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We propose an -almost optimal algorithm that computes the convex hull in

O((loglogn)?) time on a reconfigurable mesh of size

r—%;'-—xﬁp We also show

og logn og log n

that any algorithm that computes the convex hull of a set of » sorted points on an
n-processor reconfigurable mesh must take Q(loglogn) time.

1 Introduction

In essence, a reconfigurable mesh (RM) consists
of a mesh augmented by the addition of a dy-
namic bus system whose configuration changes
in response to computational and communica-
.tion needs. More precisely, a RM of size n x m
consists of nm identical SIMD processors posi-
tioned on a rectangular array with n rows and
m columns. As usual, it is assumed that every
processor knows its own coordinates within the
mesh: we let PE(i,j) denote the processor in
row ¢ and column j, with PFE(1,1) in the north-
west corner of the mesh. v
Each processor PE(3,j) is connected to its
four neighbors P(i -1, ), P(i+1,j), P(i,j—1),
and P(i,j + 1), provided they exist, and has 4
ports denoted by N, S, E, and W in Figure 1.
Local connections between these ports can be
established, unider program’ control, creating a
powerful bus system that changes dynamically
to ‘accommodate various computational needs,
For practical reasons, only one processor is al-
lowed to broadcast on a given bus at any one
time. All the results in this paper assume a
model that allows at most two pairs of connec-
tions to be set in each processor at any one time.
Given its importance, and its far-reaching
applications, the convex hull problem has been
studied extensively in the literature;, both se-
quentially and in parallel [2, 3, 8]. On the re-
configurable mesh, the convex hull problem has
been addressed in two different comtexts: for
sparse input and for dense input. While the

sparse case allows one to use more processors
than input points, in the dense case the number
of processors and the number of input points are,
essentially, the same. For sparse input, Olariu
et al. [6] and Jang et al. [3] proposed O(1)
time algorithms to compute the convex hull of
a set of +/n points on a reconfigurable mesh of
size \/n x +/n. Nakano [5] showed that, if the
v/ points are sorted beforehand, then, for ev-
ery fixed € > 0, the convex hull can be computed
in O(1) time on a reconfigurable mesh of size
Vn X ne.

In the dense case, Miller and Stout [4] pro-
posed an O(log?n) time algorithm computing
the convex hull of a sorted set of n points, pretiled
in proximity order on a reconﬁgurable mesh of
size v/n X ¢/n. Olariu et al. [7] using a differ-
ent approach proposed a.lgonthms featuring, es-
sentially, the same O(log” n) performance. Re-
cently, Nakano [5] showed that the convex hull of
a sorted set of /mn points can be computed in

O(%%ﬁs;-+log m) time on a reconfigurable mesh

of size /M X /A In particular, for m = 2og¥ n

the computing time becomes O(log§ n), which
is the fastest known for dense input.

For more than eight years it was open to
obtain a convex hull algorithm running in sub-
loga.uthxmc time on dense input. Qur main con-

‘tribution is to provide the first breakthrough:

we propose an almost optimal algorithm run-
ning in O((log logn)?) time on a reconfigurable
mesh of size 1/ x \/n. We then go on to show
that with minor changes this algorithm can be
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Figure 1: A féconﬁgurable mesh of size 4 x‘ ‘5‘¢m.d‘ several subbuses

implemented to run in O((loglogn)?) time on

a reconfigurable mesh of size T X 15 :gn
Our second algonthm features a processor-time
product of O(n), being work-optimal.

We also show that our algorithms are close to
time-optimality. Indeed, we prove that any algo-
rithm that computes the convex hull of a set of
n sorted points on an n-processor reconfigurable
mesh must take Q(loglogn) time. In fact, this
lower bound holds even for the strongest recon-
figurable meshes that allow port fusion.

2 The lowér bound

In order to establish a time-lower bound for the
problem of computing the upper hull of a set of
n points on a reconfigurable mesh with n pro-
cessors we rely on the following result of Valiant
[9}.

