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Abstract

In this paper we propose some lockout-free mutual exclusion algorithms for the asyn-
chronous multi-writer/reader shared memory model. For these modified algorithms, some
processes have the advantage of access to the resource over other processes. We show the
lockout-freedom of these algorithms by analyzing their time bounds for the trying region. In
particular, the last algorithm given in this paper is good at its running time. If the algorithm
is used to the tournament on the complete binary tree with n leaves, its time bound for the
trying region is (n — 1)c+ O(nl), where c and ! are upper bounds on critical region time and
on process step time, respectively. This is an improvement over the tournament algorithm
whose corresponding time bound is (n - 1)c + O(n). '
key words: distributed algorithms, lockout-free, mutual exclusion, shared memory

1 Introduction

Mutual exclusion is a problem of managing access to a single indivisible resource that can only
support one user at a time. An early algorithm for the mutual exclusion problem was proposed
by Dijkstra [4]. His algorithm guarantees mutual exclusion, but it does not guarantee the
high-level fairness. Subsequent algorithms improve on the Dijkstra’s algorithm by guaranteeing
fairness to the different users [8, 9] and by weakening the type of shared memory [1, 2, 3, 5, 6].
Books by Raynal [11} and Lynch [7] contain a number of mutual exclusion algorithms.

In this paper we propose some mutual exclusion algorithms in the asynchronous multi-
writer/reader shared memory model. Our algorithms are modifications of the N-process algo-
rithm by Peterson [9] and the tournament algorithm by Peterson and Fischer [10] so that we
allow priority of some users to access the resource. These modified algorithms guarantee the
lockout-freedom. The lockout-freedom of these algorithms are proved by showing time bounds
for spending in the trial region.



2 Preliminary

A user with access to the resource is modeled as being a critical region. When a user is not
involved in any way with the resource, it is said to be in the remainder region. In order to gain
admittance to its critical region, a user executes a trying protocol. The duration from the start
of executing the trying protocol to the entrance of the critical region is called the trying region.
After the end of using the resource by a user, it executes an exit protocol. The duration of
executing the exit protocol is called the exit region. Each user follows a cycle, moving from its
remainder region to its trying region, then to its critical region, then to its exit region, and then
back again to its remainder region. This cycle can be repeated.

The inputs to process i from user U; are the try; action which means a request by U; for
access to the resource, and the ezit; action which means an announcement by U; that it is done
with the resource. The outputs of process ¢ are crit; which means the granting of the resource
to U;, and rem; which tells U; that it can continue with the rest of its work.

The system to solve the mutual exclusion problem should satisfy the following conditions.

(1) There is no reachable system state in which more than one users are in the critical region.

(2) If at least one user is in the trying region and no user is in the critical region, then at some
later point some user enters the critical region.

(3) If a user is in the exit region, then at some later point the user enters the remainder region.

Conditions (1), (2) and (3) above are called mutual exclusion, pfogress for the trying region,
and progress for the exit region, respectively. The following conditions are called the lockout-
freedom.

(1) If all users always return the resource, then any user that reaches the trying region even-
tually enters the critical region.
(2) Any user that reaches the exit region eventually enters the remainder region.

3 Modification of N-process algorithm

The N-process algorithm by Peterson is a lockout-free mutual exclusion algorithm using multi-
writer/ reader shared variables [9]. We modify this algorithm so that some users have the
advantage of easier access to the resource than other users.

The set of processes {1, 2, ..., n} is divided into two disjoint groups, a low priority group G
witb 4; processes and a high priority group G2 with n —4; processes. Without loss of generality
we may assume that G1 = {1, ..., i1} and G = {i1 +1, ..., n}. We choose an appropriate
level I; where I; should be between 0 and i; — 1.

procedure 2priorityME (G1 = {1, ..., 4},Ga= {1 +1,...,n}, k1)
{o<lhi<i1—-1}
shared variables
forevery k€ {1,...,n—1}: v
turn(k) € {1, ..., n}, initially arbitrary, writable and readable by all processes; '
for everyi € {1, ..., 91 }:
flag(i) € {0, ..., n—1}, initially 0, writable by ¢ and readable by all j # 4;
for every i € {i1 +1, ..., n}k
flag(i) € {l1, ..., n— 1}, initially /;, writable by 4 and readable by all j # 4;
processi {1<i<1i }
input actions { inputs from user U; to process ¢ }: try;, evit;;
output actions { outputs to user U; }: crit;, rem;;

** Remainder region **



tT‘y,-:
if 1 <i<i; then
for k=1 to l; do begin

flag(d) == k;
turn(k) = 1;
waitfor [ V5 # 1 (1 <5 <41): flag(j) < k] or [ turn(k) #1]
end;
for k=1; +1 ton—1 do begin
flag(3) = k;
turn(k) :=1;
waitfor [ Vj # 4 : flag(j) < k] or [ turn(k) #1]
end;
criti;

** Critical region **

exit;:
if1 < i <1i; then flag(i) ;=0
else flag(i) := U;

rem;

Assertion 1 In any execution by 2priorityME, for any k, 1 < k < lj, there are at most iy — k
winners from G1 aof level k.

