where V;, = ({X, |y ==
or y is a descendant of z in T} and E; = {(v,w) € E | v,w € V;}. Thus the root of T
corresponds to G.

Let ¢ be a vertex-labeling of a partial k-tree G with positive integers. The label (rank)
of a vertex v € V is denoted by ¢(v). The number of ranks used by a vertex-labeling ¢ is
denoted by #¢. One may assume without loss of generality that ¢ uses consecutive integers
1,2,--+,#p as the ranks. For a subgraph G; = (V, E;) of G, z € Vr, we denote by |G, or
simply by ¢, a restriction of ¢ to Gg: ¢z(v) = ¢(v) for v € V;. A vertex w € V; is said to
be visible from a vertex v € X under ¢ in G; if G, has a path from v to w every vertex of
which has a rank < ¢(w). Then the rank p(w) of w is also said to be visible from v under ¢
in Gz. Thus the smallest rank visible from the vertex v under ¢ in G; is equal to p(v). We
then have the following lemma which characterizes the c-ranking of a partial k-tree by the
number of visible vertices.

Lemma 2.1 Let (T, S) be a rooted binary tree-decomposition of a partial k-tree G. Let an
internal node z in T have two children y and z. Then a vertez-labeling ¢ of G is a c-ranking
of G if and only if

(a) ¢|Gy and ¢|G, are c-rankings of Gy and G,, respectively; and

(b) at most ¢ vertices of the same rank are visible from any vertez v € X, under ¢ in G.
a

We next show that the number of ranks needed for an optimal c-ranking of a partial k-tree

is at most [] (1 4 logn). We first cite the following lemma from [11].

Lemma 2.2 Let G = (V,E) be a partial k-tree of n vertices. Then there exists X C V with
|X] < k + 1 such that every connected component of G — X contains at most 1|V — X| < 3
vertices. O

We then have the following lemma.

Lemma 2.3 Every partial k-tree G of n vertices satisfies r.(G) < [] (1+ logn). o

3 Optimal c-ranking

The main result of this paper is the following theorem.

Theorem 3.1 For any positive integer ¢ and any bounded integer k, an optimal c-ranking
of a partial k-tree G can be found in time O(n2(+D N log(c+1)+2 |1 ook(k+1)+1 1, 10 10g n),
where n is the number of vertices in G.

In the remaining of this section we give an algorithm to find an optimal c-ranking of a
partial k-tree G in time O(n2(E+DI*Eloglc+1)+2 |1 ook(B+1)+1 ;L 1og10g n). Let (T,5) be a
binary tree-decomposition of G. The first step of our algorithm is to decide, for a positive
integer m, whether G has a c-ranking ¢ with #¢ < m by means of dynamic programming
and bottom-up tree computation on the binary tree T: for each node z of T from leaves to the
root, we construct all (equivalence classes of) c-rankings of G, from those of two subgraphs
Gy and G, associated with the children y and 2z of z. Then, by using a binary search over
the range of m, 1 < m < [ﬁci] (1 +1logn), we determine the minimum value of m such that
G has a c-ranking ¢ with m = #¢ = r(G), and find an optimal c-ranking of G.

Many algorithms on partial k-trees use dynamic programming. For each node z of T,
a table of all possible partial solutions of the problem is computed, where each entry in
the table represents an equivalence class. The time-complexity of an algorithm mainly de-
pends on the size of the table. Therefore, we find a suitable equivalence class for which
the table has a polynomial size. For the ordinary vertex-ranking problem, Bodlaender
et al. [3] defined an equivalence class for which the size of the table on each node is
O(n(k+1)*(k+2) |og(k+1)(+2)/2) wwhile the size of the table of our algorithm for the c-ranking

problem is O(n(k“”‘t'] log(c+1) ogk(k+1)/2 n). This size of equivalence classes is one of the
key ideas behind the speed-up of our algorithm over the best algorithm known for the ordinary
vertex-ranking [3]. Before defining the equivalence class, we need to define some terms.

Let R = {1,2,---,m} be the set of ranks. Then a mapping (vertex-labeling) ¢ : V — R
is a c-ranking of a graph G if and only if for any rank i € R, deletion of all vertices with ranks
> i leaves connected components, each having at most ¢ vertices with rank i. A ¢-ranking of
Gqz, z € V7, is defined to be extensible if it can be extended to a c-ranking of G.

