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Abstract

We prove the following theorem: Let n =1, m > 2 and ¢ > 1 be integers and
let S and T be two disjoint sets of points in the plane such that no three points of
SUT are on the same line, |S| = ng and |T| = mg. Then SUT can be partitioned
into ¢ disjoint subsets P, Py, -, P, satisfying the following two conditions: (i)
conv(P)Nconv(Pj) = ¢ forall1 < i < j < ¢ and (i) |[ENS| = n and
|P,NT|=mforalll1 <i<q.

We can obtain an O(N log N) time algorithm for finding the above desired par-
tition by our proof, where N = mq + nq. We also proved that the above theorem
holds for n = 1, and give a conjecture which says that the above theorem holds for
all integer n > 3. We don’t give a complete proof of this theorem because of lack of
pages, and a complete proof can be seen in [3].
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1 Introduction

For a set P of points in the plane, we denote by conv(P) the convez hull of P, which is
the smallest convex set containing P. In [2], we proved the following theorem.

Theorem A Let m be a positive integer, and let S1, So and T be three disjoint sets of
points in the plane such that no three points of S; U Sa UT are collinear (i.e., no three
" points of it are on the same line) and |T| = (m — 1)|S1| + m|S;|. Put g = [S1US,|. Then
S1USUT can be partitioned into q subsets Py, Py, - - -, P, which satisfy the following three
conditions: (i) conv (P;)Nconv (P;) = ¢ foralll <i< j<gq; (i) |PN(S1US)| =1 for
alll1 <i<g;and (i) |[PNT|=m—-1if|PNSi| =1, and |[P,NT| =m if [N S| = 1.

In view of theorem A with S; = @), we gave the following conjecture in [2)].

Conjecture B Letm > 2, n > 2 and q be positive integers. Let S and T be two disjoint
sets of points in the plane such that no three points of SUT are collinear, |S| = nq and
|T| = mq. Then SUT can be partitioned into q subsets Py, Py,---, P, satsifying the
following two conditions: (i) conv (P;) Nconv(P;) = ¢ foralll < i < j < gq; and (1)
|[PinS|=nand |P,NT|=m foralll1 <i<gq.

The above conjecture is true when g = 2 because the conjecture with ¢ = 2 is equivalent
to well-known discrete Ham Sandwich Theorem on the plane ([1] p.212). In this paper
we show that the conjecture is true in the case of n = 2. -

Theorem 1 Let m > 2 and q > 1 be integers and let S and T be two disjoint sets of
points in the plane such that no three points of SUT are collinear, |S| = 2¢ and |T| = mq.
Then SUT can be partitioned into q disjoint subsets Py, Py, - -, Py satisfying the following
two conditions: v

(i) conv (FP;)Nconv (P;) =¢ forall 1<i< j<gq; and

(i) |P;NS| =2 and |P,NT|=m forall 1<i<yq.

Let us note that from the proof of the above theorem, we can obtain a polynomial time
algorithm for finding such a partition given in the theorem.

2 Proof of Theorem 1

In this paper, we deal with only directed lines in order to define the right side of a line and
the left side of it. Thus a line means a directed line. A line [ dissects the plane into three
pieces: ! and two open half-planes R(l) and L(l), where R(l) and L(l) denote the open
half-planes which are on the right side and on the left side of I, respectively (see Figure 1).
Let r; and 79 be two rays emanating from the same point p. Then ry U ry dissects the
plane into three pieces: 7, U r and two open regions R(r;) N L(re) and L(ry) N R(rs),
where R(r;) N L(r;) denotes the open region which is on the right side of r; and on the



left side of 75, and L(r;) N R(r;) denotes the other open region (see Figure 1). Namely,
R(r1) N L(ry) denotes the open region that is sweepted by the ray being rotated clockwise
around p from r; to r5. If the internal angle /ripro = £Lriry of R(r1) N L(ry) is less than
m, then we call R(ry) N L(r;) the wedge defined by r; and r,, and denote it by wdg(r,prs)
or wdg(rapry). Let us note that p & R(ry) N L(r2) and p & wdg(r,prs) since they are open
regions and do not contain their boundaries.
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Figure 1: Open regions R(l), L(l) and L(r;) N R(ry) and a wedge wdg(ripra) = R(r)) N
L(rs).

