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In this paper we deal with a vehicle routing problem on a tree-shaped network with a single depot.
Customers are located on vertices of the tree, and each customer has a positive demand. Demands of
customers are served by a fleet of identical vehicles with limited capacity. It is assumed that the demand of
a customer is splittable, i.e., it can be served by more than one vehicle. The problem we are concerned with
in this paper asks to find a set of tours of the vehicles with minimum total lengths. Each tour begins at the
depot, visits a subset of the customers and returns to the depot without violating the capacity constraint.
We show that the problem is NP-complete and propose a 1.5-approximation algorithm for the problem. W
also give some computational results. -

1 Introduction

In this paper we consider a capacitated vehicle routing problem on a tree-shaped network with a
single depot. Let- T = (V, E) be a tree, where V is a set of n vertices and F is a set of edges,
and r € V be a designated vertex called depoi. Nonnegative weight w(e) is associated with each
edge e € E, which represents the length of e. Customers are located at vertices of the tree, and a
customer at v € V has a positive demand D(v). Thus, when there is no customer at v, D(v) =0
is assumed. Demands of customers are served by a set of identical vehicles with limited capacity.
We assume throughout this paper that the capacity of every vehicle is equal to one, and that the
demand of a customer is splittable, i.e., it can be served by more than one vehicle. Each vehicle
starts at the depot, visits a subset of customers to (partially) serve their demands and returns
to the depot without violating the capacity constraint. The problem we deal with in this paper
asks to find a set of tours of vehicles with minimum total lengths to satisfy all the demands of
customers. We call this problem TREE-CVRP. ’ ‘ )

Vehicle routing problems have long been studied by many researchers (see [5, 6, 7, 11, 12]
for a survey), and are found in various applications such as scheduling of truck routes to deliver
goods from a warehouse to retailers, material handling systems and computer communication :
networks. Recently, AGVs (automated guided vehicle) and material handling robots are often used
in manufacturing systems, but also in offices and hospitals, in order to reduce the material handling
efforts. The tree-shaped network can be typically found in buildings with simple structures of
corridors and in simple production lines of factories.



Vehicle scheduling problems on tree-shaped networks have recently been studied by several
authors (3, 8, 9, 13, 16]. All of them treated in the literature deal with a single-vehicle scheduling
that seeks to find an optimal tour under certain constraints other than those treated in this paper.
To the authors’ knowledge, TREE-CVRP has not been studied .in' the literature. For general’
undirected networks, the problem contains TSP (traveling salesman problem) as a special case,
and thus it is not only NP-hard but APX-hard (except the result by [2] for Euclidean-CVRP in the
plane). However, when restricted to tree-shaped networks, the complexity of TREE-CVRP is not
clear. We shall show that TREE-CVRP is strongly NP-complete by a reduction from bin-packing
problem (the proof is omitted).

Thus, we turn our attention on developing approximate algorithms for the problem. Since
TREE-CVRP is a special class of general CVRP, approximation algorithms originally developed
for CVRP on general undirected networks. can be used to approximately splve TREE-CVRP.
In particular, the iterated tour partitioning (ITP) heuristic proposed by Haimovich and Rinooy
Kan [14] and Altinkemer and Gavish [1] provides 1 + (1 — })a approximation for such general
CVRP when a-approximation algorithm for TSP is available, where the capacity of every vehicle
is assumed to be equal to k and the demand of every customer is a positive integer. For instance, if
the famous 1.5-approximate algorithm for TSP by Christofides [4] is used, the approximation factor
becomes 2.5 — 1.5/k. For tree-shaped networks, TSP can be optimally solved in a straightforward
manner, and thus the direct consequence of [1, 14] results in a (2 — %)-approximation algorithm.

In this paper, we shall present an improved 1.5-approximation algorithm for TREE-CVRP by
exploiting the tree structure of the network. The basic idea behind the algorithm is to (i) first find
an appropriate subtree, to (ii) generate two routings to partially serve the demands of customers
in the subtree by applying two different heuristics, and to (iii) choose the better one. We repeat
this process until all the demands are served. We have implemented our algorithm and carried out
computational experiments to see how effective our algorithm is. Compared with lower bounds,
the results demonstrate that the solutions obtained by our algorithm are very close to optimal.

