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The mesh of buses (MBUSs) is a parallel computation model which consists
of n X n processors, n row buses and n column buses but no local connections
between neighboring processors. In this paper, we present a randomized permutation
routmg algorithm that runs in 1.46875n+0(n) steps on MBUSs with high probability.
Our result is interestng since the 1.5n upper bound shown in [Iwama et. al. J of
Algorithms, 1996) seems to be the best possible for deterministic routing,.



1 Introduction

The two dimensional mesh is widely considered to be a promising parallel architecture in its
_scalability. In this architecture, processors are naturally placed at intersections of horizontal and
vertical grids, while there can be two different types of communication links: The first type is shown
in Figure 1(a). Each processor is connected to its four neighbors and such a system is called a
mesh-connected computer (an MC for short). Figure 1(b) shows the second type: Each processor is
connected to a couple of (row and column) buses. The system is then called a mesh of buses (an
MBUS for short). : :

Routing is a ba.sm form of communication among the processors: The input is glven by n? packets
that are initially held by the n X n processors, one for each. Routing requires that all n? such packets
be moved to their final destinations. In the case of MCs, a 2n — 2 lower bound easily comes from the
physical distance between farthest two processors without any condition. Also, a 2n— 2 upper bound

" can be achieved by using the most rigid, dimension-order path. strategy [6]. On the other hand, in
the case of MBUSs, the dimension-order path strategy does not work so optimally since the strategy
must take 2n steps, and the [1.5n] upper bound seems to be the best possible [3]. That is a tight -
bound for permutation routing if we impose so-called “strongly oblivious™ condmon [4], but only a
(1 - €)n lower bound without any condition is known [3]. , N,

The main purpose of this paper is to decreases the [1.5n] upper bound by a.]lowmg randomization.
We prove that any permutation can be routed over the MBUSs in 1.46875n + o(n) steps with high
probability. Our randomized algorithm consists of the following two stages. In the first stage, each
packet is moved vertically to its correct position with respect to row with probability 1 3, or horizontally
to its correct position with respect to column also with probability ; Namely, one can expect that,
in total, %~ packets are moved to their correct row positions and the other. ﬂ— to their correct column
positions. The basic strategy on how each packet chooses the direction, row or -column, is to make
use of the collision of two or more packets on a bus: Consider some four PIoCessors on a single row,
say, Py, P2, P3 and Py. (1) P, and P; try to write their initial pa.ckets with probability 1 5 on the row
bus. (2-1) If only one of the two.processors moves the packet, then P; moves its packet. (2-2) If
both try to. wmte their packets, i.e., there is a collision, then again P; moves its packet and then
P; moves the packet. (2-3) If neither P, nor P, tries to write the packets, then first P, and then
P, move their packets. Thus, exactly two of the four processors can succeed in moving their initial
packets. The remaining two processors will move their packets using the column bus later. In the
second stage, every packet moves to its final posltlon also by using randomization, but the idea is
much more tricky. See Section 3 for more details.

One can naturally think of the model which is equipped with both buses and local connections

(MCs with buses). The known lower and upper bounds for this model are 0.6917 [2] and (1 +

€)n+ o(n) [5], respectively. Recall that the (2n — 2)-lower bound for point-to-point communication
models comes from the diameter; even if randomization is allowed, this lower bound does not change.
However, the situation is completely different for bus communication; it should be noted that the
lower bound for MBUSs essentially comes from the fact that many packets gather at some single
bus. If we allow randomization, then one can expect that the addition of buses becomes especially
beneficial since randomization may remove such high packet- congestion. An interesting question is
whether or not we are able to decrease the upper bound for MCs with buses by usmg the similar
randormzed approach as above.

2 Modgl _and Result

An MBUS consists of n? processors, P ;, 1 < ii, j < n,and nrow and n column buses, ROW; and
COLUMN , tespectively. P;; is connected to ROW; and COLUMN ;. The problem of permutation
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Figure 1: MC and MBUS:

routmg on the MBUS is defined as follows: The input is given by n? packets that are mmally held
by the n? processors, one for each. Each packet, (d, o), consists of two portlons, d is a destination
address that specifies the processor to which the packet should be moved, and the data. portion ¢ of
the packet is an integer. No two packets have the same destination address Routmg requires that
all n? such packets be moved to their correct destinations.