Lemma 2.1 The problem of finding the masz-
imum of n items requires Q(loglogn) time on
the parallel comparison model, provided that the
number of processors is at most nlog®W n.

‘We observe that, for comparison-based problems,
the parallel comparison model with n processors
can simulate any parallel machine with n proces-
sors including the reconfigurable mesh. Thus,
Lemma 2.1 has the following consequence.

"Corollary 2.2 The problem of finding the maz-
imum of n items requires Q(loglogn) time on
the reconfigurable mesh, provided that the num-
ber of processors is at most nlogo(l) n.

We now reduce the problem of finding the
maximum of % items to that of computing the
upper hull of n sorted points in the plane. For
this purpose, let A = {a1,0s,.. az} be an ar-
bitrary input to the maximum pro’{)lem From
this input we generate a set P of n sorted points
in the plane by writing P = {(i, a:), (s + 3, 4:) |
1 < i < 2}. Notice that the points (j,a;) and
G+ % ,as are both vertices of the upper hull
of P lf and only if a; is the maximum of 4. It

follows that any algorithm that computes the

_ upper hull of P also computes the ma.xnmum of

A. This, we have

"Theorem 2.3 The problem of computiny the up-

per hull of n sorted points in the plane requires
Q(loglogn) time on-an n-processor reconfigurable
mesh. .

8 Our geometric machinery

'In this section we develop novel geometric re-

sults that will lay the foundation of our convex
hull algorithms. Let P, P,,..., Py be disjoint
upper hulls, each containing n points, such that
for all i, (1 £ i < m—1), P;is to the left of Piy;.
We are interested in computing the upper hull
U(P) of P= RLUPU---UP,. For every i, (1 <
i € m), enumerate the points of F; in increasing
z-coordinate as p(3, 1), p(3,2),p(,3), ..., p(i, m).
Observe that U(P) is a convex polygonal chain
with left endpoint p(1, 1) and right endpoint p(m,n).
It is easy to see that the pomts belonging to
U(P) N P; are consecutive in U(P) and can be
specified by the interval [g;, h;]: in other words,
U(P) NP = {p(i,9:),p(i g + 1);...,p(, hi)}.
The two points L; = p(i, g;) and R; = p(3, h;)
are termed, respectively, the left contact point
and the nght contact point of P; with respect to
U(P). Note that each P; may have, with respect
to U(P), one, two, or no contact points. Clearly,
P; has exactly one contact point only if L; = R;.
The line segment p(3, hi)p(j, 9;), (¢ < j), is
said to be an upper hull tangent of U(P) if for
every k, (i < k < j), U(P)N Py is empty. In
other words, all the points in Py UP;42U---U
P;_; lie below the line segment p(i, h;)p(J, 95)-
Samples will play a crucial role in the sequel
of this work. For our purpose, a sample is just
a subset of a given set. In particular, let S(P;)
be a sample of P; including the points p(z,1)
and p(i,n). Let U(S(P)) be the upper hull of
S(P) = S(P)US(P)U-:-US(Pm). It should
be clear that U(S(P)) is also a convex polyg-
onal chain with left endpoint p(1,1) and right
endpoint p(m,n). As noted, S(P;) may have
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Figure 2: Prozimity order and the corresponding bus embedding

one, two, or no contact points with respect to
U(S(P)). If S(P;) has no contact points with
respect to U(S(P)), then it must be the case
that all the points in S(P;) lie below some up-
per hull tangent of U(S(P)). In this case, the
closest point p(,g;) to this upper hull tangent
over all the points in S(P;) is termed a pseudo
contact point of S(P;) with respect to U{S(P)).
We refer the reader to Figure 3 for an illustration
of these concepts. Here, the dark circles denote
points in S(P).