The rest of the paper is organized as follows. In Section 2, we give some necessary definitions
and basic facts. Section 3 presents an algorithm and proves that its approximation ratio is 1.5.
Section 4 presents an example for which the approximation factor becomes 1.25. Section 5 reports
computational results. Section 5 concludes the paper. -

2 Preliminaries

Since Tis a tree, there exists a unique path between two vertices. For vertices u,v € V,
let path(u,v) be the unique path between u and v. The length of path(u,v) is denoted by
w(path(u, v)). We often view T as a directed tree rooted at . For a vertex v € V — {r}, let
parent(v) denote the parent of v, and C(v) the set of children of v. We assume throughout this
paper that when we write an edge e = (u,v), u is a parent of v unless otherwise stated. For any
v €V, let T, denote the subtree rooted at v, and w(T,) and D(T;) denote the sum of weights of
edges in T,,, and the sum of demands of customers in 7T}, respectively. Since customers are located
on vertlces, customers are often identified with vertices.

Suppose that we are given aset S CV —{r} with 3_ .5 D(v) < 1. Then one vehlcle is enough
to serve all the demands of customers in S,.and an optimal tour for S can be trivially obtained by
first computing a minimal subtree T” that spans S U {r} and by performmg a depth-first search
with r as the starting vertex. Thus, ‘when we speak of a tour in this paper, we do not need explicitly
give a sequence of vertices that a vehicle visits, but it is enough to specify a set of customers that
the vehicle visits. -Since the demand of a customer is splittable, in order to define a tour of a
vehicle, weé need to specify the amount of demand of each customer served by the vehicle.



A solution of TREE-CVRP consists of a set of tours. From the above discussion, we represent
the tour of the j-th vehicle by

{D,(U)lvGSJ} Y

where S; i is the set of customers for whlch some positive demands are served in the j-th tour, and
D;(v)(> 0) for v € §j is the amount of demand that the j-th vehicle serves at v. often referred to
as the optimal cost.
For an edge e = (u,v), let
LB(e) = 2u(e) - [D(T)]. )

‘LB(e) represents a lower bound of the cost required for traversing edge e in an optimal solution
because, due to the unit capacity of a vehicle, the number of vehicles required for any solution to
serve the demands in 7}, is at least [ D(T,)] and each such vehicle passes e at least twice (one is in
a forward direction and the other is in a backward direction). Thus, we have the following lemma.

Lemma 2.1 Y.z LB(e) gives a lower bound of the optimal cost 0f TREE-CVRP.

3 Algorithm

A vertex v € V is called D feaszble if D(T,,) 2 1 a,nd is called D minimal if it is D-feasible but any
of its children is not. The proposed algorithm first finds a D-minimal vertex, and determines a
routing of one or two vehicles that partially serve demands of vertices in T,, by applying Strategy 1
or 2 depending the cases as will be described below. We then appropriately update the remaining
demands of vertices visited by the routing currently determined. In addition, if the remaining
demand of subtree T, becomes zero, T, as well as the edge (parent(v),v) is deleted. In this
section, we abuse the notations D(v) and D(T,) to denote the remaining demands- of vertex v
" or subtree T}, respectively unless confusion occurs. We repeat this process until all the demands
of T are served. Notice that, if there is no D-feasible vertex (i.e.,"D(T;) < 1) any more, we can
optimally serve the remaining demands by visiting the relevant vertices in a depth-first manner.

The algorithm consists of a number of apphcatmns of Strategy 1 or 2. One application of
Strategy 1 or 2 is called a round. : :