Our discussion throughout this paper is based on the following three rules on the model: (1)
We follow the common practice on how to measure the running time of MBUSs: The one-step
computation of each processor P consists of (a) reading the current data on both row and column
buses P is connected to, (b) executing arbitrarily complicated instructions using the local memory
and (c¢) if necessary, writing data to the row or column bus, or (possibly different data) to both. The
written data will be read in the next step. (ii) The queue size is not bounded, namely, an arbitrary
number of packets can stay on a single processor temporarily. (m) What can be written on the
buses by the processor. P must be the packet originally given to P as its input packet or one of the
packets that. have been read so far by P from its row or column bus. (Nothing other than packets
can be written.) This means that any kind of data compression is not allowed. (iv) We allow the
simultaneous write. However, if two or more packets are written on the same bus simultaneously,
then a special value flows, which only shows the collision.

Here is our main result:

Theorem (Main Result). There exists a randomized algorithm for rountmg on the two-
dementional mesh of buses with high proba,b1hty in 1. 46875n + o(n) steps.

3 Randomized Algorlt hm

* In this section we present our randomxzed algorithm, whxch moves every packet to its destination
using the row bus at most once and the column bus at most once. The algorithm consists of the
following two stages: In the first stage, randomly chosen 0. 5n? packets first move to their correct
places with respect to at least row or column Then, the.remaining 0.5n2 packets move to their
correct places with respect to at least row or column. In the second stage, all packets move to their
final destinations. Here is our algorithm: '

Algorithm: Random Rout

Stage 1-1. For simplicity, we assume that n can be divided by four. The whole n x n plane is
divided into four % x .3 planes. In this stage, randomly chosen packets on the upper-left % x 2 and
on the lower-right % X % planes are moved horizontally using row buses. At the same time, randomly
chosen packets on the lower-left 3 x § and on the upper-right % x % planes are moved vertically using
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column buses. And the upper-left plane, § processors in each row are devided into 0.125n horizontal
blocks each of which consists of 1x4 continuous processors, (Py,1, P12, P1 3, P14), (P15, P16, P17, P18),

o (B, 2_3,P1,__2, P1,7_1,P1 z). Randomly chosen two of each four processors write their initial
packets on the row bus. One can see that there are § blocks on each row in the upper-left. plane.
Similarly for the lower-right plane. Which processors in the upper-left plane write their initial packets
on the row buses is determined by the following two phases, Phase 1 and Phase 2, and the same for
the lower-right plane. The upper-right and the lower-left planes are divided into vertical blocks of
size 4 X 1. Randomly chosen two of four processors in each block write their initial packets on the
column bus. Which processors write their initial packets on the column buses is very similar to the
following: The follwoing two phases are executed in each block, from left to right, the 1st through
2th rows in parallel.

Phase 1. Two processors P, 4j+1 and Pi4j42 write their initial packets on the row bus with prob- .
ability .
Phase 2. According to Phase 1, one of the following four operations is executed:
1. If only P, 441 wrote the packet, then P; 443 writes its initial packet on the row bus. Go
to the next block. (see Fig. 2 (1).)
2. If only P; 4j+2 wrote the packet, then F;4;43 writes its initial packet on the row bus. Go
to the next block. (see Fig. 2 (2).)
3. If both P;4;4+1 and P; 44, wrote the packets, then P;4;41 again writes its packet and then
P; 4;14 writes its packet on the row bus. Go to the next block. (see Fig. 2 (3).)
4. If neither P, 4541 nor P; 4542 wrote the packets, then P;4;42 again writes its packet and
then P;4j44 again writes its packet on the row bus. Go to the next block. (see Fig. 2 (4).)

[* Since two of each-four packets can move, %1 packets have moved so far in total. */
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Figure 2: Two packets written on the row bus in Stage 1-1.