Let I; be a line with suffix ¢, and p be a point on l;. Then we denote by I} the line
which is obtained from /; by reversing its direction. Moreover, we define the two rays
r; and 7} lying on the line /; and having the same starting point p such that r; has the
same direction as /; and r} has the opposite direction of I;. In particular, I; = r; U7} (see
Figure 2). Conversely, given a ray r;, we can similarly define the ray r}, whose direction
is opposite to r;, and the two lines /; and I}.
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Figure 2: Lines /; and I}, and rays r; and 7.

For a region W in the plane, we define the integer-valued function f of W with respect
to S and T by
fW) :=m|SNW|-2ITNnW|,

where S and T are the two disjoint sets of points in the plane given in Theorem 1.
Hereafter f always denotes this function. A region W is said to be balanced if f(W) = 0.
For example, conv(.SUT) and conv(P;) are balanced, where P; is a subset of SUT given
in Theorem 1. In order to prove Theorem 1, we need the following lemma.

Lemma 2 Let S and T be two disjoint sets of points in the plane given in Theorem 1. If
there exist two lines l; and ly such that |R(1;)NS| = |R(l3)NS| and |R(1,)NT| < |R(I:)NT],
then for every integer i, |R(l;) NT| < i < |R(l;) N T, there e:z:zsts a line l3 such that
|R(l3)N S| =|R(L)N S’I and |R(l3)NT| =1.



Proof We first assume that R(l;) NS = R(ly) N S (see Figure 3). Then we can
continuously move a line ! from I; to I3 in such a way that each line I passes through
at most one point of T but no point of S. Then R(I)N S = R(l;) N S, and the number
|R(I)NT| changes +1 when [ hits or passes a point of T'. Therefore we can find the desired
line 5.

We next assume R(l;)N S # R(lz) ns. Con51der two convex hulls conv(S N R(l;)) and
conv(S\ R(l1)). Then we can find two vertices z € conv(SNR(l,)) and y € conv(S\ R(I1))
such that a line I, passing through = and y satisfies Llsly < Zlsly (see Figure 3). Let [}
denote a line very close to I4 such that R(l}) contains z but not y, and Ij denote a line
very close to Iy such that R(I]) contains y but not . We may assume that no point of
(SUT)\ {z,y} lies between !} and !;. We can continuously move a line [ from [; to I in
such a way that [ passes no point of S and the number |R(!) N T| changes 1. Moreover
it follows that R(I¥)NT = R(!4) N T and R(I}) N S = ((R(}) N S)\ {z}) U {v}.

RL)NS=R(I)NS

L) h

S={s} conv(S \ R(L))
Figure 3: Two cases of the proof of Lemma 3.

Since |R(l;) N S| = |R(l2) N S|, by repeating this procedure we can obtain a line 5
possessing the property that R(I5) N S = R(l3) N S and that for every integer j between
|R(l;) NT| and |R(I5) N T|, there exists a line lg such that |R(lg) N S| = |R(l;) N S| and
|R(Ig) N T| = j. Since I and I5 satlsfy the condition of the previous case, the lemma is
proved. O

Proof of Theorem 1  We now prove Theorem 1 by induction on |S|. Unless
otherwise stated, except when it moves, we always consider lmes that pass through no
points of S UT. We begin with the following Claim.

Claim 3 For every integer i, 0 < 1 < g — 1, there exist a line | that passes through two
distinct points of S and satisfies |R(I)N S| = 1.

Proof Let i be an integer such that 0 < i < g—1. Let z be a vertex of conv(S) which lies
on the bottom of conv(S), and let I; be the line that passes through z and the rightmost
edge incident with z and goes upward. Then |R(l;) N S| = 0 and |L(l;}) N S| = 2¢ — 2
By a suitable counterclockwise rotation of [; around z, we can find a line [ which passes
through z and one more point of S and satisfies |R(!) N S| = i since no three points of S
are collinear. 0

Claim 4 If q is even, then the theorem holds. Thus we may assume ‘tlymt q is odd. In
particular, we can put ¢ =2k +1, k> 1.



