7N T U X A 60-11
(1998. 1. 22)

ASTHAEICHT 5 BECE
1254 LTI T X LD &R

W A B - B e
T AMRERER S 27 L BRBEHER ~ FERETER

X# [R.El-Yaniv, A Fiat, R.Karp, and G.Turpin, Proc. of FOCS, (1992).] i<W, B—F
[AZTARPTRR & RS MR L V) Z o0 BBRME I T 2 2V G4V X AHHRR
SNTVAE, B—SHZRMEL X, BT 28K (FV) 2A0@EK (0) BT 2En)
YOTHY, —HHADADERET2S. El-Yaniv 513, RRULZE—FRT LY X A%,
BERL VIR BEC BV TRATHE L 2EHLTVE, —F, WH SR %, =
DOBBOMTERET %I L CRBEBLI L4 BME LTS, El-Yaniv 513 ZOME
I LTHARDOETRERLTWADY, FOMICIIAE2ENTFLETS.

FRCREOBAEMEICHT WAL NETREXET 2. k2 HABNEOEHEOK L
L, ¥2-MEGOEREED ETROKN 2 TH2 %51, fERIX (L278)F BLU (LI131)* ©
Hol L FRE, FHFRTI (1.189)" and (1.184)* FTHEL TV 5.

On Designing Nearly Optimal Algorithm
for On-line Currency Conversion

Eisuke Dannoura*, Kouichi Sakurai* and Kazuo Iwama™*

*Department of Computer Science
and Communication Engineering
Kyushu University

** Department of Information Science
Kyoto University

In the paper [R.El-Yaniv, A.Fiat, R.Karp, and G.Turpin, Proc. of FOCS, (1992).}, on-line
algorithms for two versions of conversion problems are invested. One is the unidirectional
conversion problem in which the player can convert assets only from dollars to yen, and the
other is the bidirectional conversion problems in which the he/she can exchange dollars for
yen and yen for dollars. Then, they show that their unidirectional algorithm achieves the
optimal competitive ratio. However, their bidirectinal algorithm isn’t optimal and there is
a relatively large gap between their upper and lower bounds.

In this paper, we show the improved bounds for bidirectional problem. Let k be the
number of extrema of exchange rates. Then, when the ratio of the maximum and mini-
mum conversion rates is two, our new upper and lower bounds are (1.189)* and (1.184)%,
respectively. The previously-best bounds are (1.278)* and (1.131)k, respectively.

’ 1 Introduction the other and vice versa during some specified period

of time.

One of the most interesting applications of on-line
algorithms arises in the field of finance since it is a
typical environment where one cannot.have secure
knowledge of what happens in the future and proba-
bly the most important goal is to prepare against the
worst case. Our problem in this paper is the currency
conversion problem between two different currencies,
say dollar and yen. Its obvious purpose is to make as
much profit as possible by trading one currency for

Our present work was motivated by El-Yaniv, Fiat,
Karp, and Turpin [EFKT92], who applied on-line al-
gorithms to currency conversion and used the com-
petitive analysis for the performance. It is shown
that a surprisingly small competitive ratio can be
achieved under reasonable assumption about the
on-line player’s knowledge concerning the exchange
rates, i.e., only maximum afid minimum rates. Their
algorithm for one-way currency conversion, which

deals with converting assets only from dollars to yen,
is optimal or achieves the optimal competitive ra-
tio. Unfortunately however, if we apply their algo-
rithm into the bidirectional conversion problem, then
it is no longer optimal and there is a relatively large
gap between the upper and lower bounds given in
[EFKT92] and no one was able to narrow this gap
so far. In the bidirectional version,| the player can
trades dollars for yen and yen for dollars back and

forth, which usually makes much more profit than -

the unidirectional version (if the player does a good
job).

In this paper, we show an improved algorithm for
the bidirectional currency conversion problem. Note
that the bidirectional algorithm in [EFKT92] di-
vides the whole exchange rate (yen / dollar) run into
upward runs and downward runs and then repeats
unidirectional algorithms for each run independently.
Our improvement is based on the following idea: (i)
The application of unidirectional version to the bidi-
rectional case should not be independent, namely we
should be satisfied by a smaller profit for one run if it
is guaranteed that the profit for the next run is large
enough to compensate the previous one. (ii) The
strategy should be flexible, i.e., it should change some
parameter values due to the current exchange rate.
We also improve the lower bound given in [EFKT92].
The idea is to introduce a much more sophisticated
input than in [EFKT92] and claim that it is still pos-
sible to design an optimal bidirectional algorithm for
that input. It should be noted that our present ar-

gument may seem to remain rather small room of :

further improvement.

