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The best known approximation algorithm for 3-Set Cover is the %-approximation algorithm proposed by
Duh and Fiirer based on the semi-local improvements. There are, however, several unsolved issues about
determining the possibility of semi-local improvements and, if so, about performing them. In this paper,
we show an algorithm for determining whether we can do semi-local improvements and per‘formmg these
improvements and clarify the time complexity of their g-approouma,tlon algorithm ba.sed on the semi-local

_improvements.
1 Introduction

We are given a collection C of sets Wlth V = UgecS.
A sub—collectxon A of C is called a set cover, if
USEAS = V. The set cover problem (Set Cover,
for short) is the problem of ﬁndlng a minimum set
cover A of C, i.e., [A| < |A| for any set cover A’
of C. k- Set Cove'r is the Set Cover in which each
set in C is of size at most k. For sxmphmty, aset S
with |S| =1 is called an i-set and we assume that
C is closed under subsets tha.t is,if S'is a set in C
then all subsets of § are also in C. Thus, we always
" have a disjoint (minimum) set cover.

For k = 2, k-Set Cover is (almost) the same as
the maximum matching problem and can be solved
in polynomial time [3]. For general ¥ > 3, k-Set
Cover is NP-hard and several approximation algo-
rithms have been proposed. A greedy algorithm

choosing a set covering as many uricovered elements
as possible each time has a performance ratio of
Hi =1+%+4---+ ¢ for k-Set Cover [6, 7). For
3-Set Cover, thls performa.nce ratxo L has been im-
proved to 3 (2], & [4] and { [5]. Recently, Duh and
Fiirer [1] obtamed a —-apprommation algorithm for
3-Set Cover based on semi-local improvements de-
fined as follows: For a set cover A, a semi-local
(s,t) improvement is a step obtaining a better set
cover from the current set cover A by (1) delet-

. ing up to t 3-sets, (2) inserting up to s 3-sets, and

(3) choosing optimally 2-sets and 1-sets for uncov-
ered elements. They have shown that their semi-
local (2,1) optimization algorithm,. the algorithm
which starts with any solution and continues semi-

. local (2,1) improvements as long as possible, is a

%-approximation algorithm. They, however, gave
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no analysis about the time complexity and several
ambiguous parts remained to be clarified. For ex-
ample, the following case may occur. Suppose that
the deletion of a 3-set T € A-does not lead to a
semi-local (0, 1) improvement, but the deletion of
a 3-set T" € A leads to a semi-local (0, 1) improve-
ment. Let A’ be the new set cover obtained from
A by a semi-local (0,1) improvement using 3-set
T' € A. Then it becomes possible that the deletion
of the 3-set T € A’ will lead to a semi-local (0,1)
improvement.® Thus, we have to check each time
whether the deletion of a 3-set T € A leads to a

semi-local (0,1) improvement. This is the simplest .

case and similar cases may happen when perform-
ing semi-local (2,1) improvements. In a naive way,
we have to check each time, for each possible sets-
pair (8,{T}), ({S},0), ({5}, {T}), ({5',5"},0) or
({5',8"},{T}) with 3-sets 5,5',5" € C — A and
T € A, whether it is a sets-pair leading to a semi-
local (2, 1) improvement. After O(|V|) semi-local
improvements, we reach a set cover with no semi-
local (2,1) improvement. Since |[A| = O(V}), a
naive implementation of Duh and Fiirer’s algorithm
requires O(|C|?|V|2) semi-local improvement tests,
until we reach a set cover with no semi-local (2, 1)
improvement.
ment test requires a maximum matching algorithm
with O(|V[2-%) time, the entire algorithm requires
O(ICI2|V[+®) time.

‘In this paper, we will give an efficient imple-

Since a naive semi-local improve-

mentation of their algorithm. The time complexity

of our implementation is O(|C]2[V|?).