Proof Suppose that g is even. Then by Ham Sandwich Theorem, there exists a line !
such that |[R(1)N S| = |L()N S| =|5|/2 and |R()NT| = |[L()NT| = |T'|/2, which imply
that both R(l) and L(l) are balanced regions. By the inductive hypotheses on R(l) and
on L(l), we can obtain the required partition of SUT. - o

By the same argument in the above proof, if there exists a line I such that f (R(1)) =0
and 0 < |R(1) N S| < ||, then both R(!) and L(l) are balanced, and thus we can obtain
the desired partition of SUT by the inductive hypotheses on R(l) and on L(l). Therefore
we may assume that . ‘

F(R()) #0 for every line ! with 0 <|R(!)NS|<]S]. (1)

We put . ‘ E
g=2k+1, |S|=4k+2 and |T| = m(2k +1).

Claim 5 We may assume that for ez)ery line 1 for which 2 < |[R()N S| =25 < 2k, we
have |R(1) N'T| > mj, in particular, f(R(})) < 0 because otherwise the theorem holds.

Proof If there exist two lines I; and I3 such that 2 < |[R(l1) N S| = |R(Iz)N S| =27 < 2k
and |R(L) N T} < mj < |R(lz) N T}, then by Lemma 2 we can find a line I3 for which
|R(I3) N S| = 2j and |R(I3) N T| = mj, which contradicts (1). Therefore the existence
of a line ! such that |R(I) N S| = 2j and |R(I) NT| > mj (or < mj) is equivalent to
the assertion that for every line [ with |R(I) N S| = 2j, we have |R(I) N T| > mj (or
< mj). Thus it is enough to prove that for every 1 < j < k, there exists a line [ for which
RN S| =2j and [RNT| >mj. , .

We prove this by induction on j from j = k to j = 1. By Claim 3, there exists a
line I, such that I, passes through two points of S and |R(ls) N S| = 2k, which implies
|L(ly) N S| = 2k. Since I; does not pass through any point of T and by the equality
|R(14) N S| = |L(ly) N S|, we may assume that |R(ly) N T| > |T|/2 > mk, and thus the
statement holds when j = k. ‘ .

Suppose that the claim holds for j + 1 but does not for j, that is, assume that there
exists a line l; such that |R(l;) N S| = 2j and |R(l;) N T| < mj. Then for every line I
with |R(lg) N S| = 27, we have |R(I) N T| < mj. By Claim 3, there exists a line I3 such
that I3 passes through two points, say = and y, of S and |R(l3) N .S | = 2j. Since no three
points of S U T are collinear, we can move I3 leftward very slightly so that the resulting
line 1, satisfies that R(l)) NS = (R(l3) N S) U {z,y} and R(l4) NT = R(l3)NT. Thus
|R(l) N S| =2(j + 1) and |R(ls) NT| < mj < m(j + 1), which contradicts the fact that
the claim holds for j + 1. Consequently the claim is proved. O ’

Let [; be a line which passes through two points of S, say r and y, and satisfies
R(I;) N S = 0. By a suitable rotation of the plane, we may assume that I, lies horizontal
and goes from right to left (see Figure 4). By considering a line I} lying very little below
Iy, we have |R(l;)) N T| = |R#)NT| > m by [R(}) N S| = 2 and Claim 5. As it is easily
seen, there exists a point z in L(1;) N S such that letting I, be the line passing through =
and z, |R(l3) N S| = |L(Iz) N S| = 2k. We assume that I is directed from z to z, which



means that /; goes downward (see Figure 4). Then by Claim 5, we have |R(l;) N T| > mk
and |L(l3) N T| > mk. Let

=|R(L)NT|—mk and b:=|L(L)NT|-
Since |R(l) N T| + |L(l) N T| = |T| = m(2k + 1), we have

a>0, b>0, at+b=m, f(R(y)=—2a and F(L{,)) =~ (2)

(11/) L(ra/) ﬂr;(r{// /

T4 de(TzIT4)
L(h)

T1y ll ‘/

wdg(rzxra)

R(l2) | L(ty)
T2, Iy

Figure 4: Lines [y, l; and rays r3 and 7.

Hereafter we consider rays ema.natmg from z, and so, unless otherwise stated, a ray
means such a ray.

Claim 6 Let o denote the ray lying on l,. We may assume that there ezists two rays
r3 in L(ly) and r4 in R(ly) such that both wedges wdg(rexr3) and wdg(razrs) are balanced
and L(r3) N R(ry) contains ezactly m points of T but no point of S. Of course, r3 must
lie in wdg(rizr3) end it may happend that r4 lies below ry (see Figure 4).

