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RNA secondary structure prediction is one of important problems in computational biology. In
- a simplest form, it is formalized as a problem of, given an RNA sequence of length n, max-
imizing the number of complementary base pairs. It is well known that this problem can be
solved in O(n?) time by a dynamic programming procedure. Although not a few computational
studies have been done on RNA secondary structure prediction, the time complexity had not
been improved for this version of the problem. This paper shows, for this version of the prob-
lem, a slightly improved O(n3(log log n)'/2/(log n)!/2) time exact algorithm, and an O(n?77®)
time algorithm with guaranteed approximation ratio 1 — € for any € > 0. Extensions of the
approximation algorithm are also shown for more practical versions of the problem.

1 Introduction

- Alot of computatxona.l studles have been done for RNA secondary structure prediction. This is
a problem of| given an RNA sequence, finding its correct secondary structure (a planar graph
like structure, see Fig. 1). Usually, RNA secondary structure prediction is modeled as a free-
~ energy minimization problem [12, 15, 20]. For this problem, ‘Watermann and Smlth proposed
simple DP (dynamic progmmmmg) algorithms [18]. Zuker and Stiegler also proposed a similar
algorithm based on DP [21] The time complexities of those DP algorithms were O(n®) if we
ignore the destabilizing energy due to loop regions, otherwise it was at least O('n“)
Although no further improvement had been done on global free-energy minization, several
' 1mporta,nt improvements have been done for finding locally stabilizing substructures in an RNA
- secondary structure [8, 20] Watermann and Smith developed an O(n?) time algorithm for an
arbitrary destabilizing energy function [19]. Kanehisa and Goad developed an O(n?) time al-
* gorithm for a linear destabilizing energy function [9]. Eppstein, Galil and Giancarlo developed
an O(n?log? n) time algorithm for a concave or convex destabilizing energy function [5]. Slight
improvements have been done for the same case [6, 10].
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Figure 1: Two representations of RNA secondary structure: (A) ‘Clover leaf’ representation
similar to real structure; (B) Sequence is represented on the horizontal axis. In a basic version,
RNA secondary structure prediction is defined as a problem of maximizing the number of base
pairs (i.e,, (a,u) and (g,c) pairs) which do not intersect each other.

In this paper, we first consider the problem of magimizing the number of complementary
base pairs (see Fig. 1) [12, 20], which is a simplified and basic version of global free-energy
minimization of RNA secondary structure, and denoted by RN Ag in this paper. A pair of residue
(z,y) is called a (complementary) base pair if {z,y} = {a, u} or {z,y} = {g, c}. Although we do
not treat {g, u} as a base pair, all the results can be modified for such a case in a straight-forward
way. A set of pairs of indices

M = {(i,7)| 1 i< j<n, (a;,a;) is a base pair }

is-called an RNA secondary structure if no distinct pairs (i, a;5), (an,ax) in M satisfy i < h <
J < k (see Fig.-1). The score of M is defined as the number of base pairs in M (i.e., cardinality of
M), and denoted by score(M). Then, RN Ay is defined as follows: ‘given a string A = a1ay...a,
over an alphabet ¥ = {a, c,g,u}, to find an RNA secondary structure M with the maximum
score. In RN Ap, such an RNA secondary structure is also called an optimal RNA secondary
structure, and denoted by OPTp(A). ;

It is well known that the score of OPTy(A) can be computed in O(n?) time using the following
simple DP procedure (denoted by DP,): co

o S(i— 1,5 +1) + p(ai, a;),
§6.4) = max{ max;ck<j S(i, k — 1) + S(k, j),

where we let S(4,5) = 0 for all i > j, and u(z,y) = 1 if (z,y) is a base pair, otherwise
u(z,y) = 0. Note that the score of OPTy(A)is given by 5(1,n). OPTy(A) can also be obtained
in O(n?) time using the traceback technique [20]. Similarly, we only describe the procedures
for computing scores or free-energies in this paper, all of which can be modified for computing
secondary structures without increasing the orders of the time complexities using the traceback
technique. ’ ‘ _ :

In this paper, we first show an O(n?(loglogn)/2/(logn)'/?) time algorithm for RN Ao,
which is based on Valiant’s algorithm for contest-free recognition [17] and a fast algorithm for
funny matriz multiplication [7, 13]. Note that funny matrix multiplication is, givén p % g real
matrix X = (;;) and ¢ X r real matrix Y = (y;;), to compute p X r matrix Z = (#i7) such that
2ij = maXi<k<q(Tik + Yk;).- For several problems such as the all-pairs shortest path problem
3, 13] and the maximum subarray problem [14], the fastest algorithms were obtained using fast
funny matrix multiplication.