2 Notation

We use the following notational symbols through-
out the paper. C denotes a given instance of 3-Set
‘Cover and V = UgeeS (n = |V| and m = |C|).
C; denotes the set of all i-sets in C and m; = |C;]
(: =1, 2,3). For simplicity, we write (zy, ..., z;) for
i-set {21, ..., T;}, for example, (z,y) for 2-set {z,y}.
Similarly, A denotes a disjoint set cover of € and A;
is the set of all i-sets in A (a = |A4| and a; = |A;}).
Since we have assumed that C is closed under sub-
sets, we always have a disjoint set cover A and a =
a3 +as+a3 and n = ay + 2a3 + 3az hold. The value
of A is denoted by val(.A) = (a,a;). We would like
to find a disjoint set cover with lexicographically-

minimum value. Let V(A4;) = Upea, 4 and n(A4;) =
[V (A)| (n(A;) = ia;). Corresponding to a disjoint
set cover A, we denote by G(A) the (undirected)
graph with vertex set-V and edge set.

{(v1,v2) € C3 | v1, vz are not both in V(A4;)}.

This is a subgraph of the graph H(C) with vertex
set V and edge set {(v1,v2) | (v1,v2) € Go}. In
fact, G(\A) can be obtained from H(C) by deleting
all edges joining two vertices in V(A3) and A; is a
matching of G(A) (Fig. 1).

Analogously, for a disjoint set cover AW of C,
we can define, A, at), o, val(4W)), V(4D
n(ASj)) and G(A(). For example, .Asj) is the set
of all i-sets in AU,

Via)

Vi4) Via)

© Fig 1: Graph G(A).

3 Outline of Our Algorithm

In this section we will give an outline of our algo-
rithm for 3-Set Cover. For a set cover A, a semi-
local [s,1] improv'emeni is a step obtaining a set
cover'vfith better value from the current set cover
A by (1) deleting (exactly) t 3-sets, (2) inserting
(exactly) s 3-sets, and (3) choosing optimally 2-
sets and 1-sets for uncovered elements. Thﬁs, each
semi-local (2,1) improvement is a semi-local [0, 1],
[1,0], [1,1], [2,0] or [2,1] improvement. ;
Our algorithm consists of four steps below. There

we use only semi-local [0,1], {1,0] and [2,0] im-
provements.



Step 0. Find a set cover .A(l) by a greedy algo-
rithm.

Step 1. Obtain a set cover A from A by
using semi-local [0,1] improvements as long as pos-
sible.

Step 2. Obtain a set cover A®) from A® by
using semi-local {1, 0] improvements as long as pos-
sible.

Step 3. Obtain a set cover A from A(a) by
using semi-local [2, 0] improvements as long as pos-
sible.

Then the set cover A4 can be shown to satisfy
|A®| < 4|B*| for any optimal set cover B*, i.e.,
(4) +a(4) +a(4) < 4(61 + b* + ba) (b* IB:‘I and
“” + 20,(“) + 3a<4) = b7 + 25 + 35§ =n).

4 Implementation

In this section, we give detailed implemetations of
Steps 1-3.

4.1 Implementation of Step 1

Set M) := .A(l) (M is a matching of G(A(l))
and a max:mum matchmg of the subgraph G() :=
G(AVY = V(AD) at any time in this step. Ini-
tially this is true, since A = .A(l) + .421) + Agl)
is obtained by the greedy algorithm in Step 0.) For
this matching M), we try to find a vertex-disjoint
augmenting path in G(AM) between a vertex in
V(l) V(.A )) and a vertex in V(l) = V(Am)
We assume each path is a subset of C,. There are
two.cases as follows.

Case A: There is no augmentmg path between
a vertex in V(l) and a vertex in Vy o .

Case B: Otherwise (such a path’ emsts). :

Case B can be divided into two subcases:

(i) There is a 3-set (u3, v, w3) € .Agl) such that
three vertex-disjoint augmenting paths P(z;,u3),
P(y1,v3) and P(z1,ws) join z3,y1,21 € Vll) and
u3, V3, w3; and

(i1) no such a 3-set exists. .

In Case A, we set A®) := A®) and finish Step 1.
In Case B, we can update the set cover by doing a
semi-local [0, 1] improvement and repeat this Step
1 using the new set cover. Details are as follows.