On-line financial decision making has been a popu-
lar topic: Cover [Cov91] studied the problem of port-
folio selection for investment, and considered a simple
on-line strategy that dramatically changes the distri-
bution of its current wealth among the stocks. He
compared this on-line strategy with a static off-line
portfolio selection strategy. Raghavan [Rag91) ana-
lyzed the performance of an on-line investment algo-
rithm under . a statistical restriction on request se-
quences. El-Yaniv and Karp [EK93] analyzed the
mortgage problem, and Azar et al. [ABFFLR96]
studied ' the competitive analysis for the general-
ized problem from the ‘mortgage problem. 'Chou et
al. [CCEKL95] studied the currency-conversion prob-
lems without competitive analysis. Dannoura and
Sakurai [DS97] analyzed the bidirectional currency
conversion problem with some brokerage.
2 Models, Algorithms, and
Previous Results

In the unidirectional conversion problem, an on-line
player converts dollars to yen over some period of
time and must convert all the remaining dollars to
yen at the end of a trading period. It is prohib-
ited to convert already purchased yen back to dollars,
which is the reason why it is called “unidirectional.”

In contrast, the bidirectional conversion problem al-
lows the on-line player to convert back and forth be-
tween dollars and yen at the rate of each moment. In
this paper, we mainly discuss the so-called continuous
version where the player can trade at any moment.
(However, our algorithm can be easily modified to
work for the discrete vérsion.)

The measure of the efficiency of on-line algorithms
is the so-called competitive ratio: Suppose that trad-
ing takes place continuously during some time inter-
val [0, T1, and let E(t) be an exchange-rate function
defined over this interval [0,7]. Let Px(E) denote

the amount of yen obtained at the end of the game
by an on-line conversion strategy X when the rate
changes due to the function E(t). Let OPT denote
the optimal off-line strategy where the off-line player
can change all its dollars to yen when the (locally)
highest exchange rate is reached and can do the op-
posite trading at the (locally) lowest rate. The com-

petitive ratio of the on-line algorithm X is defined as
supg PaP'r E)

El- Ya.mv, Fiat, Karp and Turpin show in [EFKT92]
that the on-line player should know in advance up-
per and lower bounds of the exch'ange rate to ob-
tain nontrivial on-line conversion- algorithms. The
present paper also follows this fundamental assump-
tion. Throughout this paper, we use M (resp. m)
as an upper (resp. lower) bound on the value of the
exchange rate, and a as the initial value of the rate,
which the on-line player is also supposed to know in
advance. »

The basic strategy proposed in [EFKT92] is called
the threat-based strategy: To attain a given competi-
tive ratio r the on-line player simply defends himself
against the threat that the exchange rate may drop to
its minimum value m and never come back to higher

. values. They proved that the threat-based strategy

yields the optimal algorithm. More precisely, the
threat-based strategy consists of the following three
rules.

Rule (1). At the end of the game, spend all the
remaining. dolars. .

Raule (2). Except at the end of the game, purchase
only when the current rate is the highest seen so far.

Rule (3). Whenever the exchange rate reaches a
new maximum, convert just enough to ensure that a
competitive ratio of r would be obtained even if the
adversary dropped the exchange rate to m and kept
it there throughout the rest of the game.

Let = be the exchange rate ranging from m and
M, D(z) and Y (z) be the amount of dollars, and the
amount of yen, respectlvely, which the player should
hold when the rate is . Initially, z = a, D =1 and
Y = 0. The three rules above completely‘determine
one partlcixlar on-line algorithm, which is denoted by
EFKT in this paper. EFKT has both unidirectional
and bidirectional versions. When we discuss the uni-
directional version, we can assume that the exchange
rate is monotonically increasing. The reason is that
both the optimal off-line algorithm and the threat-

based algorithm conduct transactions only when the
exchange rate reaches a new maximum.