In order to specify some of our results we
need the following definition. Let C; and C; be
two convex polygonal chains with left and right
endpoints p(1,1) and p(m,n). We say that C,
is an upper envelope for C; if on every vertical
line that intersect both C; and C; the intersec-
tion point with C; is not below the intersection
point with C;. The following lemmas, in ad-
dition to shedding light on the relationship be-
tween U(S(P)) and U(P), will turn out to be
key ingredients in our upper hull algorithms.

Lemma 3.1 For every choice of samples S(B;),
(1 £ i £ m), U(P) is an upper envelope of
U(s(p))-

Proof. If some vertical line intersects U(P)
below U(S(P)) then some vertex u of U(S(P))
lies above some edge of U(P), contradicting that
U(P) is the convex hull of LURU-+--UP,,. O

For a point p(s, f) of S(P:) we let p(i,1(f))
and p(i,7(f)) denote, respectively, its left and
right neighbor in S(P;). Let p(i,g}) and p(i, h})
be, respectively, the left and right contact points
of S(P;) with respect to U(S(P)). Clearly,
U(S(P)) 0 S(P) = {p(i, gD, p(i,7(gD),

PG, r(r(g2)); - - p(3,1(R))), p(3, k))}-

Lemma 3.2 Let p(i,g:) and p(i, h;) be the left
and right contact points (if any) of P; with re-
spect to U(P). If the points p(i,g.) and p(i, h})
are distinct then l(g]) < gi < hi < r(h}). If
p(i,g;) and p(i,h}) coincide or if S(P;) has a

pseudo contact point p(i, gi) with respect to U{S(P)),
then l(g}) < i < hi<7(g}).

Proof. First, assume that the points p(i, g})
and ' p(i, h}) exist and are distinct and refer to
Figure 4. Let p(i, hi)p(J; 97), (¢ < j), be an up-
per hull tangent of U(S(P)). Clearly, the points
(3, k) with r{h}) < & lie below the upper hull
tangent p(i, h{)p(j, g;). Hence, by Lemma 3.1,
p(%, h;) cannot be among them. Therefore, h; <
r(h}) must hold. A symmetric argument shows
that 1(g}) < gi. Thus, we have l(g}) < g: < hi <
r(h}). '

The case where the points p(z, g;) and p(i, h!)
coincide is handled in a perfectly similar way and
will not be repeated. '

Finally, assume that S(P;) has a pseudo con-
tact point p(s,g!) and let A be the upper hull
tangent of U(S(P)) confirming that p(i,g) is a
pseudo contact point. Clearly, the points p(i, k)
with &k < 1(3, g}) or (4, ¢}) < k must lie below X.
By Lemma 3.1, neither p(i, g;} nor p(é, h;) can
be among them. It follows that I(g}) < ¢; <
h; < r(g}), as claimed. o

Let p(3, he)p(4, 9;), (i < §), be an upper hull
tangent of U(P). As we noted before, p(i, h;) is
the right contact point of P;, p(j, g;) is the left
contact point of P;, and all the points in Pj4; U
Py U---U P;_y lie below the line determined
by p(i’ hl) and p(]s gj)’

Lemma 3.3 Let p(i, h}) be the right contact point
or the pseudo contact point of S(P;) with respect
to U(S(P)), and let p(j, g;) be the left contact
point or the pseudo contact point of S(P;) with
respect to U(S(P)). At least one of the condi-
tions I(h;) < h; <r(h}) or l(g}) < g; < r(g}) is
satisfied. :

Proof. Let p(i, h;)p(J, 9;), (i < j) be an upper
hull tangent of U(P) and refer to Figure 5. By
Lemma 3.2 we must have

hi < r(h{) and I(g}) < g;.

@
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Figure 5: kIllustrating the proof of Lemma 3.3

If both h; < I(h) and 7(g}) < g; are sat-
isfied, then at least one the points p(i, h;) and
p(],,g,) must lie below the line segment deter-
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Figure 6: Illustrating the proof of Lemma 3.4

U(P), i.e. g; = gj, then we must have I(h]) <
hi < 7(hY).