In Case B(i), we set

Al = A§1) - {(3;1)‘(1/1),(21)}1» :
A = AP A(P(21,u8) + P(u1,v5) + P(21,ws)),
As = Agl) - {(US,'UIH w3)}1

where X AY = (X -Y)U(Y —~X) (Fig. 2). Then,
the updated set A = A; 44, + Aj.is a disjoint set
cover and | Ay | = | A3, |4y | = ALV |+3, |.A3| =
]AQ | = 1. Thus, val(A) = (a,a;) < (a!Y,a 1)) =
val(AW) (since a < a®) and this update is a semi-
local [0,1] improvement.
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Fig 2: Three augmenting paths.

In Case B(ii), using an augmenting path P(é:l, uz)
joining a vertex z; in V and a vertex u3 ina 3 set
(ua,v3,ws) € A§”, we set

A= AD ~ (@),

Ay i= (A 2 Pl 1)) + (o9, ),
= A" — {(us, vs, w3)}

(Fig. 3). Then, the updated set A = A4; + A4, +
Az is a disjoint set cover and |A;| = IA(1)| -1,
[4z] = A | +2, | 45| = A —1. Thus, val(A) =
(a,a1) < (M), a( ) = val(AMY (since a; < a( )
with a = a(%)) a.nd this update is a semi-local [0, 1]
improvement.

In either Case B(i) or Case B(ii), we set AQ) =
A MO = A( ) is again a maximum matching of
the subgraph G = G(AD) -V (AM), which will
be shown later) and repeat this Step 1 until we are
in Case A.
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Fig 3: An augmenting path P(zq,us).

4.2 Impléinentati'on of Step 2

Let 51, S3,...,5p be any sequence of the 3-sets in
Cs — AD (p = |Cs] — 14D | = ms — af?). We will
repeat the following subs'tef) for k:=1top.

Set G®) = G(A®) — V(Agz)), i.e., the graph
obtained from G(A®) by deleting ‘all vertices in
V(AD). Let H® be the graph obtained from
G® by adding new three vertices {u}, v}, w}} cor-
responding to Sy = {us,vs, w3} and three edges

{(us, ub), (va, v8), (w3, wh)}. Set MD := AP, (M@

is a maximum matching of G at any time in Step
2. Initially, this is true, since A®) = .452) + Agz) +
Agz)k is obtained by Step 1.) For this matching
M® | we try to find two vertex-disjoint augment-
ing paths in H® one of which joins a vertex in
Vl(z) = V(Agz)) and a vertex in {uj,v},w;} and
the other of which joins the other two vertices in
{u}, vi, wi}. There are two cases as follows.

Case A: There are no such augmenting paths.

Case B: Otherwise (such paths exist).

In Case A, we do nothing.

In Case B, we can update the set cover by do-
ing a semi-local [1,0] improvement. Details are as
follows. ’

We find two such vertex-disjoint éugmenting paths

Py(x1,u}) and Py(v},w}) and set
Ay = AP —{(a1)},
‘ Ay = Aéz) A (P(xy,uz) + P(vs, w3)),
’ Az = AP U {5:),

where P(x1,u3) is the subpath of P(z;, u}) joining
z; and uz and P(vs,ws) is the subpath of P(v,w})
joining vz and ws (Fig. 4). Then, the updated
set A = A; + A; + A3 is a disjoint set cover and
|| = AP =1, |4y = A |1, As] = A4S 41,
Thus, val(A) = (a,a1) < (a®,a?) = val(A®)

.(since a < a®) and this update is a semi-local [1, 0]

improvement. Then we set Aiz) = A, Agz) = A

~and .A:(’Z) = .As'.

V(4P)

Via?)

Fig 4: Two augmenting paths.

We set k:= k+ 1 and repeat the above substep
until k= p. If k= p+1 then we set AB) = A@)
and finish Step 2. . '

4.3 TImplementation of Step 3

Let §1,853,...,5p be any sequence of the 3-sets in
Cs — AY (p = |Cs] = | AP = m3 —a{®). We will
repeat the following substep for k¥ :=1to p~1 and
j=k+1ltop, : ’

Set G® = GA®) — V(AP) and FO® =
G® — V(A®). Let H® be the graph obtained
from F®) by adding vertices {u',v',w',2';y',2'}
corresponding to-Sy, = {u,v,w}, §; = {z,y,2} and
edges {(u,u"), (v, v"), (w,w'), (z,2), (y,9"), (2, 2")}.
Set M®) ;= Ags). (M® is a maximmim matching
of G®), at any time in Step 3. Initially, this is
true, since A®) = A(ls) + Ags) + .Ags) is'obtained by
Step 2.) For this matching M®), we try to find
three vertex-disjoint augmenting paths Pi(d’,b'),
Py(c,d") and Ps(¢, f') with {a',¥,c',d", ¢, f'} =
{u'; o', w' 2y, 2'} in H®). There are two cases as
follows.