- Next, we show the main result of this paper: an O(n?77%) time algorithm for RN Ag which
always outputs, for any fixed constant € > 0, an RNA secondary structure with the score at least
1 — € of the maximum. This algorithm is a combination of an approximation algorithm Agpproz
obtained by modifying DPy, and an exact algorithm Az based on Valiant’s algorithm and
fast funny matrix multiplication. Although Tamaki and Tokuyama developed an approximation
algorithm for the maximum subarray problem [14], their technique could not be applied to
RN Ap and thus a new technique was introduced for Agpproz- Moreover, although Aupprog is a
slight modification of DPg, the modification and the analysis are non-trivial.

Then, we extend the technique used in Agpproq for more realistic versions of RNA secondary
structure prediction. Since Agppror and their variants are very simple, they may be practical.

2 Exact Algorithm for a Basic Case

Several papers pointed out a relationship between the RNA secondary structure prediction prob-

lem and the recognition problem of (stochastic) contezt-free grammars [11, 16]. Based on these

observations, we can associate the following context-free grammar (with score) with RA Ag:
score(X) ‘

0

0

a
u
g 0
c
Y

0
Z | score(Y) + score(Z)

aYu score(Y) +1

uYa score(Y) + 1

gYc score(Y) +1

cYg scdre(Y) +1

in which an optimal parsing tree (i.e., a parsing tree whose root has the highest score among all
parsing trees) corresponds to an optlmal secondary structure.

Valiant developed an O(n*) time algorithm for context-free recognition [17] using a fast
boolean matrix multiplication algorithm, where O(N“) deonotes the time complexity of the
‘current best algorithms (currently, w = 2:376 [4]) for both the boolean matrix multLphcatlon
and the usual matrix multiplication for N x N matrices.

Note that, in context-free recognition, we only need to decide the existence of a parsing
tree for a given sentence, whereas, in RA Ay, we need to compute a parsing tree with the
highest score. Based on, the above observation, we can obtain an algorithm for computing
the score of an optimal parsing tree by replacing the boolean matrix multiplication with the
O(n3(log log n)1/2/(log n)1/2) time funny matrix multiplication algorithm [13]. Modlﬁcatlon and
analysis of the a.lgonthm are straight-forward and omitted in this paper.
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Theorem 1. RN A4 (i.e, finding an RNA secondary structure with the maximum number of
base pairs) can be solved in O(n3(log log n)'/2/(log n)/?) time.
3 Approximation Algorithms for a Basic Case

3.1 Approximation Algorithm with a Constant Approximation Ratio

Here, we give a simple algorithm for RN.AO which always outputs an RNA secondary struc-
ture with score at least 1/2 of the maximum. The algorithm is based on the following simple
observation.



Proposition 1. Suppose that an RNA sequence A consists of residues of types a and u, and let
#a and #tu be the numbers of letters of a and u appearing in A respectively. Then, the score of
OPT,(A) is equal to min{#a, #u}.- Moreover, OPTy(A) can be computed in linear time.
(Proof ) Using the following procedure, we can compute OPTy(A) in linear time, which, consists
of min{#a, #u} base pairs.

Let S be an empty stack;
for 1=1 to n do
if S is empty then push(ai,S)
else if (a;,top(S)) is a base pair then
begin Output (a;,%0p(S)) as a base pair; pop(S) end
else push(ai, S); , a

For an RNA sequence A = aj...an, let A(a,u) (resp. A(c,g)) be the subsequence of
A consisting of letters of a and u (resp. ¢ and g). Then, score(OPTy(A)) is at most the
sum of score(OPTp(A(a,u))) and score(OPTy(A(c,g))). Choosing the better one between
OPTy(A(a,u)) and OPTy(A(c,g)), we have: .

