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Abstract

We propose three lockout-free ‘mutual exclusion algorithms for the asynchronous multi-
writer/reader shared memory model. The first two algorithms are modifications of the n-
process algorithm by Peterson, and the third algorithm is a modification of the tournament
algorithm: by Peterson and Fischer. The correctness and efficiency-of these modified algo-
rithms are shown. By these modifications we can speed up the original algorithms. The
running times for the trying regions of the first algorithm and the second algorithm are
(2n — 3)c+ O(n3l) and (n — 1)c + O(n31), respectively, where n is the number of processes,
l is an upper bound on the time between successive two steps, and c is an upper bound on
the time that any user spends in the critical region. The running time for the trymg regmn
of the third algorithm is (n — 1)c + O(nl). :
key words: distributed algorithms, lockout-free, mutual exclusion, shared memory

1 Introductlon

An ea.rly algonthm for the mutual exclusxon problem was proposed by Dijkstra [4]. The Dukstra s
algorithm guarantees mutual exclusion, but it does not guarantee high-level fairness. Subsequent
algorithms are improvements on the Dijkstra’s algorithm by guaranteeing fairness to the different
users (10, 11] and by weakening the type of shared memory [1, 2, 3, 5, 6, 7]..
" In this paper we propose some modifications of two well-known mutual exclusion algorithms,
the n-process algorithm by Peterson [10] and the tournament algorithm by Peterson a.nd Fxscher
+[11] for the asynchronous multi-writer/reader shared memory model.
In order to estimate an upper bound on the running time of a mutual exclusion algorithm,
we impose an upper bound of ! on the time between successive steps of each process in the
trying region and the exit region, and an upper bound of ¢ on the time that a,ny user spends in



its critical region. The bounds on the running times for the trying regions of the first modified
» m-process algorithm and of the second modified n-process algorithm are (2n ~ 3)c+ O(ndl) and

(n = 1)c + O(ndl), respectively, whereas the bound on the corresponding running time of the

original n-process algorithm is O(n2¢ 4+ n*l). The bound on the running time for the trying
region of the modified tournament algorithm is (n — 1)c + O(nl), whereas the bound of the
corresponding running time of the original tournament algorithm is (n—1)c+O0n2).

2 Preliminary

The computation model used in this paper is the asynchronous multi-writer/reader shared mem-
ory model. Each process is considered to be a state machine. All communication among the
processes is via the shared memory. We assume that even if two different processes try to write
on the same shared variable at almost the same time, one process’s writing is earlier than the
other process’s writing. The reader can find a complete and formal description of the model in
8, 9].

The mutual exclusion problem is the problem how to allocate a single indivisible, nonsharable
resource among n users, Uy, ...,U,. A user with access to the resource is modeled as being in
a critical region. When a user is not involved in anyway with the resource, it is said to be in
the remainder region. In order to gain admittance to its critical region, a user executes a trying
protocol. The duration from the start of executing the trying protocol to the entrance of the
critical region is called the trying region. After the end of the use of the resource by a user, it
executes an exit protocol. The duration of executing the exit protocol is called the exit region.
Each user follows a cycle, moving from its remainder region to its trying region, then to its
critical region, then to its exit region, and then back again to its remainder region. This cycle
can be repeated. ‘

We assume that the n processes are numbered 1,--- ,n in Section 3, each process i cor-
responding to user U; (1 < 4 < n), and numbered 0, - -- ,m — 1 in Section 4, each process i
corresponding to user U; (0 < i < n— 1). The inputs to process ¢ from user U; are try; which
means a request by U; for access to the resource, and ezit; which means an announcement of
the end of the use of the resource by U;. The outputs from process i to user U; are crit; which
means the grant of the resource to U;, and rem; which tells U; that it can continue with the rest
of its work. These are external actions of the shared memory system.

The system to solve the mutual exclusion problem should satisfy the following conditions.

(1) There is no reachable system state in which more than one users are in the critical region.

(2) If at least one user is in the trying region and no user is in the critical region, then at some
later point some user enters the critical region. o

(8) If a user is in the exit region, then at some later point the user enters the remainder region.

Conditions (1), (2) and (3) above are called mutual exclusion, progress for the trying re-
gion, and progress for the exit region, respectively. The Dijkstra’s mutual exclusion algorithm
guarantees mutual exclusion [4]. However, it may allow one user to be repeatedly granted for
access to its critical region while other users trying to gain access never succeed in doing so.
This situation is called lockout or starvation. Lockout is an undesirable property. If a mutual
exclusion algorithm satisfies the following two conditions, it is said to be lockout-free.