Case A: There are no such augmenting paths.

Case B: Otherwise (such paths exist). -

In Case A, we do nothing, ’

In Case B, we can update the set cover by do-
ing a semi-local [2,0] improvement, Details are as
follows. ‘

We find three such vertex-disjoint augmenting
paths Pi(a’, '), P2(c',d') and Ps(e’, f') and set

Ay = AP,
Az = AP A (Pi(a,b) + Py(c,d) + Ps(e, f)),
Az = A§3) U {5k, S;},

where each P(g, h) is the subpath of P(g’, ') join-
ing g and h (Fig. 5§). Then, the updated set A =
A + Ay + Az 1s a disjoint set cover and |A;] =
AP, [Ag| = [AP] - 3, |45 = |4| +2. Thus,

val(A) = (a,a;) < (a®), a(a)) = val(A®) (since

a < a®) and this upda.te 1s a seml-loc&l P 0] im-
provement. Then we set .Al and .A,a) =
and AL := A;.

|
I :
r ™ r’_‘()d".i

V(4D)

Fig 5: Three augmenting paths.

In either case, we set j := j + 1 and Tepeat
the above substep until j = p. If j =p+1, then
weset k:=k+landj:=k+1 ahdrepea,t the
above substep until k = p. If k = p+ 1 then we set
A® := A®) and finish Step 3. ’

5 Proof of the Correctness

To prove the correctness of the a.lgorithxﬁ, we first
show the following lemmas about matchings M),

M® and M®),

Lemma 5.1 The following (a) and (b) hold.

(a) At any time in Step 1, M) is o mazimum
matchmg of GO (M®) = AD, G = GAW) -
V(AD)).

(b) A 3-set A in A( ) leads to o semi-local [0,1]
improvement if and only if there is an augmenting
path with respect to M) in G(AW) ]ommg a ver-
tez in V(A( ) and a vertez in Aj.

Proof. We first consider (a). At the beginning of
Step 1, M®) is a maximum matching of G, since
we choose Agl) as large as possible by the greedy
algorithm in Step 0. Now suppose, for any &k > 1,
at the beginning of the k-th iteration, M is a
maximum matching of G, If Case A occurs in the
k-th iteration, then M) is a maximum matching
of GM at the end of the k-th iteration, since no
change is made. I Case B occurs, we will show
that, at the end of the k-th iteration, M := Ay is a
maximum matching of G(A) — V(A;) (this implies
that M) is a maximum matching of G®) at the
beginning of the (k + 1)-th iteration). Note that
G(A) — V(A3) has G as an induced subgraph
and three more vertices {ua,vs, ws}. Thus, M) is
a matching of G(.A) — V(A43) and any matching of
G(A) — V(A3) has at most three more edges than
M® since M) is a maximum matching of G().
Thus, M is a maximum matching of G(A) —V'(A4;)
in Case B(i) since M has three more edges than
M), Case B(ii) implies that G(A) — V(A;3) has
no matching with cardinality |JM ™| + 3 and thus
M is a maximum matching of G(A4) — V(A4;) since
|M]| =MW +2. ’

We next consider (b). If part is trivially true
since we can decrease the value of disjoint set cover

by deleting A3 as in Step 1. If A3 in A;(,l) leads to a

semi-local [0, 1] improvement, then we can choose a
collection of 2-sets having two more 2-sets than .Agl)
and this implies that there is such an augmenting
path, since A3 can contain only one disjoint 2-set.

[m]

Lemma 5.2 At any time in Step 2, M) is ¢ maz-
imum matching of G (G®) = G(.A(z)) V(.A(z))
M@ = A(z)) .