Let ¢ : Vz — R be a vertex-labeling of G = (V;, E;). Then more than one vertices with
the same rank may be visible from a vertex v € X, under ¢ in G,. For an integer i, we
denote by count(y,v,) the number of vertices ranked by i and visible from v under ¢ in G.
If ¢ is a c-ranking of G, then by Lemma 2.1 count(p,v,4) < c for any vertex v € X, and
any integer ¢ € R. Iyer et al. introduced an idea of a “critical list” to solve the ordinary
vertex-ranking problem for trees [6], while we define a count-list L(p,v) and a list-set £(¢p)
as follows:

L(p,v)
L(¥)

{(%, count(p,v,1)) | rank i is visible from v under ¢ in G}; and
{L(p,0) | v € X.}.

For the vertex-labeling ¢ of G, define a function A, : Xz X Xz — R U {0,00} as follows:

Ao(v,w) = min{A |G, has a path from v € X; to w € X;; such that
¢(u) < A for each internal vertex u of the path }.

Let Ap(v,w) = 0if (v,w) € E; or v = w, and let Ay(v,w) = oo if G, has no path from » to
w. Clearly A,(v,w) = Ay(w,v). We next define a pair R(yp) as follows:

R(#) = (£(#): Ap)-

We call such a pair R(¢p) the vector of ¢ on node z. The vector R(y) is called feasible if the
vertex-labeling ¢ is a c-ranking of G;. We then have the following lemma.

Lemma 8.2 Let ¢ and 7 be two c-rankings of G, such that R(¢) = R(n). Then ¢ is
extensible if and only if n is extensible.]

Thus a feasible vector R(¢) of ¢ on z can be seen as an equivalence class of extensible
c-rankings of G,. Since |R| = m and 0 < count(y,v,i) < ¢ for a c-ranking ¢ and a rank
i € R, the number of distinct count-lists L(p,v) is at most (¢ + 1)™ for each vertex v €
X,. Furthermore |X;| < k + 1. Therefore the number of distinct list-sets £(¢) is at most
(e+1)*k+)m_ On the other hand, the number of distinct functions A, : Xz X Xz — RU{0, 00}

is at most (m+2)’°("+1)/2, since Ay(v,v) = 0 and A, (v, w) = Ap(w,v) for any v,w € X;.
Therefore the total number of different feasible vectors on node z is at most (c + 1)(""'1)"‘ .
(m+ 2)”(”‘“)/2. By Lemma 2.3, one may assume that m < [E}‘l] (1+1logn). Thus the total

number of different feasible vectors on z is O(n(k+1*E1lo8(e+1) . 1ogk(k+1)/2 1) for fixed k.
The main step of our algorithm is to compute a table of all feasible vectors on the root
of T by means of dynamic programming and bottom-up tree computation on T'. If the table
has at least one feasible vector, then the partial k-tree G corresponding to the root of T has
a c-ranking ¢ such that #¢p < m.
For each leaf z of T, the table of all feasible vectors R(¢) = (£(®),A,) on = can be
computed in time O(log*! n) as follows:

(1) enumerate all vertex-labelings ¢ : V; — R; and

(2) compute all feasible vectors R(y) on z from the vertéx—la.belings pof Gg. -

Since |Vz| < k¥ + 1 and |R| = m, the number of vertex-labelings ¢ : V; — R is at most
mk+1, For each vertex-labeling ¢, A\, can be computed in time O(1). Futhermore, the
count-lists L(yp,v), v € X; = V;, can be computed in time O(1). Then checking whether a
vertex-labeling ¢ is a c-ranking of G, and if so, computing £(¢) can be done in time O(1).
Therefore, steps (1) and (2) can be executed for a leaf in time O(m*t!) = O(logF*! n).

Next we show how to compute all feasible vectors R(p) = (£(¢), A,) on an internal node
z of T from those on two children y and 2z of z. One may assume that X; = X,. Therefore
Vz =V, UV,. Let 1 and ¢ be c-rankings of G, and G, such that n{v) = (v) for any vertex
v € Xy N X, and let ¢ be the vertex-labeling of G, extended from 1 and +. Then |Gy =7
and ¢|G, = 9.