When a D-minimal vertex v is found, in ordet to determlne the routing of one or two vehicles
to partially serve the demands in T, we apply the following two strategles and choose the one
with cheaper cost. Let C(v) = {v1,v2,...,0p}. We assume D(T,) > 0 for every ; € C(v) since
otherwise such subtree can be elxmmated from T. Let S C C(v) satxsfymg 1< Zv s D(T,)) <2.
Since D(T ) < 1 for all v; € C(v) from D- minimality of v, such S a,lways exists and can be easﬂy
computed as Uf_,T,, satisfying

kZID(Tv <1 and ZD(TM >1. - . (3)

i=1 i=1

If T, D(T,,) = 1, we simply allocate one vehicle to serve all the demands in U, T;,. Thus, we
.assume otherwise. For the ease of the exposition of the algorithm, we assume k = 2 without loss
of generality because otherwise we can equivalently modify T, by creating a fictitious vertex v of
D(v') = 0 as well as edge (v,v") of zero weight and replacing edges (v,v;) for i with 1 <i <k —1
by (v',;) with w(v',v;) = w(v,v;) and an edge (v,v') with zero weight. . :

With this assumption, the algorithm considers subtrees T, and Ty, satisfying

D(Ty,) < 1,D(T.y) <1 and D(Ty,) + D(Ty,) > 1. | (4)



The first strategy (Strategy 1) prepares two vehicles to serve all the demands in Ty, UTy,, while
the second strategy (Strategy 2) prepare one vehicle to partially serve the demands in T,,l UuT,,
by using its full capacity (thus, the demand of some vertex may possibly be split). -

Strategy 1: We prepare one vehicle for Tvl and another vehicle for T, to separately serve demands
of Ty, and T.,2 The cost to serve these demands is

4w(path(r,v)) + 2w(Ty,) +2w(Tv;) o - (5)

because two vehicles run on the path path(r,v) but each of T,, and T,, is traversed by only one
vehicle.

Strategy 2: We assume w(Ty,) > w(Ty,) without loss of genera,hty ‘We spht the demand D(u)
of every u€ T,,2 into D'(u) and D"(u) so that

> Dw)+ Y D'u)=1 _ | ‘ | (6)

u€Ty,; u€ETy,
We allocate one vehicle to serve the set of demands
{D(u) |u €Ty} and {D'(u)|u €Ty}

The computation of such D’(u) satisfying (6) is straightforward, i.e., it is done by performing a
depth-first search on Ty, with v, as a starting vertex in such a way that

(1) Initially set sum = 3-,c,, D(u).

(2) Every time a new vertex u is visited, if sum+D(u) <1 hoids, we set D'(u) = D(u), D"(u) =0
and increment sum by D(u), otherwise we set D'(u) = 1 — sum, D"(u) = D(u) — D'(u) and
increment sum by D'(u).

Notice that the demand of at most one vertex is split by this procedure The cost required for ,
Strategy 2 is at most

2w(patﬂ(r, v)) + 2w(Ty, ) + 2w(Ty,). : 4]

Demands of a subset of vertices in T}, remain unserved, and thus T,, (or its subgraph) will be
visited later by other vehicles. Thus, in total the cost to visit 7, (or its subgraph) will be
counted twice or more as (7). For the ease of the analysis of approximation ratio of the proposed
algorithm, we amottize the the cost to visit T, in the current.round so-that 11: is charged to Ty, .
Since w(T,,l) > w(Ty,), the cost of (7) is bounded frem above by

Zw(Pa.th(T’ U)) + 4w(Tv1 ) ' (8)

We consider (8) as the cost for Strategy 2. An alternative interpretation of (8) is that a set of
demands defined by {D'(u) | u € T,,} are served without visiting T;,, (resp. T,,) at the expense
of visiting T, twice. Notice that the subtree T}, will never be visited in future rounds because all
the demands therein are served in the current round.

It should be remarked that our algorithm chooses Strategy 1 or 2 not by directly compa.rmg
the costs of (5) and (8), but by the following rule.

Selection rule of Strategy 1 or 2::
We apply Strategy 1 if ,
4w(path(r,v)) + 2w(Ty,) + 2w(Ty,) < 2w(path(r,v)) + 4w(Ty,)
2w(path(r,v)) + 2w(Ty,) + 2w(Ty,) ~ 2w(path(r,v)) + 2w(Ty,)’




and apply Strategy 2 otherwise.

The rationale behind this selection rule is as follows Since the amounts of demands as well as
the.sets of customers served by Strategiés 1 and 2 are different in general, it may not be fair to
directly compare (5) and (8), but it is reasonable to compare the costs of (5) and (8) divided by the
lower bounds of the costs to optimally execute their corresponding tasks. In fact, the denominators
of the left-hand and right-hand sides of (9) stand for such lower bounds as will be seen below.