Proof. At the beginning of Step 2, M® is a max-
imum matching of G» by Lemma 5.1. Now sup-
pose, at the beginning of the k-th iteration, M(? is



a maximum matching of G?), If Case A occurs in
the k-th iteration, then M(? is a maximum match-
ing of G at the end of the k-th iteration, since
no change is made. If Case B occurs, we will show
that, at the end of the k-th iteration, M := A, is
a maximum matching of G(A) — V(A4;) (this im-
plies that M(® is a maximum matching of G® at
the beginning of the (k+1)-th iteration). Note that
-G(A)~V(A3) = GP® = {uz,v3, w3 }. Thus, a match-
ing M of G(A) — V(As) is a matching of G(? and
" |M| = |M®|~1. Thus, M is a maximum matching
of G(A) — V(A3), since M' := M U {(v3,w3)} is a
matching of G®) with |M'| = [M®| and M® is a
maximum matching of G®). .o

Lemma 5.3 In Step 2, no 3-set in .A;(,z) leads to
a semi-local [0,1] improvement. That is, there is

no augmenting path in G(A®) joining o vertez in .

V(AP) and o vertes in V(AD).

Proof. At the beginning of Step 2, the lemma is
trivially true, since we have done Step 1. We con-
sider the first iteration and let A3 be an arbitrary
3-set in ALY, Let G4, (A®) be the graph obtained
from G(A®) by deleting all vertices. U A Age A(:)A

and identifying A3 with a new vertex va,. M®) isa
maximum matching of G 4,(A®) by Lemma 5.1. If
Case A occurs, nothing is changed and Az in .A;(,Z)
does not lead to a semi-local [0,1] improvement.
Suppose that Case B occurs. Thus, we can assume,
Sy = {us,vs, w3} and there are two vertex-disjoint
alternating paths Py(z1,us) joining z; € V(A§2))
and uz and P,(v;,w;) joining vz and w; in G(.A(z))
as in Step 2. If Py(v;,ws) # (vs, ws3) then

M = (A A P(vs, w3)) U {(va, w3)},

is also maximum matching of G 4,(A®) and, for
this M, there is no augmenting path in G 4,(A®)
joining a vertex in V(A?’) and vertex v4,. Thus,
we can consider M(® = Agz) = M and Pa(v3,w3) =
(vs,w3). This implies M’ := AP AP(z,,u3) is also
maximum matching of G4, (A®?)) and, for this M’,
there is no augmenting path in G 4,(A®) joining a
vertex in V(A; U {u3}) and vertex vg,.

Let Fs, be the graph obtained from G 4,(A(?))
by identifying Sy with a new vertex vs,. Then M'—
{(vs,w3)} = A; is a maximum matching of Fis, and
there is no augmenting path in Fg, joining a vertex
of Ay = Agz) —{(21)}, and a vertex v, or vg,.

Thus, by induction, we can obtain the lemma.
a

Lemma 5.4 In Step 2, if S; is determined in the
J-th dteration not to lead to a semi-local [1,0] im-
provement, then it does not lead to o semi-local
[1,0] improvement in k-th iteration for all k> j.

Proof. By induction, we can assume that j = 1,
k =3 and S; = {u3,vs, w3} leads to a semi-local
[1,0] improvement in the second iteration. We will
show that §; = {z,y, 2} does not lead to a semi-
local [1,0] improvement in the third iteration. (Of
course, S; does not lead to a semi-local [1,0] im-
provement in the second iteration.) Let A(2)(3)
be A® in the i-th iteration and M@ (i) be M®
in the i-th iteration, i.e., M@(i) = AP(). By
the same argument as in the proof of Lemma 5.3,
we can assume (vs,w3) € M®(2) and M@)(3) =
(M®(2) - {(vs,ws)}) A P(zy,u3). Thus, if Case
B can be applied for S in the third iteration, we
can assume that there are vertex-disjoint augment-
ing paths P(zy,z') and P(y',2') in Gg)(ii) with
respect to M(?)(3), where Gg)(i) is the graph ob-
tained from G'¥(i) by adding vertices {z',y,z'}
corresponding to S; = {z,y,z} and three edges
{(z,"),(y,¥'), (2,2')}. But this implies that there
are vertex-disjoint augmenting paths P(z;,z') and
Py, #) in G$(2) = ¢P(1) = HD(1) with re-
spect to M#(2) = M(®)(1). This is a contradic-
tion. Thus, by induction, we can obtain the lemma.