Theorem 2 For RNV Ay, an RNA secondary structure with the score at least 1/2 of the maxi-
mum can be computed in linear time.

3.2 1-— ¢ Approximation Algorithm

The 1 — € approximation algorithm is a combination of an exact algorithm Agz.e and an
approximation algorithm Agpproz: Aewact is used when score(OPTy(A)) is small (presizely,
score(OPTy(A)) = O(n") where v is a constant to be determined later), otherwise Aqgpprox is
used. Note that the linear time algorithm in Section 3.1 can be used for estimating score(OPTy(4)).

First, we describe Aezqct. As observed in [14], funny matrix multiplication for N x N
integer matrices whose maximum absolute value of the entries is bounded by Q can be done
in O(Q(log Q)N“) time by slightly modifying the algorithm in [3]. Using this in the modlﬁed
Valiant’s a.lgorlthm described in Section 2, we can obtain Aezact.

Lemma 1. A.zoct computes OPTy(A) in O(Q(log Q)n®) time if score(OPTH(A)) < Q.
(Proof) The maximum absolute value of elements in matrices appearing in the execution of A is
bounded by score(OPTp(A)). Therefore, each funny matrix multiplication for N x N matrices
in the modified Valiant’s algorithm can be done in O(Q(log Q)N “’) time. It is straight-forward
to see that the total time complexity is O(Q(log Q)n®). a

Next, Agpproz is obtained by modifying the original O(n?) time DP procedure (’D’Po) for
RN A . Note that S(3, ) (in DPo) is equal to of score(OPTy(4; ])) where A,,,J = Gilig .

Lemma 2. |S(4,5) — S(i + h,j + k)| < |h] + |K|.
(Proof ) From the definition of RN/ Ap , both |S (¢, 7) ~ S('t J+1)[ < 1 a.nd 1S(3,5)—SE+1,5)| < 1
hold. 0

In Agpproz, we do not compute max;<x<;j S(i,k — 1) + S(k, j) exactly. Instead, we compute
the maximum of S(i,k — 1) + S(k, j) for O(n® + n'~#) values of k’s (see Fig. 2), where o and
B (0 < a, 8 < 1) are appropriate constants to be determined later.

We deﬁne a sequence of indices f;¥ (h) and fi (h) for h=0,1,2, - by

fH(0)= i+[n°] f7 ()= j—n*]
fHR+1) = fFHR) + [(F(h) =) f] (h+1)= f7 () - [G—fF (m)P]
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Figure 2: In Aapporz, max S(i, k— 1) + S(k, j) is computed not for all k, but for O(n* + n'—#)
values of k’s, where such k’s are represented by white circles in this figure.
Next, we define Z(s,5) by ‘

I(,j) = {kli<k<norj-n*<k<j}ly
{FFm <Gy U (50 70> 6E+5)/2)

Then, Aappros is expressed by the following DP procedure:

. §'(i—1,7 + 1) + p(ai, a;)
4 — 3 2R D]
§g) = m"‘“‘{ maxkezq) (i, k — 1) + §'(k, 5),
where we let §'(4,5) = 0 for i > j. '

Lemma 3. Agpprog works in O(n?+t® 4+ n3-f) time.
(Proof) Since j — i < n, the size of Z(i, j) is bounded by

n n n
Z(i,5)] < 2n® + 4 A+t is+ ot
i) wptartart )
< 2n® + 4n1—ﬂ'—:ﬁ < 0(n°’+n1'ﬁ).