The unidirectional EFKT is given by defining D(x)
as follows (recall that a is the initial rate known in
advance):

Cese 1. a € [m,rm)

{

z€ [a,fm] D(x)=1

z € [rm, M} D(z):l-%ln:n__‘r:zn ®
Case 2. a € [rm,M]
a(l-% 1 z—m
z € [a, M] D(z):‘&_;)—ﬁlna_m. (2

Thus, the algorithm is determined by the initial rate
a, the lower bound m of the rate and the competitive
ratio r or R, it is often denoted by EFKT(a,m,r)
or EFKT’(a,m,R). Namely, if we wish to obtain
some competitive ratio, say rg, all we have to do is
just to carry out the trading following the above (1)
or (2). However, that is not always successful; i.e.,
at some moment m < z < M, D(z) might become
negative or we have no dollars to continue the game.
We say that EFKT(a,m,r) (or EFKT’(a,m,R)) is
realizable or simply that the competitive ratio r or R
is realizable, if D(M) > 0, namely, if we can continue
the game until the moment that the rate goes up to
M.

As one can see easily, the realizable competitive ra-
tio becomes minimum when D(M) = 0. That means
the best possible value », of » can be obtained by
solving the following equation: '

.ﬂ_l._l
'l'=lnL:':—i—. (3)

Also, R,(a) is the best competitive ratio when the
initial exchange rate a is higher than rm, which is a
function of @ and is usually better (smaller) than r,:

R@=1+2 TR X o

— (4)
Theorem 2.1 ([EFKT92]) The
unidirectional EFKT is optimal and its competitive
ratio is ru (= 1.278 when M/m = 2).

The outline of proving the optimality is as follows:
Assume that the on-line player can achieve the com-
petitive ratio smaller than r,. Then, at the beginning
(the exchange rate is a), the player must spend more
dollars than above, because otherwise the adversary

-immediately drops the rate into m (and the compet-
itive ratio is not improved, a contradiction). Sim-
ilarly, as the exchange ‘rate increases, he/she must
spend more dollars than specified by the above al-
gorithm. However, this implies that the player has
spent all dollars before the exchange rate reaches M
and after that, although the adversary still increases

the rate, he has no dollars to spend to achieve the
better competitive ratio, a contradiction again.

A simple bidirectional strategy is to use the uni-
directional strategy independently for each upward
phase and downward phase. If the number of phases
is k, i.e., if the number of local maxima and local
minima is both k/2, then the competitive ratio is ob-
viously at most-r¥.

In [EFKT92], El-Yaniv et al. state that this strat-
egy is not optimal and discussed lower bounds: The
idea of proving lower bounds is to assume some re-
stricted input for which we can design an optimal on-
line algorithm. As such a restricted input, El-Yaniv
et al. gave the one as shown in Fig.1, where the rate
increases from m, suddenly drops to m, and repeats
this movement. They also showed that the algorithm
that uses the unidirectional EFKT for each unit con-
sisting of an increase and a sudden drop is optimal.
Since this single unit constitutes two phases (see the
next section), the lower bound is ¥ or (VrF.

-Thus, when M/m = 2, the best known upper and
lower bounds are (1.278)* and (1.131)*, respectively,
which will be improved into (1.189)* and (1.184)%, in
the following sections.

Figure 1: Exchange rates for EFKT lower bound

3 Improving Bidirectional Al-
gorithms ‘

3.1 Basic Idea

Let us consider the two different inputs (E(t)’s), as
shown in Figs. 2 and 3, both consisting of the up-
ward phase (A-B-C) and the following downward
phase (C-D-E). (Note that the single unit of Fig.1
is a special case of this two-phase input where C-D
and D-E are infinitely small.) The profit of the off-
line algorithm is obviously the same between Fig. 2
and Fig. 3. However, if we use the unidirectional
EFKT for each phase, then it is not. Recall that the
“threat” against on-line players is a sudden change
of the rate into its extreme and so one might think
that Fig. 2 is more dangerous for on-line players than