Proof We shall prove only the existence of 3 which satisfies that wdg(raar3) is balanced
and wdg(rszr;) contains exactly a points of T but no point of § because we can show the
existence of r4 satisfying the similar conditions by the same argument, and the existence
of these two rays implies Claim 6 by (2).

Recall that unless otherwise stated, we consider lines and rays whlch pass through no
point of SUT'. Note that an empty wedge wdg(roz73) has no point of SUT and is clearly
balanced, that is, f(wdg(rez7s)) = 0. We choose a ray r3 in L(l3) so that :

(a) |wdg(razrs) N S| is even,

(b) f(wdg(razrs)) > 0, and

(c) |wdg(rezr3) N (S UT)| is maximum subject to (a) and (b).
We begin with a observation that the value f(W) of a region W is always even when W
contains even number of points in S, and that |L(l;) N S| = 2k. We consider two cases.

Case 1 wdg(rzzrs) contains at most m — 1 points of S U T.

Since |wdg(r3zr;) N S| is even, if wdg(rszr;) contains at least one point of S, then it
contains at least two points of S, and so f(wdg(rszr3)) > 2m — 2(m — 3) > 0. Hence
(L)) = f(wdg(razrs)) + f(wdg(rgccrz)) > 0, contradicting the fact that f(L(ly)) <



0. Therefore wdg(rszry) contains no point in S, and hence f(wdg(rezrs)) = 0 by the
maximality (c) of |wdg(razr3) N (S UT)|. Consequently wdg(rezrs)) is balanced, and
moreover wdg(rszr;) contains exactly a points of T since f(L(ly)) = f(wdg(razrs)) +
f(wdg(rszry)) = 0 — 2|wdg(rszzrs) N T| = —2a.

Case 2 wdg(r3zr}) contains at least m points of SUT.

In this case we shall prove that the theorem holds. Let 75 be a ray in wdg(rszr}) such
that wdg(rszrs) contains exactly m points of S UT (see Figure 5). We distinguish two
cases.

Té T2
T3
Y
. T —
Lz
75, s
7'2 T3

Figure 5: Lines l5, s and rays 75 and r.

Subcase 2.1 wdg(rszrs) contains no point of S.
We omit the proof of this case. _
Subcase 2.2 wdg(rszrs) contains at least one point of S.

We omit the proof of this case. O

We turn our attention to the proof of the theorem. Choose rays r3 and r4 according to
Claim 6. Then it is obvious that (L(r3) N-R(r4)) U {z, 2z} is balanced. In order to deal
with a set of points of S UT contained in (L(r3) N R(r4)) U {, 2}, we consider a point z’
on I and two rays 74 and r} whose starting points are z'. First let 2/, v and r; and are z,
r3 and ry, respectively. Then we continuously move z’ on I toward the point 2 together
with the rays r and r), in such a way that both rays 5 and r} pass through no point of
S UT, and we stop moving if 2’ reaches z or at least one of rays r§ and rj meets a point
of SUT and z’ cannot move more down. we consider two cases.

Case 1 <z’ arrives at z (see Figure 6).
We omit the proof of this case.
Case 2 2z cannot arrive at z.

In this case, z' stops above z since at least one of r§ and 7} meets a point of SUT.
Without loss of generality, we may assume that 75 meets a point of S UT. Then r} is
tangent to conv(wdg(rzzr;) N T) at a vertex a and to conv(wdg(rezrs) N (S UT)) at a
vertex b (see Figure 7). | ' .

Suppose that b is a point of S. Then (L(r§) N R(r})) U {a, b}, wdg(rezr}) U {2} and
wdg(rozr)) are balanced regions, where L(r}) N R(ry) > z and wdg(rezry) U {2} F b.
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Figure 7:

Moreover, we can show that L(r3) N R(r}) is convex, (i.e., Zr3z'r} < =) by applying
Claim 5 to a line I3 as in Case 1. Hence we can get the desired partition of S U T by
inductive hypotheses. Therefore we may assume that b is a point of T.

It is celar that @ is a point T. Then we move z’ very little down and define a new
3 to be a ray that is very close to an old r§ and passes through below b and above a.
Then a new region L(r3) N R(r}) contains exactly m points of T’ and both new regions,
wdg(rez'ry) and wdg(rez'r}) are balanced. Thus we can move 7’ toward to z again. By

repeating this procedure, we can get the desued partition. Consequently the proof is
complete. O
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