Stage 1-2. .The remaining 0.5n2 packets are moved. However, the directions are switched, i.e.,
" the packets on the upper-right plane are moved vertically using the column buses and so on. Now,
the upper-left plane is further divided into 2 X 1 processors and the same for the lowér-right plane.
The lower-left and the upper-right planes are divided into 1 X 2 processors.
As for the upper-left plane, the following two phases are iterated from the top to the bottom
blocks of 2 X 1 processors in parallel for the 1st through %th columns.




Phase 1. If two processors Piy1,j and Py, ; remain holding their initial packets, then they write
the packets on the column bus.
Phase 2. According to Phase 1, one of the following four operations is ececuted:
1. If only Pyi41,; wrote the packet, then go to the next block. (see Fig. 3 (1).)
2. Ifonly Pyitz,; wrote the packet, then go to the next block. (see Fig. 3 (2).)
3. If both Pg,-+1'; and Py;43 ; wrote the packets, then P§¢+1,j writes its packet and then P;ys ;
writes its packet on the column bus. Go to the next block. (see Fig. 3 (4).)
4. If neither Pyiy1,; nor Pyt ; wrote the packet, then go to the next block: (see Fig. 3 (3).)

/* Since the remaining pé.ckets can move, -"52- packets have moved so far in total. */
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Figure 3: The remaining packets written on the column bus in Stage 1-2.

NN

Stage 2. Al the packets move to their final destination. Intuitively, the order of processors
writing packets is determined not by the positions of the processors as before but by the destinations
of packets.. Now, for each row (column), we make 0.5n blocks of two neibour processors.

Phase 1 Each processor on each row executes one of the following opera,txons, in the first iteration,
packets whose destinations are the leftmost two columns can move, and in the second iteration,
- pacekts whose destinations are the third and fourth columns can move and so on. Similarly for
each.colinm. Let L; and R; be the packets that destine for the left and the nght processors in
the ith iteration: S :
1. If a processor holds either L1 or R;, then the packet is written on the row bus.
"2. X a processor holds at least three Ppackets, L,, R; and another, then the packet other than
L; and R; is written. ‘
3. H a processor holds L; and R; but does not hold any other packets, then L; is written.
4. If a processor holds neither L; nor R;, then the processor sleeps.

In the ith iteration, there are the following five cases on which packets are riding on the row bus:
(i) L; is written. Then we let flow; = 1. (ii) R; is written. Then we let flow; = 2. (iii) No packets
are written. Then we let the value flow; = 3. (iv) A packet other than IZ; and R, is written. Then
we let’flow; = 4. (v) The collision happens. Then we let flow; = 5.

Phase 2 One of the following is executed:

1. If flow; is 1, 2 or 3, then go to the next block. (see Fig. 4 (1) (2), (3).)
2. If flow; = 4, then L; is moved first and then R; is moved. (see Fig. 4 (4). )
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3. In the case of flow; = 5, thére are further two cases according to flow; ;:
flow,_; # 1. L; is moved first and then R; is moved. (see Fig. 4 (5). )
/* In this case, since all processors can recognize that the collision comes from L; and R.,
L; and R; can be moved in the next two steps. */

- flow;_y = 1. (i) If a processor holds R;_;, then it is written on the row bus in this time-
slot; otherwise the processor sleeps (see Fig. 4 (6)) Then the ith iteration is executed
again. (ii)-If no packet is written (1 .e., no processor holds R;_;), then L; is moved and
-then R; is moved.

/* In the case of flow;_; = 1, Ri_y may remain unwritten. Namely, one cannot see which
packets cause the collision since three packets L;, R; and R;_1 can be written. Thus we
need one extra time-slot for R;_y. */
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Figure 4: Some packets reachs their destination in Stage2.