Fig. 3. That is true for the unidirectional case, but is
not any longer for the bidirectional case. Here is the
reason: Note that the player has the same amount
of yen at moment B and that amount of yen can be
changed back into dollars at a quite low late around
Cin Fig. 2. In the case of Fig. 3 the same amount
of yen is to be changed (gradually) at much higher
rates between C and D, which means the player who
follows the rule of the unidirectional EFKT can only
get a smaller amount of dollars. In other words, the
input like Fig. 3 is harder than the input like Fig. 2
for the on-line player.

exchange rate
Mp-----m-mmmrrem e
B
{E
A .
m p------mmmemmeemee e

time

Figure 2: Example of the large dropping

exchange rate

time
Figure 3: Example of small dropping
Recall that the on-line player gradually changes

. dollars to yen during the upward phase to prepare
the possible sudden drop to the bottom (=m) or to

prepare the “threat.” On the other hand, the player
wish to lower the amount of this gradual changes,
since he/she wishes to change as much dollars as pos-
sible at higher rates. Now, as we have seen above, the
threat is not so dangerous in the case of bidirectional
conversion, and so we can actually achieve this goal
simply by keeping more dollars until the price goes
up. This can be done without changing the basic
structure of the unidirectional EFKT but making the
amount of sudden drop to be anticipated a little bit
smaller than before. Namely, we can apply the uni-
directional EFKT with assuming that the price can
suddenly drop not to m but to some m’/ > m.

This value m/ clearly depends on the current price,
i.e., as the price goes up the value m’ should also goes
up. However, it appears to be hard to manage m’ as
a (continuous) function of the current rate. What we
do in this paper is just-to introduce some different
values as m’. :)

3.2 Upper Bounds

exchange rate

Figure 4: Outline of 2-step algorithm

As mentioned above, our new algorithm changes its
strategy when the rate reaches some threshold value,
denoted by a;. We call it the Two-Step BiDirectional
Conversion (or 25BD in short). Precisely speaking,
2SBD denotes the algorithm that works only for the
each monotone phase as shown in Fig.4. We still
call it “Bidirectional” since it is designed by consid-
ering the compensation of the competitive ratio be-
tween consecutive two phases due to the idea given
in Sec.3.1.

Like EFKT(a, m,r), 2SBD is determined by giving
the same three parameters a,m,r and furthermore
the threshold value a; hence it is often denoted by
2SBD(a,m, r,a2). Note that ¢ and m are given as a
part of the input. We can select any values for r and

az, but as before, 2SBD(a, m, r,a2) may not be real-
izable. The formal definition of this realizability for
25BD(a,m,r,a2) will be given later. It will turn out
that if ZSBD(a n,r,a3) is realizable, then its com-
petitive ratio is at most r* for k-phase inputs. In
the following, we first consider the case that the ini-
tial rate is sufficiently small. Once again the follow-
ing algorithm may not be executable (e.g., we cannot
continue since we have no dollars to exchange) if the
.values given to r and/or a; are not appropriate.

Algorithm 25BD(a, m, r,a3)

(0) We first compute internal parameters ry, m;, 7y
and m3 from the given values a,m,r and ap (details
are given later). Make sure that a is “small”, i.e.,
a < rim;.)

(1) While the rate changes from a to az, we simu-
late EFKT(a, mi,71).

(2) When the rate gets to ag, calculate the amount
D' of dollars if we would change all the yen currently
held to dollars at this rate (see below for more de-
tails). Namely, D’ is the total money in dollar the
player has at this moment.

(3) While the rate is between a; and M, we
simulate EFKT(az, ma,13) a.ssummg that the initial
amount dollars is D’.

(4) Change all the remaining dollars to yen at the
end of the phase (i.e., when the rate begins to drop).

Now we explain how to calculate the initial param-
eters in (0) above: Among others ry and m; are first
determined by equations.

ri=r, and m; =rm. (5)
By this setting, our algorithm can manage at least
the following specific input: Recall that we are now
assuming that a < rym;i(= denoted by ay). So, there
exists the input where the rate starts from a and falls
down suddenly to m when it reaches a; = rym;.
Note that this input is of two phases because the
next phase must be again an upward phase (since
it already went to m, it cannot go down further).
Also one can see that our algorithm that simulates
EFKT(a,my, ;) does not do any trading for this in-
put, i.e., the player holds one dollar at the end of
the input (more precisely, the player is to change one
dollar to m yen when the rate falls to m, i.e., at the
end of the first phase, and then immediately changes
this m yen back to one dollar at the end of the second
phase that coincides with the end of the first phase
in this particular input). The optimal strategy can
change one dollar to rym; yen at rate r;m;, and then
back to r; m/m = 712 = r? dollars when the rate is
m. Thus the competitive ratio of our algorithm for
this 2-phase input is r2.

