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We study the motion of a rod (line segment) in the plane in the presence of polygonal obstacles,
under an optimality criterion based on minimizing the orbit length of a fixed but arbitrary point
(called the focus) on the rod. In this paper, we prove NP-hardness of the problem of finding such
an optimal motion, based on the local characterization of a d;—optimal motion of a rod that
minimizes the orbit length of a reference point, allowing arbitrary kinds of motions including

rotation and translation.

1 Introduction

Although the feasibility of motion planning is
very well studied, little is known about optimal
motion planning except for the case where the
robot body is a disc. In this paper we address
the problem of characterizing and computing
optimal motions for a rod (a directed line seg-
ment) in the plane. Of course, a rod is the
next simplest planar body to study.

A non-trivial issue arising in the study of
“optimal” motion of a rod is the choice of a
reasonable yet tractable motion of optimality.
Turning to notions of optimality based on some
distance or length concept, we may describe
such optimal motions as “shortest”. If X is
any fixed point on the rod, the curve traced
by X in any continuous motion p of the rod
is called the ordit of X in pu. One natural
choice here is to minimize the average lengths
of the orbits of the two endpoints of the rod. In

the absence of obstacles, this has been called
Ulam’s problem [5]. As Icking et al. [3] note,
the “d;-distance”, based on minimizing the or-
bit length of the mid-point of the rod, is not
a metric (rotation about the mid-point pro-
duces distinct rod placements with dj-distance
zero). It is nevertheless a rather natural mea-
sure of distance, capturing the idea of “charg-
ing” for translation but not for rotation about
the mid-point. In this paper, we generalize this
“d;-distance” to refer to the family of distance
functions based on minimizing the orbit length
of a fixed but arbitrary point F (the “focus”)
in the relative interior of the rod.

In contrast to these last cited papers, we
are interested in unrestricted motions of the
rod, except of course when the rod collides
with obstacles. Motion planning problems come
in two variations depending on whether the
two endpoints of the rod are distinguished (in
which case the rod is said to be directed) or



not (in which case the rod is said to be undi-
rected). Clearly, motion planning problem for
undirected rods can be reduced to two instances
of the motion planning problem for directed
rods. (The converse relationship is not known.)
Unless otherwise stated we assume that rods
are directed.

This paper proves NP-hardness of the prob-
lem of finding such an optimal motion, based
on the local characterization of a dj-optimal
motion of a rod that minimizes the orbit length
of a reference point, allowing arbitrary kinds of
motions including rotation and translation.

1.1 Local Characterization of Opti-
mal Motion

Intuitively, the trace of an optimal motion must
travel in a straight line unless it must bend
around a convex corner or it is constricted (in
which case there is no choice but to trace the
conchoid or elliptic curves). But there is one
other possibility, namely, the trace can reflect
off a displaced feature in accordance to Snell’s
law. For more details refer to the previous pre-
sentation [?]. Our characterization result is
summarized as follows:

Theorem 1 Any optimal motion u can be trans-

formed into a motion u' such that Fu = Fyu'
and i consists of a finite sequence of O(n?)
submotions in which each submotion has one
of the following forms:

1. pure rotation around e pivol ,

2. pure translation along @ straight line seg-
ment

tween stopovers, then it would be straightfor-
ward to demonstrate a polynomial time algo-
rithm for constructing optimal motions. Un-
fortunately, this is not so. In fact there ex-
ist obstacle sets with respect to which optimal
motions may involve ©(n) consecutive reflec-
tions. Indeed, the NP-hardness proof outlined
in this section is based on a obstacle set for
which there exist placements with exponen-
tially many distinct optimal connecting mo-
tions, all of which involve a sequence of ©(n)
reflections and no stopovers.

For the remainder of this section, we fix
rod AB to have unit length and a focus F at
distance o from A. We assume that o is a
rational satisfying o > 0 and, without loss of
generality, @ < 1/2. We formulate the deci-
sion version of our optimal motion problem as
a quadruple (E, s,t, D), where F is a polygo-
nal environment (obstacle set), specified by a
listing of its walls; s and ¢ are free placements
of the rod with respect to E; and D is dis-
tance. All coordinates, distances and angles
in the specification are assumed to be ratio-
nal'. The problem is to decide if there is a
free motion from s to t of d;-distance at most
D.