(1) If all users always return the resource, then any user that reaches the trying region even-
tually enters the critical region. :

(2) Any user that reaches the exit region eventually enters the remainder région.



3 Speedup of the n-process algorithm

The following procedure n-processME is a well-known lockout-free mutual exclusion algorithm,
known as the n-process algorithm by Peterson [10]. In order to analyze the efficiency of the
algorithm we use the program described on the I/O automata model given in [8].

procedure n-processME
shared variables
for every k€ {1,...,n—1}:
turn(k) € {1,. ,n}, 1mt1ally arbitrary, writable and readable by all processes;
for every i € {1,..
flag(3) € {0,.. ,n - 1}, m1tlally 0, writable by 7 and readable by all j # 4;

process i ‘
input actions {inputs to process ¢ from user U;}: try;, exit;;
output actions {outputs from process i to user U;}: crit;, remy;

** Remainder region **

try;:
fork=1ton-1do
begin
flag(s) == k;
turn(k) := 1;
waitfor [Vj # 1 : flag(j) < k] or [turn(k) # i)
end;
crit;
** Critical region **
erit;: :
flag(?) == 0;
remy;

In n-processME and subsequent algorithms; process 7 is said to be a winner at level k if it has
left the waitfor statement in the kth loop of the for statement. Note that if a process is a winner
at level k then for any 1 <t <k, the process is also a winner at level ¢. An exponential time
bound, 2"~1c + O(2"nl) for the trying region of the n-process algorithm is given in [8]. A finer
analysis can give a polynomial complexity time bound for the trying region of n-processME ‘
Theorem 1 In n-processME, the time from when a partzcular process enters its trying Tegion
until it enters its critical region is at most O(n?c + nnl).

The following procedure n-processFME] is an algorithm modified from n-processME.
procedure n-processFME1 w

shared variables: the same as the shared variables of n-processME
process i

input/output actions: the same as the'input/output actions of n-processME

** Remainder region **

try;: .
fork-lton—-ldo
begin
flag(i) = k;
turn(k) = 1;

waitfor [Vj # 4 : flag(j) ¢ {k,k+1}] or [turn(k) # 1]



end;

crit;;
** Critical region **
erit;;

flag(i) :=0;
remg;

Note that n-processFMFE1 is different from n-processME at the first conditif)h of the waitfor
statement. We can prove the following assertion.

Assertion 1' In any reachable system state of n-processFME1, for any k, 1 < k <n -1, there
are at most n — k winners at level k.

By Assertion 1, n—processFMEI guarantees mutual exclusion. We now analyze the running
time for the trying region of n-processFMEI. :

Theorem 2 In n-processFME1, the time from when a particular process has just entered its
trying region until it enters its critical Tegion is at most (2n — 3)c+ O(ndl).

Proof. Foreachk, 1<k < n-1, define F(k) to be the maximum time from when a process
enters the competition at level k of the trying region until it becomes a winner at level k. The
worst situation for a process at level n — 1 to reach the critical region:is the case where two
processes have just entered the competition at level n — 1 and then the process becomes a loser
at level n — 1. In this case, the time to decide a winner at level n - 1 is at most (n + 2)l, and
the time from the end of the competition at level n — 1 until the winner resets its flag to 0 in
the exit region is at most 3! + ¢. Then the loser becomes a winner within at most nl after the
reset of the winner’s flag. Hence, F(n—1) < (2n+5)l +c.

When there are at least two competitors at level k, the time to decide winners among the
competitors at level k is at most (n + 2)I. A loser in the competition at level n — 2 becomes a
winner at level n — 2 when a new process joins the competition at level n = 2, or when all the
winners at level n— 2 have reset their flag values to 0 in their exit regions. We should note that
the flag value of any winner at level n — 1 keeps its value until it resets the flag value to 0 in
the exit region. Hence, F(n—2) < (n+2)l+ F(n—1)+c+3l+nl=F(n—-1)+ (2n+5) +c.
For 1 < k < n-—3, aloser at level k becomes a winner when a new process joins the competition
at level k, or when all the winners at level £ become winners at level k 4+ 1.. Note that a process
at level k < n— 3 sets its flag value to k+1 just after it wins the ‘competition at level k. Hence,
for1<k<n-3,F(k)<Fk+1)+2n+1). .

Then the time from when a process has just entered its trying reglon unt11 it enters its critical
Tregion is bounded by

-1 n—3
Z F(k) < ((2n+ 5)l+c)(2n-3) +2n+ I k< (2n- 3)c + 0(n3z)
k=1 k=1 v

w}

The progress in the exit region of n-processFME! is obvious. Hence, from Assemon 1 and
Theorem 2 we have the following theorem.