We next determine r; and my due to the following
idea: Suppose that the rate has reached the threshold
value ay, i.e., it has not fallen before that. At this mo-
ment, if we conslder that we finish EFKT(a,m;,r),
then we can calculate the whole amount Y of money
in yen by changing all the remaining dollars to yen
at this rate ay. This Y is better than the similar

amount Y’ EFKT(a, my,r) can make for the input
which suffers from some sudden drop before it reaches
az. Note that our competitive ratio »; assumes this
worse value Y’. In other words, the competitive ra-
tio, say r/, of our algorithm for the better result ¥
is better than r;. It is not hard to see that we can
write

as/m; —1

r=ligomyg_1
_r+(1 2)(1 rl r—1)

(6)
Now define r, = r/r’. Then one can see that we
can achieve the competitive ratio r for the input that
continues to go up after reaching a; (and may drop to
at worst m3). To detérmine my, we can use equation
(4), i.e., my is determined so as to satisfy

M- m:
—_— 7
pr— (™

The similar algorithm for the case that the initial
rate a is higher than a; is denoted by 2SBD’. There
are two different cases, a € [a;,a3] and a € [ag, M].
In the latter case, we simply omit the first step of
2SBD and then for the second step, we use the op-
timal EFKT whose initial value is a and whose fi-
nal rate (= the rate at which the amount of dollars
becomes 0) is M. In the former case, we simulate
EFKT’(a,m, R(a)) instead of EFKT(a;, my,71) in
the first step. Here, EFKT’(a, m;, R(a))is the opti-
mal EFKT’ whose initial rate is a and whose final
rate is the same as the final rate of EFKT(a,m;,r).
Using the fundamental equations of EFKT’, one can
get

- mg In
az

-1+

u—m In Ma=m ,
RS S wiag . it e SO
1+—a—2-lna—_;1 ae[az,M]

where My = m{1+ (r — 1) x¢e"}.

Thus 28BD(a, m, r,a3) has been completely spec-
ified. What remains to do is to obtain the best re-
alizable r and the threshold value a;, which make
2SBD(a, m, r, az) realizable, from the values a, m and
M. Note that this optimization process is not a part
of the on-line” algorithm since m and M are given
in advance and without less of generality we can set

= m (recall that if @ < rym,, then the algorithm
does not depend on the value a). So, it is enough
to show that some particular values actually satisfies
conditions for the realizability. Now let us define that
2SBD(a, m, 7, a;) is realizable if it passes the following
three tests:

(i) 1st-Step-Test(a,m1,r1,a3): The algorithm
passes this test if it can continue EFKT(al,mI,rl)
until the rate reaches ay, i.e., there remain some dol-
lars (> 0) at rate a.

(ii) 2nd-Step-Test(az,my,r3): The algorithm
passes this test if it can continue EFKT(a3,mg,r2)
until the rate reaches M.

(iii) InterPhase-Test: The algorithm passes this
test if its competitive ratio is at most r2 for the fol-
lowing specific 2-phase input I(w): The rate goes

up to ag, then right after we start the simulation
of EFKT(az, mg, r2), it falls suddenly to some value
w < mz and then goes down to m. It is not hard
to see that the competitive ratio for the first phase
(until w) is

r(az -_— mz)
az + (fr — 1w -~

T (9)
,.I
which might be worse than r. For the second phase,
i.e., from w to m, we can apply 2SBD’, i.e., the algo-
rithm for the input where initial rate is higher than
a;. Although details are omitted, its competitive ra-

tio is not worse than the following values

R()) = 1+ —ﬂln@_—,g-';‘- a' € [a1,a2],
1+ “—;',"illn;"%i a' € [ay, M].
(10)
Since the algorithm used in the second phase above is
not 28BD’ itself but its opposite-direction version, its
competitive ratio can be written as R{mM/w). Asa
result, the following condition should be met to pass
InterPhase-Test:

r(ag — m?) '
@+ (F—Huw- =R

R(mM/w) <t (11)
All we have to'do now is to seek valiues r and a; that
passes the three tests above. The following informal
procedure appears to work quite well:
(1) Set an arbitrary (but reasonable) value to r.