4 Ana.lysis (Proof of Theorem)

The argorithm shown in section 3 takes different steps on each row and column bus in each
stage. Indeed, each stage is terminated after certain steps even if all packets are not processed. In
this section, we first calculate that the expected number of steps for Stage 1-1, Stage 1-2 and Stage 2

" are 0.3125n, 0.375n and 0.78125n steps, respectively. Finaly, we prove that at most 1.46875n + o(n)
steps are sufficient to move all the packets to their final positions, with high probability.

Stage 1-1. Consider a block of four processors P; 441, Pidj+2, P,4,+3 and P; 4,'.,.4 ‘There are
the four. cases according to which processors write on the bus. (See Stage 1 1 in Section 3 again.)
Since the each P;4;41 and P;4j42 writes on the row bus with probability 1 3, each case in Phase 2
happens with probability - Recall that we need two steps for each block if case 1 or 2 happens, and
three steps if case 3 or 4 happens. On average, we need 2.5-steps for each block. Hence, the expected
number of steps for all 0.125n blocks is 0.3125n.

Stage 1-2. In this stage, we consider a block of two processors Pz;41,j and Pz,+2 e There are.
the four cases according to whether each of two processors has already written its initial packet i in
Stage 1-1. (See Stage 1-2 in section 3.) The probability that each packet remains unwntten after
Stage 1-1 is 5 Hence, each of the four cases in Phase 2 happens equally with probability 1 :- Each
block of processors needs one step if case 1, 2 or 3 happens, and three steps if case 4 happens.
Therefore, 1.5 steps for each block are needed steps in average. Thus, the expected number of steps




needed in this stage for all 0.25n blocks is 0.375n,

Stage 2. After Stage 1-1 and Stage 1-2, every packet arrives at its correct place with respect
to at least row or column. Consider an arbitrary packet z. The probability that z is in its correct
place with respect to row or column is equally ; Suppose, for example, that z is in its correct place
with respect to row. Then, it uses the column bus to move to its destination in this stage. Namely,
= uses each of row and column bus with probability 1 3

Recall that two neighboring processors are considered to be a block for each column (row). In
this section, we only consider the block of two processors on the same row. (The same argument
holds for the block on column.) Suppose that Z; and R; be packets whose destinations are Pyiq
and P, respectively. Here, we assume that there is no processor that has both L; and R;. (We will
consider the other case later.) Consider the row bus B that is connected to Pg,-_l and Py;. Then,
one of the following four cases happens with probability %.

1. Only L; is on B, i.e., only L; uses B to-move to P;.
2. Only R; is on B, i.e.,only R; uses B to move to P;.
3. Neither L; nor R; is on B, i.e., B is not used by L; and R;.
4. Both L; and R; are on B, i.e., the collision happens.

It takes one step for each block in the cases 1 through 3. In the case 4, if the state of the previous
block is 1, i.e., flow;_y = 1, it takes four steps, and if the state of the previous block is 2 through 4,
i.e., flow;_y # 1, it takes three steps. Therefore, each block needs 25 % steps, and hence the expected
number of steps for 0.5n processors is 0.78125n.

Next, we consider the other case in which there exists.some prosessor P which has both packets
L; and R;. In this case, for each block, the probability that the case 4 happens decreases, and the
prdba.bility that the case 1 happens increases. However, the number of steps needed for each block is
less than m average by the following reason: Note that since P has two packets, it first writes Z;
and then wntes R; on the bus B. There are two cases: (i) There exists a processor on this row that
has a packet Li;y or R4 whose destination is one of the processors of the next block. (ii) There is
no such processor on this row. In each case, L; can be moved without collision. However, when R; is
moved, there happens a collision in the case (i). Thus, it takes three steps and two steps in the cases
(i) and (i), respectively. Hence, the expected number of steps needed for each block is less than f—g

As a result, the total expected number of steps for Stagel-1, Stagel-2 and Stage2 is 1.46875n.
Now, we shall prove by applying Chernoff Bounds [1] that if n is enough large value, every packets
indeed reachs its destination in those steps with high probability.