We show that this decision problem is NP-
hard by describing a polynomial time reduc-
tion from 4CNF-gatisfiability. Specifically, sup-
pose & is a formula in 4CNF involving m clauses
and the k variables Xop,...,Xg—1. We show
how to construct a polygonal environment F, -
whose description is bounded in size by some
polynomial in %, together with free placements

3. dragging an endpoint along a wall in a straights and t, and a distance D, such that (E, s,t, D)

trace

4. dragging the rod along a convez corner in a
straight trace

5. sliding along two walls in an elliptical trace
6. sliding along a wall and a corner in a con-
choidal trace.

2 NP-Hardness: the problem
with mirrors

If optimal motions never included more than
some fixed constant number of reflections be-

is a yes-instance of our decision problem if and
only if @ is satisfiable.

The overall structure of our reduction is
similar to the Canny-Reif proof [2] that the
shortest-path problem (for a point amidst polyg-
onal obstacles) in 3-dimensions is NP-hard: A
basic environment is designed that admits 2*
topologically distnict shortest motions between
two specified placements; these paths are asso-
ciated with distinct truth assignments to the

'An angle is said to be rational if both sin ¢ and
cos ¢ are rational numbers.



variables Xjg,...,Xy-1; and finally, the envi-
ronment is augmented with some additional
obstacles that serve to block (filter) every path
whose associated truth assignment does not
satisfy ®. '

Our construction is necessarily different from
that of Canny and Reif since our problem is set
in two dimensions. As indicated above, the key
to our construction is to exploit the mirror-
like properties of reflection curves (displaced
features). Our construction is modular in the
sense that it consists of an assembly of certain
pre-fabricated modules. Fo convenience we ex-
press distances in our modules as integer mul-
tiples of some rational unit distance. (It will
suffice to to choose the unit to be a/2(2¥+2).)
We describe modules in terms of our assumed
orientation of ﬁpe rod, but of course analo-
gous modules exist for the rod in its oppo-
site orientation. In fact, some of our mod-
ules, those we describe as “inverse” modules,
are formed by mirror image of one of these
opposite-orientation modules. Each module is
a collection of line segment barriers together
with certain distinguished points, called ter-
minals. Terminals play the dual role of at-
tachment points for neighbouring modules and
checkpoints on (potential) shortest paths. The
trace of the rod focus F, as the rod follows
shortest paths between placements in our mod-
ules, is referred to as a beam. Beams that
connect terminals are called canonical beams.
There is just one basic module from which sev-
eral others are fabricated:

(A) Wide beam splitter WBS()). This
module has one input terminal a and two out-
put terminals by and by, with a vertical sepa-
ration of A units (the separating factor). Let
Iz denote an optimal motion between the hor-
izontal placements H, and H,. Then, for all
points = on the line bgb;, the d;-distance of u,
is minimized exactly when = = by or z = b;.
We denote this minimum distance by o. (If
the maximum value of A is fixed then ¢ can
be fixed independent of A). Fig. 1 gives a
schematic description of this module; the de-
tails of its construction are deferred to the next

section.

—=bo
Al
I - A b

-
-
-

WBS(\)

Fig. 1. Wide Beam Splitter.

The left-right mirror image of a wide beam
splitter (for a rod with the opposite orienta-
tion) behaves like a beam combiner. In fact,
our wide beam splitter satisfies a more general
property: if a’ (respectively, b, b}) is the point
v units above a (respectively, by, b; ), where v|
is sufficiently small, and p denotes an opti-
mal motion between the horizontal placements
H, and H, then, for all points z on the line
boby, the d;-distance of u¥ is minimized ex-
actly when ¢ = b or z = b). Furthermore,
this minimum distance is equal to ¢ (indepen-
dent of v). Thus, our wide beam splitter (re-
spectively, its mirror image) also behaves as a
wide sheaf splitter (respectively, a wide sheaf
combiner, where a sheaf is a cluster of hori-
zontal beams. Fig. 2 illustrates this sheaf-
splitting/combining property of WBS()). As
in all of our subsequent illustrations of mod-
ules, the figure includes (scaled-down) schematic
descriptions of each module (which are used in
describing other modules).

wss—1(a)

WSS(A)--

Fig. 2. Wide Sheaf Splitter and Combiner
(with schematics).

We call a collection of 2 horizontal beams,
such that adjacent beams are separated by 6
units, an (%, 6)-sheaf.