(2) Compute r; and m;.

(3) Set some value, say v/a; M;, to az and compute
Tr9 and my.

(4) Execute the three tests. If all the tests are
passed then r is realizable and try an even smaller
value. Otherwise, first try to adjust the value of as.
It might help to know that if we make a; smaller
then it becomes easier to pass both 1st-Step-Test and
InterPhase-Test, but becomes harder to pass the 2nd-
Step-Test. If this adjustment of a, fails, then we have
to make r larger and repeat from (2).

Thus we finally obtain our bidirectional conversion
algorithm which repeats realizable 2SBD(a, m, r, 02)
and its opposn'.e-du'ectlon version.

Theorem 3.1 Suppose that k is even and the k-
phase input has the same initial and final rate. Then
if 2SBD(a, m,r,az) is realizable, then the whole al-
gorithm achieves r* as its competitive ratio for the
k-phase input.

(Proof sketch) By the construction, it is obvi-
ous that r* is achieved if the rate does not fall (in
upward phases) below m; or my. If it does, then the
worst case is that the rate falls right after the first
step or right after the second step (proof is omitted).
However, we have considered this worst case when r;
is determined by introducing InterPhase-Test. o

Remark. If the final rate of the k-phase input is
lower than its initial rate, then we can get a better

competitive ratio. Otherwise, the ratio can become
only as bad as rE+1,

2SBD can be extended to kSBD whose parameters
can be determined by the following procedure.

(1) Set some value to r as before, which determines
ry,my and a;.

(2) Set some value to a; and make sure that
EFKT(a1,my,r;) is realizable at a;. Now ry is de-
termined.]

(3) Set some value m; € [m;, ay].

(4) Repeat (2) and (3) for a;,r; and my for i =
3,4,.-.. If a; and r; are set, then the final m; is
determined.

(5) Execute InterPhase-Test at the beginning of
each step.

Table 1 shows an example of realizable competitive
ratios and related parameter values for k = 2,4, and
8 when M/m =2 :

Theorem 3.2 When M/m = 2, the best realizable
competitive ratio for 8SBD is less than 1.1894

4 Lower Bounds

Figure 5: Exchange rates for our lower bound'

The idea of proving lower bounds is to find some re-
stricted input for which we can design an optimal
online-conversion algorithm. In this paper, we use
the input Iy, that looks like Fig.5. Our input, Iy can
take one of the four difficult types of rate changes:
Type 1: The rate goes up from uz, suddenly goes
down to dy before it reaches a,, goes down toward m
and finally goes suddenly up to up. Type 2, 3 and 4
are similar, but they suddenly go down to da,ds and
dy before getting to @, & and M, respectively. For
the reason mentioned later, we design Iy so that it will
satisfy the following conditions: Firstly the values of
@1, @2 and @3 (we shall ‘again call them threshold val-

Table 1:

132.9,133.0,136.5)

(1215,123.3,125.3,127.5,

The realizable parameter values for k = 2,4, and 8 when M/m = 2
k (my, -, my) (a2, -+, ar)

2 (125.2) (155.6)

4| (121.6,125.4,130.6) (147.8,156.0, 168.2)

8

(1458, 154.2, 164.0, 168.1,
173.4,176.5,181.5)

Figure 6: Optimal Algorithm for the restricted inputs

ues) have to satisfy the following equations:

a3 M-d

— =1 =

s 7 (d1, m,ux)In —, 0, (12)

[-1 G3 — dg a3

- d =

a7 Gemwhr Ty =gt 9

a -1(4 Gx—dy iy
R r (3,m,u2)ln&1_d3-d2_d3 (14)
where 7~! are given later. Due to the second condi-

tions, d;, @3 and ds are now functions of d;, dy, d3 and
dy. The second condition is that up = mM/d;. Now
combined with the first condition, I is completely
determined by giving the values of d,ds, ds and dj.
Thus, Io is often expressed by Ip(dy,ds, ds,ds). The
last condition is rather technical, i.e., we will select
the values dy, d2,ds and d4 so as to satisfy that

m<dy<ds<d;<vVmM <d; < M. (15)