Lemma. (Chernoff Bounds [1]) Let X1, X2, ..., X, be independent Bernoulli trials with Pr (X,—l)
= p, Pr (X;=0) = 1—-p,0<p<1 Let X =31 ; Xi. Then, forany0<e<1;

r\[X>(1+E)nP]<eXP(:‘Z_n£)

Proof of Theorem. Let X1; = 1 when three steps are needed and X;; = 0 when two steps
are needed for the ith block from the left in Stage 1-1. Then, X; have a binomial distribution
B(0.125n, %) Apply the Chernoff bounds with e = Q—dﬁ.’%—n\/nlnn for a > 0.

Pr [X1>00625n+c1\/n1nn]<exp (— 1lnn)_n 4hod >0
Namely, the number of blocks that needs three steps is less than 0.0625n + cﬂ/nlnn Also, the

number of blocks that needs two steps is 0.125n(1 — p) — ¢;v/nlnn. We can estimate the following
number of steps needed in Stage 1-1.



3 x (0.0625n + c1v/nInn) + 2 x (0.0625n — ¢;VnInn) = 0.3125n + e;v/nlnn

Therefore, with probability at least 1—n~%, 0.5n2 packets is written on the bus in 0. 3125n+cn/nln n
steps. The number of steps needed in Stage 1-2 is obtained as well as Sta.ge 1-1.

Pr{X;< 0.0625n+c2\/n1nn]< n# dy>0

3 x (0.0625n + c2Vrilnn) +1 x (0.1875n ~ caVnlnn) = 0.375n +2c;Vnlnn

Therefore, with probability at least 1 — n~%, the remaining 0.5n? packets is written on the bus in

0.375n + 2covnlnn steps.
In Stage 2, let X3; = 1 when three or more steps are needed and X3; = 0 when one step is needed
for the ith block from the left.

Pr[ X3 < 0.125n + c‘m/»nln nl<n™® d3>0

At the moment the number of blocks needed one step is 0.375n — c3v'nlnn. Next, let k = 0.125n +
c3v/nlnn, and let Xy = 1 when four steps are needed for k blocks and X4 = 0 when three steps for
k blocks. Apply the Chernoff bounds with & = F‘-\/kln n for ¢s > 0.

r[X4<kp+c,|‘v1clnn]<n 4 d,>0

4 x (kp + csVklnn) + 3 x (k(1 — p) — c4VkInn) = 0.40625n + l;ic:p/,nlnn +c4Vklnn

Since the number of blocks needed one step is 0.375n — e3Vn1nn with probé.bility at least (1 —n~%),
in Stage2, with' probability at least (1 — n~% )(1 — n~%), all packets reaches its destination in
0.78125n 4 -c3Vn1nn + csVkInn steps. :

'We have n rows and n columns. So, the probablhty of bad behavior in at least one row or column
can become as large as n times. However, since all the probabilities above the term of n~4 for an
arbitrary large constat d, this does not cause any serious problem Therefore, the whole algorithm
takes at most 1.46875n + o(n) steps with high probability. ' o

References .
{1] H. Chernoff, “A Mea.sure of Asymptotu: Efficiency for Tests of a Hypothesls Based on the Sum
of Obs_erva,tmns,” Annals of Mathematical Statistics, vol.23 (1952) 493-507.

[2] S. Cheung and F.C.M. Lau, “A lower bound for permutation routing on two-dimensional bused
. meshes,” Information Processing Letters, 45 (1993) 225-228.
[3] K. Iwama, E. Miyano, and Y. Kambayashl, “R,outmg Problems on the Mesh of Buses,” J. Algo-
rithms, 20 (1996) 613-631. ‘

[4] K. Iwama and E. Miyano, “Oblivious routmg algorithms on the mesh of buses,” Proc. IPPS,
(1997) 721-727.

[5] L.Y.T. Leung and S.M. Shende, “On multldlmenswna.l packet routing for meshes with buses,” J.
Parallel and Distributed Computing, 20 (1994) 187-197.

[6] M. Tompa, “Lecture notes on message routing in parallel machines,” Technical Report # 94-06-
05, Department of Computer Science and Engineering, University of Washington, 1994.

—40—