Proof. Referring to Figure 6, note that by
Lemma 3.1 among the pomts in P;, only those
lying on or above the line p(i, h})p(j, g;) can be

mined by p(i, h{) and p(j, g;), contradicting Lemmay;, , right contact point p(i, h; ) of P,

3.1. Therefore, we must have

U(h;) < hi or g; < r(g}). 2

Now, equations (1) and (2), combined, 1mply
that I(h]) < h; < r(h}) or l(g}) < g; < r(g}) is
satisfied, completing the proof of the lemma. o

Let p(i, ki)p(j, g;), (i < j), be an upper hull
tangent of U(P) and assume that one of the
points p(i, h;) or p(j, g;) is known.

We shall say that S(P) is a good sample of P
Aif all the contact points of P with respect to
U(P) belong to S(P). Clearly, in this case, the
contact points of S(P) with respect to U(S(P))
are precisely the contact points of P with respect
to U(P). Thus, once a good sample S(P) is
available, the task of computing all the contact
points of P with respect to U(P) and, therefore,

U(P) itself, reduces to the task of computing
U(s(P)).

Lemma 3.4 Letp(i, h}) be the right contact point

of S(P;) and let p(j, g;) be the left contact point
of S(P;) with respect to U(S(P)). If p(j, d}) is
also the right contact point of P; with respect to




4 The key idea: obtaining a
good sample efficiently

We are now in a position to show how. the ge-
ometric machinery developed in Section 3 can
be exploited to obtain a good sample S(P) of
P. For this purpose, we shall find it convenient
to import the relevant notation and terminology
developed in the context of Section 3.

We begin by selecting for every i, (1 < i <
m), a sample S(P;) by retaining every ni-th
item in P;. Note that the first and last point
of P; are also included in S(P;). Write S(P) =
S(P)US(Py)U-:-US(P,). Having computed
the convex hull U(S(P)) of S(P), we determine
for every S(P;) its left and right contact points,

(4) every (r(h})—h})¥-th item from the sequence
{003, b2), i, Bi+1), ., 0, (B}, T S(P)
does not have distinct contact points, then
only (1) and (2) are executed for the unique
contact’ point or for the pseudo contac
point p(i, g}). ‘

Let p(i, g;) and p(s, h;) be the left and right
contact points,(if any) of P; with respect to U{P).
The span of p(i, g;) with respect to S(F;) is de-
fined to be min{g; — I(¢g:),v(g:) - :} if p(3, %)
belongs to S(P;); otherwise, with p(z, f) stand-
ing for the (unique) point in S(P;) for which
I(f) < gi < f, the span is f — I(f). The span
of p(i, h;) is defined analogously. Intuitively, the
span of point p(%, g;) measures the “density” of
S(P;) around p(i,g;). Notice that S(P) is a

p(i, g;) and p(3, b) (if any) with respect to U(S(P )good sample whenever the span of all the con-

Lemma 3.3 guarantees that the left and right
contact points p(i,g;) and p(i,h;) of P; with
respect to U(P) satisfy I(g}) < ¢i < r(g}) or
I(h}) < h;y < r(h}). This motivates us to re-
fine the sample S(P;) by adding more sample
points from the sequence p(s,(g})), (i, {(g}) +
,...,p(, g1),. .., p(i,7(g}) = 1), p(i, 7(g})) and,
similarly, from the sequence p(i, 1(h})), p(, {(h})+
1)y, 0, k), .. p(5,r(RE)-1), p(s, 7 (AL)). The
initial sample S(P;) is refined, in the way de-
scribed, 2loglog 7 — 2 times. Somewhat surpris-
ingly, what results is a good sample S(P) of P.
The details follow. .

Algorithm Find-good-sample

Step 1 For every ¢, (1< i < mz, build sample
S(P;) by retaining every n¥-th item in P;.

Step 2 Repeat the following substeps 2loglogn—

2 times. .

2.1 Compute the upper hull U(S(P)) of
S(P) and determine the left and right con-
tact points p(i,g}) and p(i,h}) of S(P;)
with respect to U(S(P)). If S(F;) has no
contact point, determine the pseudo con-
tact point p(i, g;) of S(F;).