Since maxgez; ) §'(4, k— 1)+ 5'(k, j) is computed for O(n?) pairs (4, 5), .Aa,,pmz ta.kes O(n?*o+
n3-8) time. . o

Here, we define the error of an secondary structure M to OPTo(A) to be score(OPTo(A)) -
score(M) (note that this value must be non-negatxve)

Lemma 4. The error of an secondary structure M computed by Aspproz is O(nltef-2),
(Proof) Note that, for each (i, j), we define the error of S'(i, j) (in -Aapproac) to be S(4, 5)—=8'(4, 5).
'Here, we show that, for all ¢, j, the following inequality holds:

5(,5) - §'(6,5) < max{Cm-n*~*—-C.m?, 0}

for some constant C, where we let m = j—4. We prove this mequallty by means of the induction
on m. ' :

Case (i) m < n®
In this case, the error is always 0 a.nd thus the above mequahty holds.

Case (ii) m > n* ‘ ,

In this case, we assume that the inequality holds for all m’ such that m' < m, and we consider
the following recurrence in Aupprog: S'(1,7) = maxpez( ;) {S'(i,k) + 5'(k +1,5)}..

Let k' be the integer maximizing S’ (s, &) + S'(k’ + 1, ) under the condition that i < k' < j,
and let k” € Z(3, j) be the integer maximizing S'(i,k") + S'(k” + 1, j) under the condition that
k" € Z(3,j). From Lemma 2 and the definition of Z(i, 5), it is seen that S'(i, k') + S'(k' + 1, 7) —



Si(i,k") ~ S'(k" + 1,7) is O(h?), where h = min(k” —i,j — k”). Then, the error of S'(i,5) is
bounded by

Ch-n®®~2 _ C.h# + C(m—h)-n*** — C.(m-h)? + D-KP

where D is an appropriate constant, and we assume without loss of generality that h > n®. It
is not difficult to verify that this value is at most Cm-n*~* — C.m# for C > D. |

Theorem 3. For RN’ Ay, an RNA secondary structure with the score at least 1 — € of the
maximum can be computed in O(n?77®) time, where ¢ is any fixed positive number.
(Proof ) First, we estimate score(OPTy(A)) using the linear time algorithm described in Section
3.1. If the estimated value is at most n?, an optimal structure is computed using Aemct,
otherwise an approximate structure is computed using Agpprog. Then, from Lemma 3, the time
complexity is O(n?* logn + n?*+® 4 n3-5),
From Lemma 4, the ratio of the score of an approximate solution computed by Agpproz to
score(OPTy(A)) — O(ntef-2)
score{OPTy(A)) k
€>0if 1 +af — @ <~y and n is sufficiently large.
Here, we let o = 0.776, 8 = 0.224, v = 0.398 and w = 2.376. Then, 1+ af —a < 7 is
satisfied and the theorem follows. 0O

the optimal score is , Which is less than 1 — ¢ for any fixed

4 Approximation Algorithms for More Practical Cases

Although the above algorithms are not practical, the technique developed for Agpproz can be
applied to more practical versions of RNA secondary structure prediction. Since the quality of
predicted RNA structures heavily depends on the energy functions which are derived empirically,
a lot of practical versions have been proposed based on various energy functions {12, 15, 20]. In
this section, we show -that the developed techniqué can be applied to many of them.

4.1 Energy Function for Adjacent Base Pairs

In RN Ao, energy function is defined for each base pair. On the other hand, energy functions
defined for adjacent base pairs are widely used [15, 16]. In this case, energy function p is
defined for adjacent base pairs (a;a;+1, @;j4+1a;): Formally, an energy furiction is a function from
T x ¥ x ¥ x X to the set of negative reals. Note that, in this case, the global free-energy (i.e.,
the total score) is always negative and the problem is deﬁned as a minimization problem.

Under this kind of energy functions, an opt1ma1 R.NA secondary structure can be com-
puted in O(n3) time using a DP’ procedure similar to DP; [15). Moreover, a context-free
grammar (with score) can also be associated as in Section 2, and thus we can derive an
O(na(log log n)1/2/(logn)'/2) time exact algorithm.

- Since energy funetion p(a;ait+1,aj+10;) takes values between 0 and ‘E where E is a negative
constant, the property similar to Lemma 2 still holds in this case, and thus we can obtain an
approximation algorithm as in Section 3.