Fig.6 illustrates the idea of our optimal algorithm
for the input Iy. The algorithm is denoted by
A(ry, 74,75, 7%) (or simply by A if nothing wrong hap-
pens) where the parameter values 7 will be deter-
mined later. (1) While the rate is going up from us
tody, A(ry,ry, 5, ry) simulates EFKT(ug, da,), (2)
from @, to &, it simulates EFKT(&;, d3, r}), (3) from
@3 to as, it simulates EFKT(as, d2,r3), and (4) from
ag to M, it simulates EFKT(ds, dy, r}). (5) After I,

suddenly goes down to d; (i = 1,2,3 or 4), A sim-
ulates OPT-EFKT~'(d;, m, u3) which is the optimal
EFKT such that its initial rate is d; and the upper
and lower bounds of the rate are m and uy, respec-
tively.)

Recall that the initial rate is high, EFKT requires
us to change a certain amount of money at the very
beginning of the game. This means that our cur-
rent algorithm A might also requires us to change
some amount of money when it changes, for exam-
ple, from EFKT(&,, d3, r}) to EFKT(a2, ds, r}) at the
rate Gy discontinuously. The condition, 12 - 14 we
introduced before present this discontinuous behav-
iors, i.e., the amount of dollars one should hold at
the end of EFKT(d,,ds,r5) and at the beginning
of EFKT(G;,ds,r3) are the same under those con-
ditions.

Now let us determine the values of r{, r},r4 and r}
so that A(r{,ry,r5.74) will be optimal. It should be
noted first that A’s behavior after the rate has fallen
to d; is obviously optimal. So, let r~!(d;) be the
competitive ratio of OPT-EFKT~!(d;, m,u;). Then
as was mentioned in Sec.3.1,

ri(ds) S 77(ds) S vTH(dg) S vTHdY) (16)

The basic idea of determining the values r{,r}, 4
and rj is to determine them so that the competitive
ratio of A will be the same for the type 1, type 2,
type 3 and type 4 inputs. To compensate the rela-
tion 16 above, we have to achieve increasingly better
competitive ratio as the input changes from type 1,
type 2, type 3 to type 4.

First of all it is not hard to decide r}. Since the final
rate of EFKT(@s) (= the rate at which the amount
of dollars becomes 0) must be M, r} can be obtained
from the fundamental equations of EFKT. Namely,
ry = ﬁﬁ*ln%—:j‘-, Then we decide rj from the
condition that A achieves the same ratio for the type
3 and type 4 inputs. Note that the trading is exactly
the saime for type 3 and type 4 until the rate goes up
to @3. So'we can think this @, is the starting point
and for simplicity we assume that the player has 1
dollar at this moment. (More precisely, we should
say that if the player changes all the yen to dollars at
this rate @y, then he/she would hold 1 dollar. Namely,
we assume that &@; D(ds) + Y (@) = &.)

Now starting from this &, A simu-
lates EFKT(@;, dy, r§). If the rate falls to do before it
reaches dg, then it is type3 and the competitive ratio
is obviously rjr~1(d,). Otherwise, if the rate goes to

—85—

@3, then the amount of the dollars at the moment can
be calculated by the following fundamental equation

da(1—1/7%) —ll z—dy
53 -dg Té &2-!12

D(z) =

(17

for EFKT(G2,da,r5) and the total amount of money
D' in dollar at that moment can be written as

D' = D(@s)+Y (ds)/ds = (1— %:—)D(&a)+rl, (<1).
L)

Therefore, the competitive ratio for the type 4 input
is (&)ryr 'l(dl) (ie., from @, to s, the on-line player
reduces his/her total money from 1'to D’ dollars).
Now since this ratio is equal to the ratio for type 3,

(19)

‘We can use .the same

raD'r~Y(dg) = rir~(dy),

from which we can get rj.
procedure to get r{ and rj.