(B) Narrow sheaf splitter S5(j,6). A wide
sheaf splitter and a (slightly smaller) wide sheaf



combiner can be composed to form a narrow
sheaf splitter. Specifically, SS(j,6) takes a
(j, 6)-sheaf as input and produces a (j + 1,6)-
sheaf as output, by passing the sheaf in se-
quence through a WSS()) and a WSS~1(A -
276)-module (see Fig. 3).
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Fig. 3. Narrow Sheaf Splitter SS(j, 6).

The mirror image of this narrow sheaf split-
ter behaves as a narrow sheaf combiner (for
a rod with the opposite orientation). Narrow
sheaf splitters are also useful for manufactur-
ing (3, 6)-sheaves:

LA

BS*(8)

Fig. 4. Narrow Beam Splitter BSi(8).

(C) General beam splitter BS*(5). The ba-
sic idea, as illustrated in Fig. 4, is to com-
pose a sequence of i narrow sheaf splitters.
The j-th splitter has separating factor A; =
2i-i§. The module BS*(6) has one input ter-
minal a and 2¢ §-separated output terminals
bo...bgi_y. It follows immediately from the
properties of the constituent wide beam split-
ters that (i) the shortest motion from horizon-
tal placement H, to a horizontal placement

H., with & € bgbgi_; has length greater than
io, unlessz € {bg,...,bqi_;}, and (ii) the short-
est motion from H, to any one of Hy,, Hy,,...,
Hy,, . is exactly io.

We use a BS*(6) module to generate a
(k, 6)-sheaf. In general the beams in a (k,6)-
sheaf will carry labels that we interpret as truth
assignments. These label assignments (from
the top to bottom beam in a sheaf) are always
of the form:

XiXiv1 Xipk-2Xitk-1

XiXip1 - Xigp—2Xitk-1,

XiXiyr o Xigk—2Xipr-1,

XiXiy1 - Xipe-2Xitk-1 (1)
XiXiv1 Xitr—2Xivrk—1

XiXip1 o Xipk—2Xitk-1

for some 7, 0 < i < k (where indices are under-
stood to be reduced mod k). This is referred
to as an (X;, Xit1,. ..y Xitk—1)-labelling. The
output sheaf of BS¥(§) is assigned an (Xo, X1,
vevy Xg—1)-labelling.

The mirror image of BS*(5), which we de-
note by BS~—¥(6), serves to combine the beams
in a (k, 6)-sheaf into a single output beam. It
has 2* input terminals bp...byx_; and a sin-
gle output terminal c. Furthermore, (i) the
shortest motion from a horizontal placement
H., with ¢ € bobgi_y, to the horizontal place-
ment H,, has length greater that ic, unless
z € {bo,...,b2i_1}, and (ii) the shortest mo-
tion from any one of Hy,, Hp,,... Hy,;_, to H,
is exactly 6.

Clearly, composing BS*(8) and BS~*(5),
by identifying the identically labeled terminals,
yields a module with 2% distinct shortest mo-
tions from initial placement H, to final place-
ment H,. The remaining modules are designed
to separate BS*(6) and BS~*(6) in this triv-
ial composition, blocking all but those beams
whose associated truth assignments satisfy the
formula &.

(D) Elementary shuffle module SH(k, ).
Consider the wide sheaf splitter illustrated in
Fig. 2. If obstacles are placed to block the up-
per half of the upper sheaf and the lower half



of the lower sheaf, and the resulting (half)-
sheaves are input to a (slightly smaller) in-
verse sheaf splitter, the result is that these two
(half)-sheaves are interleaved (shuffled) into a
new full sheaf (of twice the density of the origi-
nal); see Fig. 5. We refer to the resulting mod-
ule as the elementary shuffle module SH(k, §).
This name derives from the fact that if the in-
put sheaf to a an elementary shuffle module
has an (X, Xit1, ... Xitk—1)-labelling, the
output sheaf has an (Xiy1,Xit2, -+ Xitk)-
labelling.

l

.