Now we shall prove the following main theorem.

Theorem 3.1 The approzimation of our algorithm for TREE-CVRP is 1.5.

PROOF. The proof is done by inductionon the number of rounds. When D(T;) < 1 our algonthm
trivially finds an optimal solution. This proves the base case of the induction.

Assuming that our algorithm computes a 1.5-approximate solution for problems that require at
most k rounds, we prove that the theorem also holds for the case which requires k + 1 rounds. Let
P denote the problem instance of TREE-CVRP for which our algorithm requires k+1 rounds. Let
us consider the first round for P in which:a D-minimal subtree T}, is found. As we remarked earlier,
let us assume without loss of generality that the algorithm considers two T,, and T, satistying 4) .
and that w(T,,) > w(Ty,). Depending whether (9) holds or not, Strategy 1 or 2 is applied by which
one or two tours are determined to serve the demands of customers € T,; UT,,. Let P’ be the
problem instance of TREE-CVRP obtained from P after the first round by decreasing demands
served in this round from original D(-). Let dsym denote the total amount of demands served in
this round. Thus, for each edge ¢ = (z,y) € path(r, v), the remaining demand Dnmam(Ty) for
subtree T, satisfies

Dremaiu(Ty) = D(Ty) ~dsum- (10)
Notice that dgym > 1 holds. Let d(u) denote the demand of u € Ty, UTy, served by this round, and
let Dyemain{u) = D(u) —d(u) for u € T, UTy,. Let LB(P' ) be the lower bound for the problem
P'. From Lemma 2.1, we then have

LB(Py=2( Y [ Drema._in(enw(e) + Y [D(ENw(e). (11)
e€path(r,v) or egpath(r,v) and ) )
e€Ty, UTy, €Ty UTyy -

Let cost(P), cost; and cost(P') denote the total cost required for the original problem P by our
algorithm, the cost required by the first round and the cost for the remaining problem P’ to be
required by our algorithm, respectively, (i.e., cost(P) = cost, + cost(P")). Let LB(P) denote the
lower bound of the optimal cost for P given by Lemma 2.1.

(Case 1): (9) holds. Thus, the algorithm applies Strategy 1. Since [z] > 1+ [z.— a] holds
in general for any positive z,a with z > a and a > 1, it follows from (10) and dgym > 1 that
LB(e) > 1+ LBremain(€) holds for each e € path(r,v), where LBremain(€) is a lower bound of the
optimal cost of P' involving edge e defined by (2). Also, LB(e) = 1 holds for all e € Ty, UTy,
from D(Ty,) < 1 and D(T;,) < 1, and D,.emam(u) 0 holds for all u € T, UT,, from the way of
Strategy 1. Thus, we have '

LB(P) > 2w(path(r, v)) + 2w(Ty,) + 2w(T,,,) + LB(P'). (12)
From (5), we have
costy = 4w(path(r,v)) + 2w(Ty,) + 2w(Ty,)-
Thus, I '
cost(P) costy + cost(P')
LB(P) 2w(path(r,v)) + 2w(Ty, ) + 2w(Ty,) + LB(P')
4w(path(r,v)) + 2w(T,,) + 2w(Ty,) + cost(P’)
2w(path(r,v)) + 2w(Ty,) + 2w(Ty,) + LB(P')

IA

(13)



Since cost(P')/LB(P') < 1.5 holds from the induction hypothesis, it suffices to prove
4w(path(r,v)) + 2w(Ty, ) + 2w(Ty,)

<
w(path(r, v)) + 20(To, ) + 20(Ty,) = 1> | (14)
Since b d bid .
min{C, Y S ¥ (15)
holds for any positive a, b, ¢, d, it follows from (9) that
“dw(path(r,v)) + 2w(Ty,) + 2w(Ty,) < 6w(path(r,v)) + 6w(T,,) + 2w(T,,) <15
2w(path(r,v)) + 2w(Ty,) + 2w(Ty,) ~ 4w(path(r,v)) + 4w(Ty,) + 2w(Ty,) =
Thus, (14) holds, and hence cost(P)/LB(P) < 1.5 follows from (13).
(Case 2): (9) does not hold, i.e,
4w(path(r,v)) + 2w(Ty,) + 2w(Ty,) _ 2w(path(r,v)) + 4w(Ty,) (16)