Step 2.2 Let p(i,!(g})) and p(i,r(g})) be, re-
spectively, the left and right neighbor of
© p(i,g;) in S(P:); similarly, let p(i, I(h}))
and p(i,7(h})) be the left and right neigh-
Jbor of p(i, h;) in S(P;). Update S(P;) by

the addition of:. . Coev

Step

(1) every (g —1(g}))%-th item from the @quence
{pG1(g0), p(4, 1(g8) + 1), - .., p(3, 91) },

(2) every (r(g!) ) %_th item from the’sequence
{p(3, 93), (i, 9; + 1), - P(6(g9))},

(38) every (hf—l (h%))3-th item from th.e‘sequence
16, 1(R2), p(5, 1(h3) +1), .., pl, )},

tact points of P is 1.

Clearly, the span of a contact point of P; with
respect to U(P) does not increase during the ex-
ecution of the above algorithm, because no sam-
ple point is ever removed from S(P). Somewhat
surprisingly, the spans decrease quite fast. As
we are about to show, when Find-good-sample
terminates, the span of all the contact points is
reduced to 1. _

Fix an upper hull tangent p(%, h:)p(j, 9;), (i <
J), of U(P). At the end of Step 1 the span of
p(i, ki) and p(j, g;) is ‘n¥. Consider what hap-
pens in the first iteration of Step 2. In Step 2.1
we determine the right contact peint p(z, h}) of
5(P;) and the left contact point p(j, g}) of S(P;)
with respect to U(S(P)). Step 2.2 retains every
n¥-th item from {p(i,I(h%)),p(i,1(h}) + 1),...,
(i, 7(h!))} and every ni-th item from {p(j, i(g})),
p(3,1(g5) +1),..., p(4,7(g}))} and adds them to
S(P;) and S(P;), respectively. Lemma 3.3 guar-
antees that at least one of I(h}) < h; < 7(Al) or
I(g) <.9j < r(g}) holds. Thus, at least one of
the spans of p(3, ;) and p(j,g;) decreases from
n¥ tont. More generally, we have the following
result. o

Lemma 4.1 In Siep 2.1 of each of the 2loglogn—
2 iterations of Step 2, at least one of the follow-
ing conditions is satisfied:

((a) the span s, (s > 1), of p(i; hi) decreases to
SERY T

8

(b) -the span §'; (s' > 1), of p(j, g;) decreases to
BV ‘ o
(c) the span of both p(, ki) and p(j,g9;) is' 1. -

Proof. If s> 1and s’ > 1hold, then Lémma 3.3
ensures that either (a) or (b) is satisfied. If ex-
actly one of s > 1 or s > 1 holds, say, s = 1 and
s’ > 1 holds, then Lemma 3.4 ensures that (b)
occurs. i both s = 1 and &’ = 1, then clearly



(c) holds. Hence, in each iteration, Step 2.1 de-
creascs at least one of the spans of p(i, h;) and
p(j, h;) as claimed. o

Lemma 4.1 implies the main result of this sec-
tion.

Theorem 4.2 When Find-good-sample termi-
nates, S(P) is a good sample of P.

Proof. Notice that condition (a) in Lemma 4.1
cannot hold true for more than loglogn —1 iter-
ations. Similarly, condition (b) cannot hold true
for more than loglogn —1 iterations. Therefore,
at the end of 2loglogn — 2 iterations condition
(c) must hold, as claimed. a o

As it turns out, algorithm Find-good-sample
has a number of additional properties that, col-
lectively, allow us to implement each iteration
in O(1) time on the reconfigurable mesh. The
proofs will be given in Section 6.

o In each iteration at most 4n'/4

new sample
points are added to S(P;), ‘

o The new sample points are “sparse” in the
sense that from any sequence p(3, f), p(¢, f+
1),...,

p(i, f + 5 — 1) of s points, at most 4s'/2
points are added to S(P;).

o S(P) contains at most mn'/2+(2loglog n—
2)-4mn'/* < 2mn'/? sample points during
the execution of algorithm.