From Assertion 1 there are at most (n —4;) + (41 — l1) = n — l; processes can be at level [
in the trying region. Then we have the next assertion.

Assertion 2 In any erecution by 2priorityME, for any k, l1 +1 < k < n—1 there are at most
n— k winners at level k.

From Assertion 1 and Assertion 2 we have the next theorem.
Theorem 1 2priorityME satisfies mutual exclusion.

Let ! be an upper bound on the time between successive steps of each process, and let ¢ be
an upper bound on the maximum time that a user spends in the critical region.
We can prove the following two lemmmas.

Lemma 2 In 2priorityME, the time from when a process enters the level Iy of the trying region
until it enters the critical region is at most 2"~ ~1¢ + O(2"nl).

The proof of the next lemma is similar to the proof of Lemma 2.
Lemma 3 In 2priorityME, the time from when a process of G1 enters of the trying region until
it enters the critical region is ot most (2"~ 4+ 2'1~1)c + 0O(2"1ni).

From the two lemmas above the following theorem is immediate.
Theorem 4 2priorityME is lockout-free.

We can generalize 2priorityME. We partition the set of processes into r disjoint sets. Without

loss of generality we may assume that these groups are G1 = {1,...,41}, G2 = {i1 +1,...,i2},

.oy Gp = {ir—1 +1,...,n}. Each group G; is associated with a level bound /; (1 < j < r),
where 0< 1 <41 -1, 1 Llp <i9—1, ..., ;-1 <l. <n-1. For convenience, we let I = 0.

procedure rpriorityME ((G1 = {1, ..., i1}, 1), (G2 = {i1 + 1, ..., iz}, Ia), -y (G =
{tr-1 41, ...,0}, &)

shared variables
forevery k€ {1,...,n—1}:
turn(k) € {1, ..., n}, initially arbitrary, writable and readable by all processes;



foreveryje{1,...,r}:
for every ¢ in G;
flag(i) € G, initially I;_,, writable by ¢ and readable by all j # i;
processi {1 € Gy }
input actions { inputs from user U; to process ¢ }: try,, exit;;
output actions { outputs to user U; }: crit;, rem;;

** Remainder region **
tf‘yi:
for s:=ttor do
for k :=1l,_1 to l; do begin

flagli) := k;
turn(k) = 1;
w:itfor [Vi#i(1<j<i): flag(j) <k]or[turn(k) #i]
end;
crity;

** Critical region **

exit;:
forj=1tordo
if i € G; then flag(i) :=lj_1;
rem;; '

Assertion 3 In any ezecution by rpriorityME, forany j,1 < j<randanyk,lj1+1 <k <I;,
there are at most i; — k winners from G1U---UGj at level k.

Lemma 5 In rpriorityME, for any j (1 < j < r) the time from when a process in G; enters
the trying region until it enters the critical region is at most (2"4-1"1 + Qhr-1=bia-l g
2li=li-=l)e + O(2m~Yi-1nl).

From Assertion 3 and Lemma 5 we have the following theorem.

Theorem 6 rpriorityME solves the mutual exclusion problem and is lockout-free.

4 Tournaments on priority trees

We modify the tournament algorithm of Peterson and Fischer [10] so that some users have
priority over some other users in getting access to the resource.
A simple priority tree is a binary tree structure recursively defined as follows:

(1) it consists of a single node, or
(2) it is composed of three disjoint sets of nodes, a root node, a single node as its left subtree,
and a simple priority tree as its right subtree.

Each node of a binary tree is labelled by the following rules.

(1) The root is labelled by A (the null string).

(2) If the label of a node z is I(z), the label of its left son is [(z)0 (i.e., the juxtaposition of
I(z) and 0) and the label of its right son is I(z)1.

Suppose that 2"t1 < N. Let a = L% —1 and r' = [logy(N — 27a)]. A priority tree T'(N, )
is a binary tree constructed as follows:

(1) Let Ty(N,r) be a simple priority tree with leaves labelled with 0, 10, ..., 14710, 1°.