Theorem 3 n-processFME1 solves the mutual ezclusion problem and is lockout-free.

The following algorithm, n-processFMEZ2is also obtained from n-processME by another mod-
ification, adding statement for k£ :=n — 1 downto 1 do turn(k) ;=i in the ex.lt region of each
process 4.



procedure n-p'rocessFME2 :
shared variables: the same as the shared variables of n-processME
process i

input/output actions: the same. as the 1nput/output actions of n-p'rocessME
** Remainder region **

try;:
fork—lton-—ldo
begin
 flag(3) = k;
turn(k) :=i;
waitfor [VJ #1: flag(g) < k] or [turn(k) ;é z]
end;
crity;
** Critical region **
etit;:
for k =n—1 downto 1 do
turn(k:) =1
Jlag():=0;
rem;; .

Assertion 2 In any reachable system state of n-processFME2 for any k, 1 < k <n-<1, there
are at most n — k winners at level k.

By Assertion 2, n-processFMEZ2 guarantees mutual exclusxon We next analyze the runmng
time for the trying region of n-processFME2. ‘ o

Theorem 4 In n-processFME2, the time from when a particular process has just entered its
trying region until it enters its critical region is at most (n — 1)c + O(nsl)

Proof. For each k,1 < k < n—1, define F(k) to be the maximum time from when a process
enters the competition at level k of the trying region until it becomes a winner at level k.

Consider an event (i, k) that process ¢ has just entered level k£ of the trying region. If
just after (s, k) and during the checks of the flag values by process i at level k, for all j # i,
flag(j) < k, then process i becomes a winner at level k within at most time (n + 2)I.

Suppose that for some j # i, flag(j) = k just after w(i, k) or during the checks of the
flag values by process % at level k. Assume that among the processes j # i with flag(j) > k
after 7(i,k), process ¢ is the first process that reaches the critical region. Then process t
reaches the critical region within at most time (n + 2)(n — k)l after = (i, k) and turn(k) is reset
within at most time ¢ + (n — k + 1) after the end of the cntlca.l region of process t. Hence,
Fk)<c+[(n+2)(n—k)+ (2n—-k+ 1)

Thus the time from when a process has just entered the trying region until xt enters its
critical region is bounded by

~1 n—-1
ZF(k) <SS+ P+ -kn— 3k+1)l] <(n- 1)c+0(n3z)

k=1 k=1
‘ ) ‘ [m}
The progress in the exit region of n-processFME2 is obvious. Hence, from Assertion 2 and
Theorem 4 we have the following theorem. :
Theorem 5 n-processFME2 solves the mutual exclusion problem and is lockout-free.
We can realize an execution by n-processFM1 and an execution by n-processFM2 that show
the time bounds given in Theorem 2 and Theorem 4, respectively to be tight. Comparing the

time bound given in Theorem 1 with these time bounds, we can say that both n-processFME1
and n-processFME2 are substantially faster than n-processME.



4 Speedup of the tournament algorithm

In this section we modify the tournament algorithm by Peterson and Fischer [11]. For simplicity,
we assume that the number of processes, n is a power of 2. The algorithm is described on the
complete binary tree with n leaves, called an n-leaves binary tournament tree. We number the n
processes as 0, --,n — 1 rather than 1,---,n. The leaves of the complete binary tree are labeled
as 0,---,n —1 in binary representation from left to right. All logarithms in this section are to
the base 2. Each internal node at level k of the complete binary tree, 1 < k < log n, is labeled
as the high-order log n — k bits of the binary representation of any of its descendants. Note that
the root of the tree is labeled as A, the null length string. The following notations will be used
to described the tournament algorithm of Peterson and Fischer, and the modified tournament
algorithm.

e comp(i, k) is the ancestor of i at level k (i.e., the high order log n — k bits of the binary
representation of 7).

e role(i, k) is the (log n — k + 1)st high-order bit of ¢ (i.e., role(i, k) indicates whether the
leaf 7 is a descendant of the left or right child of the node for comp(i, k)).

e opponents(i, k) is the opponents of process ¢ at the level k£ competition of process i (i.e.,
the set of processes with the high-order log n— k bits as 1 and the opposite (log n—k+1)st
bit.)

o opposite(i, k) is the son of comp(i, k) that is not an ancestor of i.