5 Data movement and basic
techniques

We begin by discussing a data movement tech-
niqile that will be used time and again in the
remainder of this work. Consider a set A =
{a(1),a(2),...,a(n)} of n = 29 x 24 items, with
some of the items marked. The set A is pretiled,
in proximity order, on a reconfigurable mesh M

" of size 29 x 29. We are interested in identify-

ing, for every item in A, the nezt marked item

in proximity order. More precisely, we wish to -

identify a set A’ = {a’(1),d/(2),...,a'(n)} such
that /(i) = a(j) with j = min{k | k > ¢ and a(k)
is marked}. If no a(%k) with & > i is marked, then
o’(i) is §. The task at hand involves (1) estab-
lishing a bus embedding of the proximity order
as shown in Figure 2, (2) having each marked
item segment the bus, and (3) mandating each
marked item to broadcast its identity on the sub-
bus containing items preceding it in proximity
order. Thus, we have

Lemma 5.1 Given a set of n = 2% x 2% items
pretiled on a reconfigurable mesh of the same size

with some of the items marked, the task of iden-
tifying for each item the next marked item in
prozimity order can be performed in O(1) time.

In essentially the same way one can identify the
previous marked item, and the leftmost marked
item, that is, the first marked item in proximity
order.

Next, suppose that the set A is partitioned
into 22(4-¢) subsets A(1), A(2),...,A(22(4-9))
of size 2¢ x 2% each. Partition M into hor-
izontal and vertical strips of size 29 % 24 and
9d x 29’ respectively. For 1 < i,j < 24=% let
M; ; be the submesh of M determined by the
intersection of the i-th horizontal and the j-th
vertical strip. Each A(k) is stored in one of the
submeshes M; ;.

The operation Move-leftmost-items is to
move the leftmost marked item in each M; ; to
the first row of M. To ensure that we have
enough bandwidth to comiplete the data move-
ment in O(1) time, we insist that 29 > 22(4—9)
or, equivalently, that d < 2d'.

Due to the strong page limitation, we will omit
the detail of Move-leftmost-items. We have
the following result.

Lemma 5.2 Given a reconfigurable mesh of size
24 % 29 partitioned into non-overlapping submeshes
of size 24 x 2%, with 52’- < d’' < d, the task of mov-
ing the leftmost marked item in each submesh to
the first row of the platform can be performed in
O(1) time.

Suppose that each submesh M; ; of size 2% x
24 contains 29" items stored in the leftmost 24"
positions of its top row. The goal of the opera-
tion Move-to-top-row is to move all these items
to the top row of M. Note that the total number
of items is 29-¢ x 24-¢ x 24" = 92d-2d'+d" apd
the number of processors in the top row is 24, In
order to ensure that no precessor receives more
than one item (i.e. 224-2d'+4" < 29), we insist

.that d < 2d' — d".

We omit the detail of Move-to-top-row due
to the page limitation.

Lemma 5.3 Consider a reconfigurable mesh of
size 29 2% partitioned into non-overlapping sub-
meshes of size 2% x 2% and assume that each
submesh has at most 29" items in its top Tow.
The task of moving all the items to the first row
of the platform can be performed in O(1) time,
provided that d+d” < 2d'. )

6 An O((loglog n)?)-time up-
per hull algorithm

The main goal of this section is to show how all
the pieces fit together to yield an O((loglogn)?)




time convex hull algorithm on a reconfigurable
mesh M of size 2¢ x 29, where d > 2.