U o

Lemma 5.5 The following (a), (b), (c) and (d)
hold. : ‘

(a) At any time in Step 3, M® is o mazimum
matching of G® (M® = AP, GO = G(4®) -
v(AD)). N

(b) No 3-set in A;(,s) leads to a semi-local [0,1]
improvement. ‘

(c) No 3-set in C3 — A§‘” leads to a semi-local
[1,0] improvement.

(d) In Step 3, if a pair of 3-sets (5k,S;) is de-
termined in the (k,j)-th iteration not to lead to a
semi-local [2,0)] improvement, then it does not lead
to a semi-local [2,0) improvement ot any time after.

Proof. At the beginning of Step 3, M® is'a max-
imum matching of G®) by Lemma 5.2. Now sup-

" pose, at the beginning of the k-th iteration, M®)



is a'maximum matching of G®), We also assume
the j-th subiteration. If Case A occurs in the j-th
subiteration, then M is a maximum matching of
G at the end of the j-th subiteration, since no
change is made. If Case B occurs, we will show
that, at the end of the j-th subiteration, M := 4,
is a maximum matching of G(A4)— V(A;) (this im-
plies that M® is a maximum matching of G®) at
the beginning of the (j + 1)-th iteration). Note
that G(A) — V(A3) = G® — {u,v,w, z,y, 2} with
S; = {z,y,z} and Sk = {u,v,w}. Thus, a match-
ing M of G(A) — V(A,) is a matching of G®) and
M| = |[M®)| - 3. By symmetry, we can assume
a::u,b=:c,c='v,d=w,e=y,f,=za‘nd
Py(c,d) = (v,w), Ps(e,f) = (y,2). This is be-
cause if Py(c,d) = P(v,y) and Ps(e, f) = (w,2)
then P(v,y) + P(w,z) + {(v,w),(y,2)} is an al-

ternating cycle and we can change matching edges -

and nonmatching edges along this cycle and as-
sume {(v,w), (y,2)} are matching edges. Similarly,
if Py(e,d) = P(v,w) # {(v,w)} and Ps(e, f) =
P(y,2) # {(y, 2)} then P(v,0)U{(v,)}, P(y, )U
{(y, 2)} are both disjoint alternating cycles and we
can change matching edges and nonmatching edges
along these cycles and assume {(v,w),(y,2)} are
matching edges of M(®. Furthermore, even if we
add (z, u) to the graph G®), then M®) remains a
maximum matching which can be shown by using
(¢). Thus, M is a maximum matching of G(A) —
V(Az), since M’ := M U {(u, 2), (v,w), (y,2)} is a
matching of G®) with |M'| = [M®)| and M®) is
a maximum matching of G®). By induction on j
(and k), we can obtain (a).
The statements (b)-(d) can be similarly proved.
. [m]
Now we are ready to analyze the peformance
of the approximation algorithm of Duh and Fiirer.
They used the compurison graph defined as follows
[1]. It is a bipartite multi-graph which has an A-
vertex for every set chosen by the algorithm and has
a B-vertex for every set included in a fixed optimal
set cover. The elements of set V are represented by
the edges If the set corresponding to an A-vertex
intersects the set corresponding to a B-vertex in k-
elements, then there are k edges between the two
vertices. We call an A-vertex corresponding to i-set
to be an 4;-vertex and a B-vertex corresponding to
i-set to be a B;-vertex. We also use this comparison

graph for the set cover A*) and a fixed optimal set
cover B*.

To prove that |A)| < £|B*|, we use almost
the same lemmas as in Duh and Fiirer [1]. The
first lemma is trivailly true since we consider only
disjoint set covers.

Lemma 5.6 a{")4+2a{)+3a{) = b2 +2b2 4363 = n
for any j =1,2,3,4. _ m]

The next lemma plays a critical role and the
corresponding lemma given by Duh and Fiirer con-
tains a small hole in their proof.