WSS“(A - ((2* +1)d/2)
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(X.’,...,x.'.'.k_;) (xi+h---:xo‘+k)

SH(k, 8)

Fig. 5. Elementary Shuffle Module SH (k, §)
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Fig. 6. General Shuffle Module SH7(k, §).
(E) General shuffle module SHY(k,§). Just

as a narrow beam splitter is formed from nar-
row sheaf splitters by composition, a general
shuffle module SH7(k, 6) is formed by compos-
ing a sequence of j elementary shuffle modules,

SH(k,8), SH(k,8/2), ..., SH(k,6/27~1). Note

that SH (k, §) takes a (k, §)-sheaf with an (X;,

Xit1y. .-y Xitk—1)-labelling, and produces a
(k, 6/25)-shea.f with an (X,'+j,Xi+]‘+1, ey
Xitjik—1)-1abelling. In this output sheaf all
beams whose labels contain X ; (respectively,
Xit+j) appear contiguously, permitting them
all to be blocked with a single obstacle. The
mirror image of SH(k, §), which we denote by
SH-¥(k,8) will play the role of a sheaf “un-
shuffler”.

(F) Literal filter LF(k,X;). The module
LF(k,X;) has (k, 2¥)-sheaves as input and out-
put. It is formed by composing the modules
SHI(k,2%), SH*=(k,2%~7), and SH*(k, 2*).
In addition, a vertical obstacle is placed in
such a way that it blocks the lower half of
the (k,2¥~7)-sheaf joining the first two mod-
ules (see Fig. 7). The literal filter LF(k,X;)
is identical, except that the added obstacle
blocks the upper half of the same sheaf. It
should be clear that LF(k,L) obstructs ex-
actly those beams that correspond to truth as-
signments fail to satisfy the literal L.

SHI(k,2%) SHE=F (K, 2=} sH=k(k, 2%) 7
H

Fig. 7. Literal Filter.

(G) Clause filter CF(k,C). A clause C of
the formula ® is the disjunction of four lit-
erals, say Lg, L1, Ly, and L3. The module
CF(k,C) has (k,2¥)-sheaves as input and out-
put. It is formed by the composition of three
sheaf-splitters (with sufficiently large splitting
factors), the four literal filters LF(k, L), .. .,
LF(k, L3), and three inverse sheaf-splitters, as
shown in Fig. 8. Filter CF(k,C) obstructs
exactly those beams that correspond to truth

_61_



assignments that fail to satisfy the clause C.

Fig. 8. Clause Filter.

(H) Formula filter FF(k,®). Suppose that
formula ® is the conjunction of clauses Cy,
«..s Cm—1. The module FF(k,®) has (k,2*)-
sheaves as input and output. It is formed by
the composition of clause filters CF(k, Cy), . . .,
CF(k,Cm-1), as shown in Fig. 9. Filter FF(k,
®) obstructs exactly those beams that corre-
spond to truth assignments that fail to satisfy
the CNF-formula &.

Fig. 9. Formula Filter.

If we compose the formula filter FF(k,®)
with the beam splitter BS*(2%) and inverse
beam splitter BS~*(2), as shown in Fig. 10,
we produce a module that admits a canoni-
cal beam from initial placement H, to final

placement Hj if and only if formula @ is satis-
fiable. It is straightforward to confirm that all
canonical beams in our full construction have
length D = (m(4k+4)+2k)o, and a motion of
length at most D exists if and only if at least
one canonical beam is unfiltered. It remains to
prove that our elementary modules can be con-
structed, and that the bit-complexity for their
specification is polynomial in the input size n
(which can be assumed to be ©(m)). This is
taken up in the next section.

A A

’ e
* BSk(2F) Y BS—k(2F)

Fig. 10. Full Reduction.

3 Realizing the components

Our elementary modules are in turn built up
of smaller components, that we will prefer to
call “gadgets”. There are basically two kinds
of gadgets: a half-silvered mirror gadget and a
fully-silvered mirror gadget. Let 8 be a fixed
rational angle less than tan=*(1/3) (for exam-
ple, 8 = tan~1(7/24)). This angle is used in
our mirror constructions.

We first describe the half-silvered mirror
gadget, H(I,C,E°, E*,A) where I,C, E°, E!
are points such that |[IC| = |CE°| = |CE}| =
2 and £(I,C,E) = 26. It is best to describe
the gadget in terms of its “skeleton”, shown in
Fig. 11.

c A\ E°

L

El

Fig. 11. Skeleton of Half-silvered Mirror
‘ H(l,C,E° E*, A).