Let P = {p(1),p(2),...,p(n)} beaset of n =
22d pomts sorted by z-coordinate and ﬁpremed on
M in proximity order. Write dp = [43] and let
dy = max{[de—1 - £, ”’]} forall s > 1. It is
easy to see that both d,_; —d, < |§] and d, >
fd‘ Z2=1] hold. Further, let T’ be the smallest in-
teger for which dp = 1. Clearly, T € O(logd) =

O(loglogn). Partition P into 22(4-%) subsets

A(1),A(2),. .., A(2%4-d0)), such that each A(i)
involves 22% points consecutive in proximity or-
der stored in a submesh M (i) of M of size 2% x
2%,

For each ip, (1 £ 4p < 22(4—%)), the set A(ip)

is partitioned into 22(40—1) subsets A(iy, 1), A(ig, 2),

+e vy Aldg, 22(do—41)) with each A(do,7), (1< 7 <
2:do=d1)) consisting of 229 points consecutive
in proximity mder, stored in the submesh M (3, j)
of M(io) of size 2% x 291. Proceedings in this
way, each set A(ig,%1,...,%5—1), (1 < s <7,
contmmng 22ds-1 points and stored in prox1m1ty
order in the submesh M(io,i3,...,35—1) of size
2d4-1 x 29:-1 {5 partitioned into 22(“"1"“') sub-
sets A(in, iz, .., 05-1,5), (1 £ j < 22de-i=du)y,
with each A(zl. ig,.
consecutive in [)I‘Olelty order, stored in a sub-
mesh M (iy,42,...,4s-1,]) of size’ 2% x 2%, To
simplify the exposition, in the remainder of this
section we shall use sets of points and the sub-
meshes containing them interchangeably. This
should create no ambiguity.

Algorithm Compute-upper-hull

Step 1 Recursively, determine the upper hull
P(ip) of the points in each submesh M (iy),
(1 € dp € 2%d-D)), and mark all the
points in P{ig);

Step 2 In each M(ip), (1 < ip < 22(@=%h)), ex-
tract a sample S(P(iy)) of P(ip) by retain-
ing the leftmost marked point in each sub-
mesh M(ig, 1), (1 € 43 < 23(do—d)), Add
to S(P(ip)) the rightmost marked point
in M(ig). Move the points in S(P) =
S(P(1)) U 5(P(2)) U+ U S(P(22-c0)y)
to the top row of M. Using an O(1)-time
prefix sums algorithm move S(P) to the
leftmost |S(P)| positions of the top row of

- ’
Step 3 Repeat the following substeps 2T times:

Step 3.1 Using one of the existing algorithms
for the sparse case [3, 6], compute the up-
per hull U(S(P)) of S(P) and determine
the left and right contact points p(g;) and
p(hs), if any, of S(P(i)) with respect to
U(S(P)). If S(P(i)) does not have con-
tact points, then find the pseudo contact

v yig—1, ]) involving 229 points

point p(g;) of S(P(i)), using an O(1)-time
minimum algorithm;

Step 3.2 Let p(I(g;)) and p(r(g;)) be, respec-
tively, the left and right neighbors of p(g,-)
in S(P(z)) If the two points p(I(g:)) an
p(g,) are in the same submesh M (3, 41, .

of size 2! x 21, then add to S(P(:)) the re-
maining two points P(ig,i1,...,iT)—
{p(1(9:)),(90)} in M(ioyis,-..iz).
Otherwise, let M(ig,41,...,%s-1,%s), (8 >
T), be the smallest submesh containing
both p(s;) and p(I(g)). Add to S(P(i))
the leftmost marked point in each of the
M(”Oﬂl: a’s-]azl,]) (1 <ig 22(d - dh“))
Repeat the procedure for the three pairs
of points p(g;) and p(r(g:)), p(i(h:)) and
p(hs), and p(h;) and p(r(h;)). Move all
newly selected sample points to the top
row of M. Using prefix sums in the obvi-
ous way, the updated S(P) is stored, one
item per processor, in the leftmost |S(P)|
positions of the top row of M;

Step 4 Compute the upper hull U(S(P)) of S(P)
and determine the left and the right con-
tact points p(g;) and p(h;) of S(P(3)), (1 <
i < 2%d-do)) with respect to U(S(P)).
Retain all the points in P(i) between p(g;)
and p(h;) (inclusive) as the upper hull points
of P