2w(path(r,v)) + 2w(T,) + 2w(To,) = 2w(path(r,v)) + 2w (T, ) ’

i.e., Strategy 2 is applied. In this case, dsym = 1 holds since one vehicle is scheduled to serve
demands in T,,, UT,, with its full capacity. Thus, from (10), LB(e) = 1 + LByemain(€) holds for
each e € path(r,v). Since all the demands of T, are served in this round from the way of Strategy
2, Dyemain(u) = 0 holds for all u € T,,,. Thus, from (2) we have

LB(P) > 2w(path(r,v)) + 2w(T,,) + LB(P'). (’17)'

From (8), we have o :
costy = 2w(path(r,v)) + 4w(Ty,).

Thus, '
cost(P) . costy + cost(P')
LB(P) ~— 2w(path(r,v)) + 2w(T,) + LB(P') ‘
: _ 2w(path(r,v)) + 4w(T,) + cost(P') _ . as)
~ 2w(path(r,v)) + 2w(T,,) + LB(P")" = = -
Since kco§t(P’) / LB(P') < 1.5 holds from tﬁe induction-hypothésis,i it suffices to prove
- 2w(path(ryv)) + 4w(Ty,) <15, o S : _(1‘9)

2w(path,(r, )} +2w(Ty,) =

>«Us1ng {15) again, we can prove (19) in a manner similar to Case.1. Thus cost(P)/LB(P < I 5
follows. G : ;

Although the details are omitted, it is easy to see that the algorxthm can be 1mplemented in
such a way that each round runs in linear time. Thus, the total running time of our approximate
algorithm is O(3",cy D(v)-n) time sirice the number of rounds required by the algorithm is clearly
O(Xyev D(v)). This is polynom1al if Euev D('u) is polynomial in n.



ﬁ)(r, v)=1-¢
w(u,v) = w(u,w) =¢

w(v,y) = w(v,y) =1

D(r) = D(u) = D(v) =
D(w)=D(z)=D(y)=

Figure 1: Illustration of the worst case example

4 Lower Bound

We shall show that the approximation ratio of the proposed algonthm is at least 1.25 by giving
such an example whlch is illustrated in Figure 1. In the figure, € is a sufﬁmently small positive
constant. :

First of all, the algorithm finds a D-minimal vertex v and chooses Strategy 1 since (9) holds,
and the cost of the first round required by the algorithm is 8. There still remains a demand of
0.6 at w, which requires cost of 2. Thus, the total cost is 10. . On the other hand, the optimal
schedule is that the first vehicle serves the demand of 0.6 at z and on the way back to the depot,
visits vertex w to serve the demand of 0.3, which requires cost 4 + 2¢ and that the second serves
the remaining demands with the same cost 4 + 2e. Thus, the optunal cost is 8 + 4e. Therefore,
the approximation ratio for this example is 1.25.

5 Computational Results

We have implemented our algorithm and the ITP heuristic developed by [1, 14] in order to see the
practical performance of our algorithm by comparing with ITP heuristic. For this, we have ran-
domly generated 10 problem instances for each of n = 50, 100, 150, 200, 250,300 (we have omitted
the description of the generation scheme we sdopted). .

The performance of the algorithms are evaluated by comparlng the ratios of costs of solutions
produced by the algorithms to the lower bound of (??). The overall average of such ratio of our
algorithm is 1.016, while that of ITP is 1.113. The worst-case ratio among 60 instances is 1.072
for our algorithm while that for ITP heuristic is 1.238. For 37 cases out of 60 instances generated,
our algorithm produced solutions that match the lower bound, while there was only one such case
for ITP. From this experiments, we can observe that our algorithm is superior to ITP heuristic,
and that it practically produces solutions very close to optimal. More extensive computational
experiments are reported in [15]. '
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