Lemma 5.7 o} = ala) < by

Proof. There is no path between A;i-vertex to A-
vertex or 4; vertex, since we have done Steps 0 and
1. Now consider a connected component contain-
ing A;-vertex. Clearly this ¢onnected component
contains only one A;-vertex. If this connected com-
ponent has no Bs-vertex, thén it is a path whose
other endvertex is a By-vertex. Otherwise (if the
connected component contains B-vertex), we con-
sider the two cases: (i) it contains B;-vertex, or (ii)
it contains no B; vertex. We have to consider only
Case (ii). In this case, we can do a semi-local [1,0]
improvement. However, since we have done Step 2,
this cannot happen. : ‘ o

The following lemma can be proved in the same
way as Duh and Fiirer.

Lemma 5 8 ai‘i) + a“) < b* + b5 + b3, a
By the preceding three lemmas, we have
3(a{" +a5" +alM) = 3b7+3b5+4b% < 4(BT+b34+83).

Thus, our sixﬁpliﬁed implementatioﬁ of Duh and

Fiirer algorithm is also a —-approxm:la,tlon -algo-
rithm. .

6 Time Complexity Analysis

In this section we analyze the time complexity of
our implementation. There we have to find two or
three vertex-disjoint augmenting paths. We first
note here that we have only to find such paths
one by one. For example, in Stép 1, we look for
three vertex-disjoint augmenting paths P(zy,us),



P(y1,v3), P(Zlawa) joining z1,y1,21 € V( ) and
ug, V3, w3 in A . We first find an augmenting path
P(x,u) with respect to M () joining a vertex r €
{z1,y1,21} and a vertex u € {uz,vs,w3}. Then,
for M' := M® A P(z,u), we find an augmenting
path P(y,v) joining a vertex y € {z1,y1,21} — {z}
and a vertex v € {us,vs, w3} — {u}. Again, for
M" .= M' A P(y,v), we find another augment-
ing path P(z,w) joining a vertex z € {z1,y1,21} —
{z,y} and a vertex w € {us,vs, w3} —{u,v} and let
M := M" AP(z,w). Then MY AM contains three
vertex-disjoint augmenting paths with respect to
M joining vertices in {x;, 31, 21,3, vs, w3 }, since
all vertices except these six vertices are matched by
both matchings M) and M and these six vertices
are matched by only M. In Step 1, there is no aug-
menting path joining vertices in V D we can as-
sume they are szl,u;;), P(y1,v3), P(zl,wa) join-
ing z1,y1,21 € Vl1 and us, v3, ws in Ay,

Based on this observation, we can also find two
vertex-disjoint augmenting paths in Step 2 and three
vertex-disjoint augmenting paths in Step 3.

Thus, Step 1 requires O(min{agl),a3 )}) itera-
tions and each iteration requires at most three aug-
menting path findings. Similarly Step 2 requires
O(mg — a.gz)) iterations and each iteration requires
at most two augmenting path findings. Step 3 re-
quires O((mgs —aga))z) iterations and each iteration
requires at most three augmenting path findings.
Thus, if we denote by A(n) the time required to find
an augmenting path in a graph with O(n) vertices,
the entlre time required ni our implementation is
O((min{a{, afV }-+(ms —af?)+(ms —af)?) A(n))
time. This is also expressed by O(m?A(n)).

7 Concluding Remarks

‘We have presented a simple implementation of the
%-approximation algorithm for 3-Set Cover by Duh
and Firer [1] and analyzed its time complexity.
Since our implementation for Step 3 does not seem
so efficient, the time complexity for Step 3 will be
reduced based on matching theory and data struc-
tures. We believe, however, this paper first gives
a basis for the research in finding more efficient
approximation algorithms for 3-Set Cover. Even
if we neglect Step 3, we have Lemmas 5 and. 6.
Thus we can obtain a g——a.ppro;dmation algorithm

with time complexity O(mA(n)) for 3-Set Cover.
For general k > 4, Duh and Fiirer also gave an
(Hi~3)-approximation algorithm where semi-local
(2,1) 1mprovements are used for i-sets with i < 3
on uncovered elements. Thus, our implementation
can also be applied to their approxuna.tlon algo-
rithm for k-Set Cover.
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