7 N T U X A 58-9
(1997. 9. 19)

Contour Representation of an Image with Applications
EBEXL. KRR

LRE B EmAERAS (F)IREOA)
PRERRYS Y —8E (B) (FUEH)

-
=

ERIZIFEROPA S SORBERTITFIOR TRRASNIOB BRI THLN TiX, ER
PHZ S ETOMBICEIT HERL R2LT, BREPESER CTRAT HRAFELO VTR I,
B, ZORBOPHRORVRDF LT —FOFEXFEREBL, KT, ZORALAVEER
RBEZEHOHPRNT 5,

Contour Representation of an Image with Applications

Tetsuo Asano!. Souichi Kimura?

1School of Computer Science, JAIST (Tatsunokuchi, Ishikawa, Japan)
2 Dainippon Screen MFG. (Kyoto)

A common representation of an image is due to a matrix with intensity levels as its elements.
This paper deals with another representation using contour lines by regarding intensity levels of
pixels as height at corresponding locations. We first propose an efficient algorithm for finding
such a representation and a data structure for the representation, and then survey several

applications of the contour representation.

1 Introduction

There have been a nubmer of attempts to ap-
ply algorithmic techniques in computational
geometry to image processing or computer vi-
sion. Their purposes are often to have asymp-
totically faster algorithms. One of typical such
examples is the linear-time algorithm for com-
puting distance transformation by Breu, Gil,
Kirkpatrick and Werman [4] and Hirata and
Katoh [5] which is to compute the Euclidean
distance from each black pixel to its nearest
white pixel based on the geometric notions of
Voronoi diagram [4, 6] and lower envelope of
parabolas [5], respectively.

An alternative way of applications of com-
putational geometry is found, for example, in
the study on detecting fundamental curve com-
ponents in a binary edge image by the author
[2]. Although a great number of methods have
been proposed to detect planar curves in a bi-

nary image, most of them are based on heuris-
tic methods and a digital curve component is
often undefined or ambiguous. In this sense
the author’s is the first theoretical algorithm
with theoretically guaranteed performance.

It is common to represent a quantized im- -
age as a set of pixels with information of bright-
ness levels in three colors (Red, Blue, and Green)
in a matrix form. An alternative way of repre-
sentation is the one by contour lines. For each
gray level i we compute connected regions of
pixels with gray levels greater than or equal to
7. It is easy to reconstruct an original image
from those boundaries. Representation of an
image as a collection of those boundary lines
associated with gray levels (contour lines) is

“the contour representation of an image. This

representation is not new but it has been used
only for data compression of an image [8].

If we keeping the whole collection of those
contour lines, we would need at least several



times more space for image matrix. Thus, we
need a compact way for the representation.
Since it is rather easy to follow any contour line
once a starting edge is specified, we keep a set
of those starting edges (called ”seed edges”)
such that for each contour line at least one
edge is included. We give an efficient algo-
rithm for finding a reasonable size of a seed
set.

We describe three different applications of
the representation: restoration of an image with
flaw based on dynamic programming, improve-
ment of image quality (resolution), and en-
largement of an image with smooth edges.

2 Preliminaries

Let G = (g,-j), ,=1,2,...,v-2, 7=1,2,...,
h— 2 be an image such that each g;; is an inte-
ger between 0 and L — 1. For convenience we
embed the image into a two-dimensional v x h
array so that the boundary elements are all
—1. For further convention, we represent the
two-dimensional array by a one-dimensional
array in a raster-scan fashion. Formally, an
ij-element of the array is mapped to the k =
i * h+ j-th element of the one-dimensional ar-
ray. Therefore, the four neighboring pixels of
an internal pixel numbered k are those num-
bered k — h (above), k+ A (below), k—1 (left)
and k+1 (right), respectively. Throughout the
paper we denote the pixel numbered k by py.

(Lattice) edges are also sequentially num-
bered. The horizontal edge below a pixel p;
and vertical edge to the right of p; are num-
bered 2k and 2k+1, respectively. Now a set of
edges is: {eg,e1,...,€g}, where E = 2hv — 1.
Each edge is directed so that the interior of a
region lies to its right.

A set of pixels with gray levels > i, 0 <
i < L — 1 may be divided into several con-
nected regions, where connectivity is defined
by horizontal or vertical adjacency as usual.
Such a set is denoted by R;. By the definition,
R;1; C R; holds for every i, 0 < i< L—-1.
Each connected region may have more than
one boundary due to holes. Throughout the

paper each boundary is represented as a se-
quence of edges directed so that the interior
lies to their right. Thus, an external bound-
ary is directed clockwisely while an interior one
counterclockwisely.

3 Computing a Seed Set

The contour representation of an image is to
represent an image as a collection of the bound-
aries (contours) for the regions Ry, Ry,..., Rp—1
for all intensity levels. Note that there are
as many contours as the number of connected
components of each R; with levels greater than
or equal to <. The authors proposed an algo-
rithm [1] for computing all those contours in
an output-sensitive manner, that is, in time
O(n + K) where n is the number of pixels and
K is the total length of the contours.