Theorem 4.1 A(r{,ry,r5,v4) is
Io(d1, dz, ds, dy).

optimal

for

(Proof sketch) Note that our input I can be
divided into some “ranges”
[uz, @], [81,82),- - -, [d1, m], [d2,m], and soon. It is
clearly possible to see which range the current rate
is in, for example, if the rate gradually goes up over
@z, then the current rate is in range [a3, Gg]. If the
rate suddenly drops to d, and then further goes down
gradually, then the current rate is in range [da, m).

Now suppose that some algorithm B uses a strat-
egy that is different from EFKT in some range. Then
it is easy to show that B can be improved by using
EFKT in that range. Next suppose that B shows
a worse competitive ratio for, say, type 2 than type
3. Then we can modify the EFKT used in the range
[@1, 82) so that it will spend a little more dollars and
[@2, @3] a little less dollars. This implies that the ra-
tio for type 2 is improved and the ratio for type 3'is
worsened, which again improves the whole ratio.

So, we can assume that any optimal algorithm al-
ways uses EFKT as its subalgorithms and achieves
the same competitive ratio for the four types. Then
we can prove that the player must hold some dol-
lars D(> 0) at the maximum rate M. (Otherwise,
the ratio for type 4 must be smaller than others.) I
D > 0, then we can again improve the ratio for all the
types. We can therefore conclude that D = 0. Now
the algorithm is determined uniquely which must be
A(r, 7y, 5, r4) as described above. O

Now we enter the optimization process by adjust-
ing dy,ds,ds and dy to get the worst ratio. In this
process, one should be careful since for some values of
dy,ds,ds,dy, some of &, &y, 3 may be smaller than
ug, If @; is smaller than uy, then the type 1 input
no longer exists and the above arguments should be
done for the remaining three different types of inputs.
The design process of our optimal algorithm is simi-
lar. In this particular 2-phase inputs, the worst ratio

_begins with not uy but u; =

is 1.173% when d; = 152.9, dy = 131.5, d3 = 116.2,
dy = 105.8.

We can again extend this approach to k-phase in-
puts. First of all, we design the optimal algorithm not
only for Iy but also for Igy, Iz, Ios and Iys, where Ig;
mM/d1 Ioz is the same
as Ig (begins with ug). Igsz and Ips begins with ug
and ug4, respectively Now we add one more previous
phase and get again four different types of inputs, ac-
cording to where it changes the phase, at uj,us,us
or ug after the first phase. Then we can use exactly
the same technique to design the optimal algorithm
for this 3-phase input. Since this input includes 4 x 4
different types of inputs in total, the competitive ra-
tio per single phase of the optimal algorithm becomes
worse. Our computer experiment shows:

Theorem 4.2 When M/m = 2, there ezists 50-
phase input for which the optimal algorithm can-
not achieve the competitive ratio that is better than
(1.184)%

References

[ABFFLR96] Azar, Y., Bartal, Y., Feuerstein, E.,
Fiat, A., Leonardi, S. and Rosen, A.,
“On capital investment,” In Proc.
of the 23rd ICALP, 429-441 xii+680,
1996.

[Covo1] Cover, T.M. “Universal Portforios,”
J. of Math. Finance 1(1) pp. 1-29,

January 1991.

Chou, A., Cooperstock, J., El-
Yaniv, R., Klugerman, M. and
Leighton, T., “The Statistical Adver-
sary Allows Optimal Money-Making
Trading Strategies,” In Proc. of
SODA’95, 1995.

[CCEKL9S]

(DS97] Dannoura, E. and Sakurai, K., “On-
line versus off-line in money-making
strategies with BROKERAGE,” In

Proc. of ISAAC’97, 1997.

El-Yaniv, R.; Fiat, A., Karp, R. and
Turpin, G., “Competitive Analysis of
Financial Games,” In Proc. of the
33rd FOCS, pp.327-333, 1992.

El-Yaniv, R. and Karp. R., “The
Mortgage Problem,” In Proc. of 2nd
Israel Symposium on Theory and
Computing Systems, 1993.

[EFKT92]

[EK93]

[Rag91] Raghavan, P., “A statistical adver-
sary for on-line algorithms,” DI-
MACS Series in Discrele Mathemat-
ics and Theoretical Computer Sci-

ence, 7,79-83, 1991.