We first compute A,. Construct a graph G(n) from X, and 7(v), v € X,, as follows:
construct a complete graph of the vertices in X,; assign a weight of n(v) to each vertex
v € X, of the graph; place a dummy vertex on each edge (v,w) of the graph and assign
a weight of A,(v,w) to the dummy vertex. Then the total number of vertices in G(7) is
<k+1+k(k+1)/2=(k+1)(k+2)/2 and the total number of edges is < k(k+1). Similarly
construct a graph G(¢). We now construct a graph G’(¢) from G(7) and G(%) by identifying

the vertices v € X, N X,. Then the total number of vertices in G’(¢) is < (k + 1)(k +2) and
the total number of edges is < 2k(k + 1). Define a function Ay : Xz X X; = RU {0, 00} as
follows:

App(v,w) = min{X | G'(p) has a path from v € X; to w € X, such that
all internal vertices of the path have weights < A}.

Then by the construction of G'(), Ay(v,w) = Agy(v,w) for v,w € X,. Since G'(p) has a
constant number of vertices and a constant number of edges, A, can be computed by the
help of G'(¢) in time O(1) for each vector R(¢p).

We next show how to compute L£(¢). Let v be any vertex in X,. No vertex with a rank
i < ¢(v) is visible from v under ¢ in G;. Let i € R be any rank such that i > ¢(v). Delete all
vertices with ranks > i from G;. Among the connected components of the resulting graph,
let H be the one containing the vertex v. Clearly the number of vertices with rank ¢ in H is
equal to count(p,v,%). Since |Ez| = O(n) and |R| = m, the count-lists L(p,v), v € X, can
be computed in time O(n - m) = O(nlogn). Then checking whether a vertex-labeling ¢ is a
c-ranking of G, and if so, computing £(y) can be done in time O(nlogn).

Therefore each vector on an internal node can be computed in time O(nlogn). The table
of all feasible vectors on an internal node z can be obtained from the tables of all feasible
vectors on the two children of z, and the number of different feasible vectors on any node of
T is O(nk+DI*1logle+1) .1ogk(E+1)/2 1) Therefore the table on z can be computed in time
o(nz(k+1)r"—1c‘l'| log(c+1)+1 -log"(k"“)"'l n).

A binary tree-decomposition (7', S) of a given partial k-tree G can be found in O(n) time
[2]. We then have an algorithm CHECK to determine whether G has a c-ranking ¢ with
#¢ < m for a positive integer m.

Algorithm CHECK;
begin

1 compute a table of all feasible vectors on each leaf z of T, and keep a c-ranking ¢
of G arbitrarily chosen from the c-rankings having the same feasible vector;

2 for each internal node z of T', compute a table of all feasible vectors from those on
the two children of z, and keep a c-ranking ¢ of G, arbitrarily chosen from the
c-rankings having the same feasible vector;

3 repeat line 2 up to the root of T';

4 check whether there exists a feasible vector in the table at the root;

end.

Line 1 can be done in O(logk*! n) time for each leaf as mentioned before, and hence
line 1 can be done in O(nlog"*! n) time in total. As mentioned above, line 2 can be done

in O(n2(+DIE) log(c+1)+1 | 14ok(k+1)+1 1) time per node. Since line 2 is executed for O(n)
nodes in total in line 3, line 3 can be done in O(n2(E+DEETlos(c+1)+2 L ogk(k+1)+1 1) time
in total. Line 4 can be done in O(n(+UI*#1log(c+1) .10gk(k+1)/241 1y {ime in total. Thus
checking whether a partial k-tree G has a c-ranking ¢ such that #¢ < m can be done in
0(n2(k+1)|'"—'!i] log(c+1)+2 _logk(k+l)+l n) time.

Using the binary search technique over the range of m, 1 < m < [E'f-l-] (1 + logn), one
can find the smallest integer r.(G) such that G has a c-ranking ¢ with #¢ = 7.(G) by
calling CHECK O(loglogn) times. Therefore, an optimal c-ranking of a partial k-tree G

of n vertices can be found in time O(n""(k*"l)f!'t'11 log(c+1)+2 . 1ogk(k+1)+1 y .1oglogn) for any
positive integer ¢ and any bounded integer k.