Note that points I, J, C, L and E° are all
colinear, as are the points E1,K, C, and M.
Furthermore, |JC| = |KC| = (1 — a)/cosf
and |LC| = |[MC| = o/ cos8, so the normal
distance from C to JK (resp. ML) is (1 — c)
(resp. ). For the actual gadget, we essentally
thicken the line segments [I, E%] and [E!, M]
into channels of width A. This gadget is shown
in Fig. 12, where the skeleton (in dashed lines)
is superimposed on the actual lines of the gad-
get.

Fig. 12. Half-silvered Mirror
H(I,C,E° E',A).

The segment [Cp,Cy] is called the “neck”
of the gadget. We choose A = asin@ so that
the following condition holds: When [Cy, Cy] is
projected orthogonally onto [J, K], it lies be-
tween Jy and Kj.

This “neck property” of our construction
guarantees that the B-displaced wall associ-
ated with segment [J;, Ko] spans the channel
along line CoCy.

Refering to Fig. 12, for 0 < s < 1, let
C, := sC1+(1—5)Cp denote an arbitrary point
on the neck. Similarly, let I, := sI; +(1—3s)lp,
E? :=sE) + (1 - s)EY, and E! := sE} + (1 -
s)E}. Let Z,,Z%,Z! be free placements such
that
(a) FlZ,] = I, F{Z?] = E.?) F[Zsl] = E}:

(b) A[Z,], A[Z}], and B[Z?] lie inside the en-
closure? of the gadget.

Lemma 1 (a) If p: Z, — Z? has minimum
dy -distance among all motions that start at Z,

2The enclosure of this gadget is the region inside the
polygon obtained by “sealing” off the terminals in Fig.
12, by introducing the line segments [I, 1], [ES, E?)
and [E3, Ej].

and end at a free placement 22, with 0 < z <
1, then t = s and the trace F[u] consists of the
line segment [I,, EY].

(O)If p: Zy — Z} has minimum d;-distance -
among all motions that start at Z, and end at
a free placement Z!, with 0 < z < 1, then
t = s and the trace F|u] consists of the 2 line
segments [I,,C;), [Cs, EL].

Proof: Part (a) is immediate. For part (b),
observe that our choice of 8 precludes motions
whose trace does not cross the neck. Hence, p
must go through a placement Z; where AB[Z;]
is perpendicular to the line JK, and B[Z]
touches JK. Because of the neck property, it
follows that F'[Z;] lies on the neck. In fact, Z;
is unique and F[Z;] = C,, by our characteri-
zation theorem. The lemma follows. Q.E.D.

Remarks:

(1) Wecall H(I,C, E°, E*, A) a “half-silvered”
mirror since it is clear that an incoming beam
through I, can proceed to either (directly) to
E? or (by reflection) to E1.

(2) There is an analogous gadget where the
roles of A- and B-ends are interchanged. We
denote this gadget by H'(I,C, E°, E1, A).
Clearly we have H'(I,C,E®, EY,A) = H(I,C,
E% E',A) in case o = 1/2.

(3) We can seal off the exit E? in Fig. 12, by
introducing the segment [EJ, B, thus obtain-
ing a “fully-silvered mirror”. We denote this
gadget by G(I,C, E®, E, A).

(4) Finally, note that any mirror images of the
above gadgets obtained by reflecting about a
vertical or horizontal line will also be denoted
by the same notation H(I,C, E°, E1, A), etc.

Roughly speaking, our beam splitter is con-
structed out of one half-silvered mirror (ho)
and three fully-silvered mirrors g/, g2, and g})
connected as shown in Fig. 13.

Note that the lenth of the paths traced
by the split beams can be easily adjusted (by
modifying the length of the channels) to achieve
some fixed value (o) independent of A.

This completes the construction. We sum-
marize our result in the following:



Theorem 2 It is NP-hard to compute an op-
timal motion of a rod in the presence of polyg-
onal obstacles when a focus is in the relative
interior of the rod.

Fig. 13. Mirror-based beam splitter.

Remark It is interesting to note that our proof
of Theorem 2 above shows that the ray-tracing
question of determining whether a beam di-
rected from a specified source, in a scene com-
prised of silvered and half-silvered linear mir-
rors, reaches a specified destination by a path
of length bounded by some specified value, is
NP-hard. The corresponding problem in three-
dimensional space was shown to be PSPACE-
hard by Reif et al. [4]. They left the two-

dimensional version as an open problem.
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