(2) Each leaf of 0, 10, ..., 15710 of T,(N,r) is replaced with the complete binary tree with 2
leaves, and leaf 1% is replaced with an essentially complete binary tree with N —27q leaves.



We consider a one-to-one correspondence between the N processes and the N leaves of
T(N,r). The label associated with a process in T'(N,r) is called the index of the process. We
denote the complete binary trees and the essentially complete binary tree that are replacements
at the leaves of Ts(N,r) by Go, Gi, ..., Ga—1 and G, from left to right (see Figure 1).

A
0 1
Go 10 11
Gi 110 - 1#1
G2 1%1g 12

Ga-l Ga
Figure 1: A priority tree.

For T(N,r) and each process %, we introduce the following notations.

e comp(i, k) is the ancestor of 1 in depth k.
e role(i, k) is the (k + 1)st high-order bit of i. (i.e., role(s, k) indicates whether the leaf ¢ is
a descendant of the left or right son of the node for comp(3, k)).
e opponents(i, k) is the opponents of process i in the depth k competition of process 1 (i.e.,
the set of process indices with the high-order k bits as 7 and the opposite (k + 1)st bit.)

procedure tournamentME (N,r)

shared variables
for every binary string z in the set of labels of T'(N,7):
turn(z) € {0, 1}, initially arbitrary, writable and readable by those processes ¢ for which
zis a preﬁx of the index of 1;
for every ¢ in the set of leaves of T'(N,r):
flag(i) € {0, 1, ..., d(i)}, initially d(:), writable by i and readable by all j # i in the
set of leaves of T(N r), where d(7) is the depth of 3;

process ¢ { i is a leaf of G; }
input actions { inputs from user U; to process 1 }: iry,, exit;;
output actions { outputs to user U; }: crit;, rem,;

** Remainder region **
try,-: .
for k = d(i) — 1 downto 0 do { d(¢) =t+r+1if ¢t < a -1, and otherwise d(i) = ¢t -+’

begin
flag(i) = k;
turn(comp(i, k)) := role(i, k);
waitfor [ Vj € opponents(i, k) : flag(j) > k | or [ turn(comp(i, k)) # role(i, k) ]
end;
crit;;
** Critical region **

ezTit;:



flag(s) := d(t),

TeEm;,

Assertion 4 In any reachable system state by tournamentME on T(N,r), and for any depth k,
0<k<a+r1" —1, at most one process in depth k in any subtree rooted in depth k is a winner,
where a = L%J — 1 and ' = [logy(N — 27a)].

From the assertion above, the next theorem is immediate.
Theorem 7 tournamentME satisfies mutual exclusion.

As in the previous section, let [ and ¢ be upper bounds on process step time and critical
region time, respectively. We show a time bound for tournamentME in the following lemma.

Lemma 8 In tournamentME on T(N,r), N = 2"(a +1), the time from when a process i-in the
set of leaves of G; has just entered the trying region until it enters the critical region is at most
(c+ 42t 4 ot+2r+lgl 4 (t+7+ 1 —a)271.

Proof. Fork,0<k<a+r—1, define T(k) to be the maximum time from when a process
i wins in depth & or it has just entered the trying region in depth & (this event is denoted by
m;(k)) until it enters the critical region. It is immediate that T'(0) < ! since only one step is
needed to enter the critical region after winning the final competition.

We can consider the following two cases just after event m;(k). One is the case where ¢ is
a winner at a node 1° for some s (1 < s < a), and the other is the case where ¢ is a winner
at a node that is not a node 1° for any s(1 £ s < @). In the former case, within at most
time ((a — k + 1)27 4 3)l + ¢ + T'(k — 1) after =;(k), for every j in opponents(i, k), flag(j) > k
holds or turn(comp(i, k)) be set to be not equal to role(i, k). In the latter case, within at most
time (27 + 3)l + ¢ + T'(k — 1) after m;(k), for every j in opponents(i, k), flag(j) > k holds or
turn(comp(i, k)) be set to be not equal to role(i, k). Then, within at most further time 27/ in
the former case and within at most time (a — k +1)2"1 in the latter case, process ¢ moves up
one level as a winner in depth k. Hence, the total time from ;(k) until process i arrives at the
entrance to the critical region is at most 2T(k — 1) + ¢+ ((a —k + 2)2’ + 3)I. Thus, we need to
solve the following recurrence for T'(d(3)).

T(O) < 1
T(k) < 2T(k—1)+c+ ((a—k+2)2"+3)

Then we can derive the following inequality.