4 Conclusion

We give a polynomial-time algorithm for finding an optimal c-ranking of a given partial k-tree
with bounded k. The algorithm takes time O(n2(-+DI*E 1log(c+1)+2 . 1ogk(k+1)+1 4, L jog]og n)
for any positive integer ¢. This is the first polynomial-time algorithm for the generalized
vertex-ranking problem on partial k-trees, and is faster than the best algorithm of complexity
O(n2(k+1)?(k+2)42 159 (++1)(k+3)+2 1y known for the ordinary vertex-ranking problem [3]. Our
algorithm can be implemented as an NC parallel algorithm, which takes O(log n) parallel
time with O(nAd(+DEH 1log(e+1)+1 log?*+1)(2k+1) 1y processors.

We may replace the positive integer ¢ by a function f: {1,2,--,7} — N to define a more
generalized vertex-ranking of a graph as follows: an f-ranking of a graph G is a labeling of
the vertices of G with integers such that, for any label i, deletion of all vertices with labels
> i leaves connected components, each having at most f(i) vertices with label i [14]. By
some trivial modifications of our algorithm for the c-ranking of a partial k-tree, we can find
an optimal f-ranking of a given partial k-tree in the same polynomial-time.

References

[1] H.L. Bodlaender, Polynomial algorithms for graph isomorphism and chromatic index on partial
k-trees, Journal of Algorithms, 11 (1990), pp. 631-643,

[2] H.L. Bodlaender, A linear time algorithm for finding tree-decompositions of small treewidth,
SIAM J. Comput., 25 (1996), pp. 1305-1317.

[3] H.L. Bodlaender, J.S. Deogun, K. Jansen, T. Kloks, D. Kratsch, H. Miiller, and Zs. Tuza, Rank-
ings of graphs, Proc. of the International Workshop on Graph-Theoretic Concepts in Computer
Science, Lecture Notes in Computer Science, Springer- Verlag, 903 (1994), pp. 292-304.

[4] P. de la Torre, R. Greenlaw, and A.A. Schiffer, Optimal edge ranking of trees in polynomial
time, Algorithmica, 13 (1995), pp. 592-618.

[5] 1.S. Deogun, T. Kloks, D. Kratsch, and H. Miiller, On vertex ranking for permutation and
other graphs, Proc. of the 11th Annual Symposium on Theoretical Aspects of Computer Science,
Lecture Notes in Computer Science, Springer-Verlag, 775 (1994), pp. 747-758.

[6] A.V. Iyer, H.D. Ratliff, and G. Vijayan, Optimal node ranking of trees, Information Processing
Letters, 28 (1988), pp. 225-229.
[7] A.V.Iyer, H.D. Ratliff, and G. Vijayan, On an edge-ranking problem of trees and graphs, Discrete
Applied Mathematics, 30 (1991), pp. 43-52.
[8] T.W. Lam and F.L. Yue, The NP-completeness of edge ranking, Manuscripi, 1996.
[9] J.W . H. Liu, The role of elimination trees in sparse factorization, SIAM Journal of Matriz
Analysis and Applications, 11 (1990), pp. 134-172,
[10] A.Pothen, The complexity of optimal elimination trees, Technical Report CS-88-13, Pennsylvania
State University, USA, 1988.
[11] N. Robertson and P.D. Seymour, Graph minors. II. Algorithmic aspect of tree-width, Journal of
Algorithms, T (1986), pp. 309-322.
{12] A.A. Schiffer, Optimal node ranking of trees in linear time, Information Processing Letters, 33
(1989/90), pp. 91-96.

[13] X. Zhou, M.A. Kashem, and T. Nishizeki, Generalized edge-rankings of trees, Technical Report
of SIGAL, 95-AL-46, Information Processing Society of Japan, 1995, pp. 73-80. Also to appear
in the Proc. of the 22nd. International Workshop on Graph-Theoretic Concepts in Computer
Science.

[14] X. Zhou, H. Nagai, and T. Nishizeki, Generalized vertex-rankings of trees, Information Processing
Letters, 56 (1995), pp. 321-328.