One serious disadvantage of the representa-
tion is its high space complexity. The length of
a contour could be as large as O(n) in the worst
case. In fact, if an image is like a checkerboard
in which white and black pixels alternate, the
total length of contours is O(nL). The average
length of a contour is expected to be O(y/n).
Therefore, keeping all the contours may be too
expensive in practice.

Our experiences from experiments on real
image data also suggest not tostore all of them.
Our approach here is to keep some additional
information in addition to an image matrix so
that given an intensity level as a query we can
trace its corresponding set of contours in an
efficient manner.

Without preprocessing, computing all the
contours of a region R; requires §}(n) time.
Qur approach here is to devise how to out-
put all the necessary contours in an output-
sensitive manner, that is, in time O(K,+logn)
where K; is the length of the output for a query
level ¢ with a small space of additional infor-
mation as possible.

A compact set of edges such that every con-
tour contains at least one of them is enough to
find contours of a given level. The problem is
how to find a minimum set of those starting




edges called seed edges. We can borrow the al-
gorithm in {7] which finds a minimum seed set
for a triangulated information network.
Given an image matrix, we first construct
a contour tree. For the time being we as-
sume that no two pixels have the same in-
tensity level. This constraint is resolved later.
Nodes of the tree are contours and two nodes

are connected by edges if there is a region bounded

by their corresponding contours. This tree can
reflect the global structure of a given image.

The contour tree can be constructed as fol-
lows {7]. First of all we sort all the pixels in
the decreasing order of their intensity levels.
Then, we maintain two sets, HIGH and LOW,
where HIGH (LOW, resp.) keeps all the pixels
with levels higher (lower, resp.) than or equal
to the current level as connected components.
Important difference is that 4-connectivity (con-
nectivity only by horizontal and vertical adja-
cency) is used in HIGH wheras 8-connectivity
(allowing 45-degree and 135-degree adjacency)
in LOW. We keep the two data structures HIGH
and LOW while decreasing the current level
from the maximum level to the minimum.

At the beginning, HIGH is empty and LOW
contains all the pixels as one component. We
assume dummy pixels of level —1 around a
given image and all those dummy pixels are
put into LOW. At a level &, if there is a pixel
p of the level, we insert it into HIGH and delete
it from LOW.

When a pixel is inserted into HIGH, two
different events occur. If it is not connected to
any pixel which has been added to HIGH so
far, it creates a new component and we create
a new corresponding node in the contour tree.
Such a new component is caused by a local
maximum. On the other hand, if it had some
horizontal or vertical neighbors in HIGH which
belong to different components, then those two
components are merged into one. In this case
we create a new corresponding node and con-
nect it with the two nodes corresponding to
those components to be merged.

In LOW, deletion of a pixel may split one
component into two or three components. In
this case a new node is created and connected

with those corresponding nodes.

When there is a tie in intensity levels, node
creation is postponed until all the pixels of one
level is processed. Then, if two such pixels
belong to the same compoent in HIGH, they
are merged into one node. See Figure 1 which
described how a contour tree is constructed.

N I

198379
872518
518727

654666

(a) image matrix (b) t=9

t=4

(h) t=3

8379
2518
8727
4 6 6 6

t=1

R

(k) contour tree

Figure 1: A image matrix and contour tree.

For the example shown in Fiure 1, HIGH
and LOW change as follows: )

(1) Level 9
HIGH= {{9},{9}},



LOW = one component.
(2) Level 8
HIGH= {{98},{98},{8},{8}},
LOW = one component.
(3) Level 7
HIGH= {{9887}, {7987},{87}},
LOW = one component.
(4) Level 6
HIGH= {{9887},{798766678},{6}},
LOW = one component.
(5) Level 5
HIGH= {{9887565},{7987666785}},
LOW = one component.
(6) Level 4
HIGH= one component,
LOW = one component.
(7) Level 3
HIGH= one component,
LOW = {{1},{12},{12}}.
(8) Level 2
HIGH= one component,
LOW = {{1},{1},{1}}.
(9) Level 1

HIGH= the whole image, 8¢
LOW = one component consisting of dummy

pixels.

According to the algorithm in {7], a contour
tree can be constructed in O(nlogn) time. A
difficulty is how to implement split operations.
A trick for efficient implementation is to trace
the associated contours to find shorter ones
based on a so-called tandem search. The detail
should be found in [7].

Then, an edge corresponds to a path con-
necting two nodes in the contour tree. A min-
imum seed set is a minimum set of those paths
that cover all the tree edges. The problem of
finding a minimum seed set is formulated as
a minimum cover in a bipartite graph which
finds to be strongly chordal [7]. Therefore, it
is solved in polynomial time.