Tk) < (c+3)A+2+22+--+2*1+2%1+ (2Fa — a + k)27
< (c+4)2* +2¥Tal 4+ (k —a)27L.
For 0<t<a-1, T(d@) < (c+4l)2ttr+1l 4 2t4+2r+lg) 4 (t + 7+ 1 — a)271, and for ¢ = q,
T(d(3)) < (c+ 42+ + 2142ral + (t + r — a)271. Thus, the lemma holds. a
We have the following theorem from Theorem 7 and Lemma 8.
Theorem 9 tournamentME solves the mutual exclusion problem and is lockout-

We can improve the running time of tournamentME by a further modification. The modified
one is called fiournamentME.
o opposite(i, k) is the son of comp(i, k) that is not an ancestor of .

procedure fiournamentME (N,r)



(N=2"(a+1)}

shared variables

for every binary string z in the set of labels of T'(N,r):
turn(z) € {0, 1}, initially arbitrary, writable and readable by those processes i for which
T is a prefix of ¢;

for every binary string z in the set of labels of T'(N,r):
flag(z) € {0,1}, initially 0, writable by those processes ¢ for which z is a prefix of i,
and readable by those processes for which i is a descendant of the parent of = but the
i's bit at the position corresponding to the last bit of  is opposite from z;

process i { 7 is a leaf of G, }

input actions { inputs from user U; to process 1 }: try;, ezit;;
output actions { outputs to user U; }: erit;, rem;;

** Remainder region **

try;:
for k = d(i)—1downtoOdo { d(i) =t+r+1ift <a—1, and otherwise d(i) =t +r

begin
flag(comp(i, k +1)) := 1;
turn{comp(i, k)) := role(, k);
waitfor [ flag(opposite(i, k)) = 0] or [ turn(comp(i, k)) # role(i, k) ]
end;
crit;;
** Critical region **
exit;:
for k = 0 to d(i) do flag(comp(i, k)) :=0;
TEM;

Lemma 10 In flournamentME on T(N,r), N = 2"(e + 1), the time from when a process i in
the set of leaves of Gt has just entered the trying region until it enters the critical region is at
most 2417 t1¢ 411 x 2t

Proof. Fork,0 <k <a+r—1, define T(k) to be the maximum time from when a process
1 wins in depth k or it has just entered the trying region in depth k (this event is denoted by
m;(k)) until it enters the critical region. It is immediate that T(0) < /. Within at most time
A +T(k—1)+c+1+(k+1)I after m;(k), flag(opposite(i, k)) = 0 is satisfied or turn(comp(i, k))
is set to be not equal to role(i, k). Then within at most further time 2I, process i moves up
one level as a winner in depth k. Hence, the total time from m;(k) until process 7 reaches the
entrance to the critical region is at most 2T'(k — 1) + ¢ + (k + 8)I. Thus we need to solve the
following recurrence for T'(d(z)). v

TO) < 1
T(k) < 2T(k—1)+c+ (k+8)I

Thus, we can derive the following inequality.

< (c+8D)A+2+22+- + 2P )42kl 4 (k+20k-1)+22(k—2)+---4+251)
< 2kc 4 (2F43 4 2k 4 okt
= 2%c+11x2k

T(k)

Then T(d(s)) < 20"+l + 11 x 284711 if t < a — 1, and T(d(3)) < 2*7c+ 11 x 2171 if t = g. O



Theorem 11 fltournamentME solves the mutual exclusion problem and is lockout-free.

Comparing Lemma 8 and Lemma 10, ftournamentME is faster than tournamentME. This
speedup is from the fact that in ftournamentME, checking the flag by process i is just for
flag(opposite(i, k)) whereas in tournamentME, checking the flag by process i is for all j’s in
opponents(i, k). If we apply flournamentME on the complete binary tree with n leaves, its
time bound for the trying region is (n — 1)c + O(nl). The corresponding time bound by the
tournament algorithm given in [7, 10] is (n — 1)c + O(n2l).

5 Conbluding remarks

There may be a natural request to design a distributed operating systemns such that some
processes have advantage of access in some degree to the resource over other processes. The
time bounds shown in this paper seem not to be tight. We need a finer analysis to derive
better time bounds. In ftournamentME all variables, turn(z) and flag(z) assume only two
values 0 and 1, whereas shared variables flag(z) in the tournament algorithm given in [7]
assume log, n different values. Hence, flournamentME is also good at the sizes of the shared
variables. However, ftournamentME needs twice as many flag variables as flag variables in the
tournament algorithm. The mutual exclusion algorithms given in this paper do not guarantee
the FIFO property. For our purpose, we need a mutual exclusion algorithm that guarantees the
advantage of access to the resource in a stronger sense.
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