ZT)

The correctness of the algorithm follows im-
mediately by the induction hypothesis along with
Theorem 4.2. To argue for the complexity, note
that Step 2 as well as each iteration of Step 3 of
the algorithm can be implemented in-O(1) time.
In Step 2, Move-leftmost-items is performed
in every submesh M (), (1 < iy < 2%(d-%)),
to move the leftmost marked point in M (iy,i1)
<4 22(d°'d1)) to the top row of M(iy).
Since d; > [%], Lemma 5.2 guarantees that this
can be done in O(1) time. Since do —dy < [ 8],
the top row of M(i,) contains at most 22("""‘11) <
2141 41 marked points. Further, the points thus
obtained are moved to the to‘? row of M. Since
2do — 2(do — dy) = 2[%] - |$] > d, Lemma 5.3
guarantees that this data movement operation
can be performed in O(1) time. Further, the
rightmost marked point of each M (i) can be
moved to the top row of M in O(1) time by ex-
ecuting Move-leftmost-items.

In the first iteration of Step 3.1, S(P) con-
tains at most 22(9-).(2l$] 1) < 22|-§-' (el 4
1) < 2L%1 + 2l%! < 29 points. Thus, the up-
per hull of S(P) can be computed in O(1) time.
In Step 3.2, in case the points p(I(g;)) and p(g;)
belong to the same submesh M(ip,41,...,i7),
the remaining two points in the submesh are
selected and moved to the top row of M(4).



Clearly, this can be done in' O(1) time.' Other- References

wise, Move-leftmost-items is executed, in par-
allel, in each M(io,zl, ,z,_l,z,) to move the
leftmost marked item in M (4o,4y,.
(1 € is41 < 229e41), to the top row of
M(io,31,...,4s-1,4,). Since dy41 > |'—'-] holds,
Lemma 5.2 guarantees that this can be done in
O(1) time. Further, the leftmost marked items
are moved to the top row of M(iy). The same.
task for the other three pairs p(g;) and p(r(g:)),
p(1(g:)) and p(g;), and p(h;) and p(r(hs)) is per-
formed in O(1) time. Next, these newly se-
lected sample points are moved to the top row of
M by using procedure Move-to~top-row. Since
dy—deyy < |£], at most 4-22de—de+1) < 2lgl+2
points are moved. Since 2do—~(|$]+2) = 2[%2 |-

[%j — 2 > d for sufficiently large d, Lemma, 5.3 -

guarantees that this data movement can be per-
formed in O(1) time. »

In each iteration, at most 4 - 2l4l sample
points are added to each S(P;). Therefore, at
most 22(4=d0) . 9L} < 4.2L%#] points are added
to S(P) in each execution of Step 3.2. Since
Step 3.2 is executed 2T times, S(P) has at most
2l%f) 4 ol £ 97 . 4. 2l%] < 29 points, for

sufficiently large d. Thus, the upper hull of S(P) -

can be computed in O(1) time.

. Since each substep of Step 3 can be per-
formed in O(1) time, it follows that Step 3 takes,
altogether, O(T") = O(loglogn) time. Since the-
depth- of recursion'is O(loglogn),.the overall
running time of algorithm Compute-upper-hull
is bounded by O((loglogn)?). Thus we have

Lemma 6.1 The upper hull of n points sorted
by z-coordinate and stored in prozimity order on
a reconfigurable mesh of size n = 2% x 29 can be
computed in O((loglogn)?) time.

Due to the page limitation, we omit work-
optimize the algorithm Compute-upper-hll. The
journal version of this paper will present the fol-
lowing result.

Theorem 6.2 The upper hull of n points sorted

by z-coordinate and stored in pra:m‘mity order,
(loglogn)? points per processor, in a reconfig-

urable mesh of size ]—lﬁ-; 10—5% can be com-

puted in O((log log n)z) time.
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