4 Applications

We describe three different applications of the
representation. One is the problem of restor-
ing an image with flaw. Suppose that we have

a commercial poster of a model and want to
erase crow’s feet of the model. If we specify
the crow’s feet as flaw regions to be erased,
then contour lines intersecting them become
disconnected. Thus, the problem is how to
connect those disconnected contours naturally
(see Fig. 2). It looks like a problem of in-
terconnecting terminal pairs on a printed cir-
cuit board. One major difference is that in our
case there are two types of terminals ”source”
and "target” and any source can be intercon-
nected to any target as far as one source is
connected to exactly one target and vice versa.
Dynamic programming is a natural selection
for this problem. In fact, we coded a dynamic-
programming-based algorithm and made ex-
periments on several different images, which
will be described in another opportunity.

ssasasssmssany

ts3

Figure 2: Interconnecting contour lines discon-
nected by a flaw region.

Another problem is to increase resolution.
To describe the problerh, suppose we have an
image scanner with 6-bits resolution for each of
red, blue and green. The goal is to increase the
resolution, say from 6-bits to 8-bits. One phys-
ical way is to take four pictures of the same
object and to define the sum of the gray lev-
els at each pixel to be the output gray level
at the corresponding pixel. Of course, this ap-
proach has several difficulties and is not what



we want. A number of algorithms for this pur-
pose are known in computer vision. A serious
disadvantage of those algorithms is that the
resulting image tends to be blurred. The goal
here, therefore, is to devise a method by which
we can increase the number of brightness lev-
les into arbitrarily many without introducing
any blur (see Fig. 3). Our task is to par-
tition a region bounded by two contour lines
of consecutive levels by a closed curve which
is equidistant from these two contour lines. If
we repeat such interpolation twice, then the re-
gion is partitioned into several regions of four
different intensity levels. This is a geometric
problem which is similar to the one arising in
geographic information system.

By

(a) Original contours.

(b) Interpolated contours.

Figure 3: Contour lines of two consecutive lev-
els and their interpolation.

The contour representation has yet another
useful application. When an image is enlarged
by two times in each side, one pixel in the orig-

inal image corresponds to four pixels in the
resulting image. As is easily imagined, if we
replace each pixel with four identical pixels,
the resulting image looks very ugly because of
large squares. One way to have better-looking
image without introducing blur is the follow-
ing: First, we approximate each contour line
by smooth curve. Then, each contour line is
expanded in each direction to define an output
image. This method does not blur the image
and the resulting contours are smooth.

5 Conclusion

The contour representation of an image pre-
sented in this paper is totally different from
the conventional representation as an image
matrix. The most noteworthy advantage of
this representation is that it can reflect global
properties of an image. Notice that such an
advantage is difficult to attain if we insist on
the -conventional matrix representation of an
image. Although we have presented only three
applications, we believe that it could be a rich
source of many other applications in image
processing.

6 Acknowledgements

This is a joint work between Asano Labora-
tory and Dainippon Screen MFG Inc. in Ky-
oto. The authors would like to express their
thanks to S. Shimazu and K. Nakai of Dainip-

pon Screen MFG and T. Hirama of Osaka Electro-

Communication University, for their efforts on
the experiments and also their several stimu-
lating suggestions and discussions.

References

[1] T. Asano and S. Kimura: ”Contour Rep-
resentaiton of an Image with Applica-
tions,” Proc. SPIE’s International Sym-
posium on Vision Geometry IV, pp.14-22,
San Diego, July 1995.



[2] T. Asano, N. Katoh, and T. Tokuyama:
” A unified scheme for detecting Proc. 2nd
European Symp. on Algorithms, pp. - ,
Utrecht, 1994.

[3] C. Burnikel, K. Mehlhorn, S. Schirra:
"How to compute the Voronoi diagram
of line segments,” Proc. 2nd European
Symp. on Algorithms, pp. - , Utrecht,
1994.

[4] H. Breu, J. Gil, D. Kirkpatrick and M.
Werman: "Linear time Euclidean Dis-
tance transform algorithms,” to appear in
IEEE Trans. on Pattern Analysis and Ma-
chine Intell.

[5] T. Hirata and T. Katoh: "An algorithm
for Euclidean distance transformation,”
SIGAL Technical Report of IPS of Japan,
94-AL-41-4, pp.25 - 31, Sept. 1994.

[6] F. P. Preparata and M. 1. Shamos: ”Co-
moutational Geometry: An Introduc-
tion,” Springer-Verlag, New York, Ny,
1985.

[7) M. van Kreveld, R. van Oostrum, C. Ba-
jaj, V. Pascucci, and D. Shikore: ”Con-
tour Trees and Small Seed Sets for Iso-
surface Traversal,” Proc. ACM Symp. on
Computational Geometry, pp, 212-219,
Nice, 1997.

[8] L.C. Wilkins and P.A. Wintz: ”A contour
tracing algorithm for data compression of
two dimensional data,” Purdue Univer-
sity, School of Engineering, Report TR-
EE-69-3, January 1969.