Theorem 4. Under energy functions defined for adjacent base pairs, an optimal RNA secondary
structure can be computed in O(n®(log log n)!/2/(log n)'/2) time, and an RNA secondary struc-
ture w1th the free-energy at most 1 — € of the minimum can be computed in O('n2 776 time.

4.2 Destabilizing Energy

We did not consider free-energy for unpaired residues so far. However, such residues are also
important determinants of RNA stability, and several energy functions are proposed for unpaired



residues [12; 15, 20]. A consecutive part of unpaired residues is called a loop, where there are
several kinds of loops such as bulge loop, end loop and interior loop [20]. Usually, an energy
function for loops takes positive value and is called a destabilizing energy function.

Watermann and Smith proposed an O(n3) time algorithm for computing locally destabilizing
RNA secondary structures (i.e., minimum energy RNA secondary structures without multibranch
loops) [19, 20]. In their algorithm, energy for a bulge loop is computed by

min{y(ai, a;) +v(k) + S(i+k+1,5 — 1)}

where v(k) corresponds to the destabilizing energy for a bulge loop. Since this ‘min’ is computed
for O(n?) pairs of (4,5), the computation time for bulge loops becomes O(n%). However, we
can reduce the computation time if we compute ‘min’ only for k's such that & — ¢ € Z(3, j),
where we assume that |v(k) — v(k + 1)| < const holds for any k. Similarly, we can reduce
the computation time for the other loops. Although we omit details, we can prove tha.t an
RNA secondary structure whose score is at most O(n!*+o#~ “) larger than the minimum can be
computed in O(n?*® + n3-#) time. Thus, letting & = 8 = 1, we have the following:

Theorem 5. Under the energy function including destabilizing energy and the condition that
an RNA secondary structure does not have multibranch loops, an RNA secondary structure with
the free-energy at most 1 — e of the minimum can be computed in O(n?%) time if the minimum
free-energy is Q(n%75+Y), where €,d > 0 are arbitrary small constants.

4.3 Pseudoknots

Although pseudoknots (special kinds of substructures) are taken into account in a few algorithms,
pseudoknots appear in several important RNA’s [16] For a basic version (i.e., maximizing the
number of base pairs) of RNA secondary structure prediction with simple pseudoknots an O(n?)
time algorithm was proposed by Uemura et al. based on tree-adjoining grammar (16], and then
a simpler O(n*) time algorithm was developed without tree-adjoining grammar [2].

In the latter algorithm, computation of Spseudo(4,) (for all (4,7)’s) takes O(n?) time and
this is a crucial part for improving the time complex1ty 2. A sunllar techmque as in Agpproz
can be applied to this part, where details are omitted.

Theorem 6. For a basic version of RNA secondary structure prediction with simple pseu-
doknots, an RNA secondary structure with the score at least 1 — € of the maximum can be
computed in O(n*®) time if the maximum score is Q(n®7+9), where ¢, > 0 are arbitrary small
constants. . . . . ,

5 Concludmg Remarks |

In this paper we propoSed approx1mat10n algorithms and exact algonthms for RNA secondary
‘structure prediction. The most important contribution.of this paper. is that it shows that the
well-known O(n3) DP algorithm and its variants are not necessarily optimal.

- Although the exact algorithms are not complicated, the approximation algorithms (exclud—
ing Aezact) are very simple and may be practical. Of course; secondary structures obtained by
the approximation algorithms may be different from optimal secondary structures. However,
optimal secondary structures do not necessarily coincide with real secondary structures because
energy functions used are empirically derived, and thus optimal secondary structures are also
approximations of real secondary structures. Indeed, a lot of heuristic algorithms without guar-
anteed approximation ratio have been proposed for RNA secondary structure prediction [1].
Therefore, the proposed approximation algorithms may be practical.



Finally, we conclude with open problems: (i) Development of an O(n®¢) time exact algo-
rithm for RN A where ¢ is some positive constant; (ii) Removement of “if ... Q(n%75+%)” in
Theorem 5 and Theorem 6; (iii) Extension of the proposed approximation algorithms for parsing
of stochastic context-free grammars (in this case, Lemma 2 does not hold).
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