The following procedure, n-tournamentME is the tournament a.lgorlthm by Peterson.and
Fischer quoted from [8].

procedure n-tournamentME

shared variables
for every binary string z of length at most log n — 1:
turn(z) € {0,1}, initially arbitrary, writable and readable by those processes 1
- for which z is a prefix of the binary representation of i;
forevery,0<i<n-1:
flag(s) € {0,1,..., log n}, initially 0, writable by 4 and readable by all j # 4
process 1: :
input actions {inputs to process i from user U;}: try;, exit;;
output actions {outputs from process i to user U,} crit;, rem;;
** Remainder region **
try;:
for k=1 to log n do
begin
flag(i) := k;
turn(comp(z k)):= role(s, k),
waitfor [Vj € opponents(i, k) : flag(s) < k} or [turn(comp(i, k)) # role(i, k)]
end;
crit;;
** Critical region *k
exit;:
flag(i) = 0

rem;;

Theorem 6 (8] In n-tournamentME, the time from when a particular process i enters its trying
region until it enters its critical region is at most (n — 1)c + O(n?l).



The following procedure, n-tournamentFME is a modification of n-tournamentME. Note that
n-tournamentFME uses about twice as many flag variables as flag variables of n-tournamentME.

procedure n-tournamentFME
shared variables
for every binary string « of length at most log n — 1:
turn(z) € {0 1}, initially arbitrary, writable and readable by those processes i
for which z is a prefix of 1;
for every binary string z of length at most log n:
flag(:v) € {0, 1}, initially 0, writable by those processes i for which z is a prefix
of ¢, and readable by those processes for which ¢ is a descendant of z’s parent
but #’s bit at the position correspondmg to the last bit of  is opposite from z;

process i .
input/output actions: the same as the input/output actions of n- toumamentME'
** Remainder region **
try;:
for k=1 to logndo
begin
flag(comp(i,k — 1)) :=1;
turn(comp(i, k)) := role(i, k)
waitfor [flag(opposite(i, k)) = 0} or [turn(comp(i, k)) # role(s, k)]
end;
" erity;
** Critical region **
exit;:
for k = log n downto 1 do
flag(comp(3, k)) = 0;
rem;;

Assertion 3 In any reachable system state by n-tournamentFME, for anyi,0<i<n—1, and
any k, 1 < k < logn, at most one process from the subtree rooted at comp(i, k) is a wznne'r at
comp(i, k).

Theorem 7 In n-tournamentFME, the time from when a particular process i enters its trying
region until it enters its critical region is at most (n — 1)c+ O(nl).

Proof. Define T'(0) to be the maximum time from when a process enters the trying region.
until it enters the critical region. For k, 1 < k < log n, define T(k) to be the maximum time
from when a . process wins at level k of the trying region until it enters the critical region.

It is immediate that T'(log n) < I. Consider a situation that process i has just-entered the
competition at level k of the trying region. Let this event be denoted by (4, k). Within at most
4+T(k)+c+(log n—k+2)l after 7 (i, k), flag(opposzte(z k)) = 0 or turn(comp(s, k)) # role(s, k)
is satisfied. Then within at most further time 2I, process ¢ becomes a winner at level k. of the
trying region. Hence, the maximum time from 7 (2, k) until process reaches the entrance to
the critical region is at most 27'(k) + ¢ + (log n — k+8)l. Thus, we need to solve the following
recurrence.for 77(0).

T(logn) <1,
; "T(k—1) <2T(k)+ c+ (logn -k +8)L.
Then we have the following inequality.

T(0) < (14244219877 1)(c471) + (28" 4 2losn—1 L 9. 9logn=2 ... | (logn—1)-2' +log n-2°)l



"< (n=1)c+0(nl).
o n]

The progress in the exit region of n-tournamentFME is obvious. Hence, from Assertion 3
‘and Theorem 7, we have the following theorem.

Theorem 8 n-tournamentFME solves the mutual exclusion problem and is lockout-free.

5 Concluding remarks

We have proposed three lockout-free mutual exclusion algorithms. These algorithms are some
modifications of the well-known algorithms. Although the modifications are simple, the bound
on the running time of each modified algorithm is much improved over its original algonthm
The third algorithm, n-tournamentFME uses almost twice as many flag variables as the flag
variables of n-tournamentME. The increase of the number of the shared variables is a disadvan-
tage for n-tournamentFME. However, the flag variables of n-tournamentFME assume only two
values 0 and 1, whereas the flag variables of n-tournamentMFE assume logn different values.
Hence, n-tournamentFME is also good at the size of the shared variables. We are interested in a
problem whether the number of shared variables of n-tournamentFME can be reduced without
increasing its running time. This would be a worthy problem of further investigation.
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