## 平面上の点集合の平衡分割問題

加納幹雄(茨城大学)、金子篤司(工学院大学) kano@cis.ibaraki.ac.jp kaneko@ee.kogakuin.ac.jp

#### Abstract

- (1) すべてのの  $1 \le i < j \le q$ に対して、 $conv(P_i) \cap conv(P_j) = \phi$ である。
- (2) すべての $1 \le i \le q$ に対して、 $|P_i \cap S| = n$  and  $|P_i \cap T| = m$  がなりたつ。

# Balanced partitions of two sets of points in the plane

M. Kano Ibaraki University, kano@cis.ibaraki.ac.jp and Atsushi Kaneko Kogakuin University, kaneko@ee.kogakuin.ac.jp

#### Abstract

We prove the following theorem: Let  $n=1, m \geq 2$  and  $q \geq 1$  be integers and let S and T be two disjoint sets of points in the plane such that no three points of  $S \cup T$  are on the same line, |S| = nq and |T| = mq. Then  $S \cup T$  can be partitioned into q disjoint subsets  $P_1, P_2, \dots, P_q$  satisfying the following two conditions: (i)  $\operatorname{conv}(P_i) \cap \operatorname{conv}(P_j) = \phi$  for all  $1 \leq i < j \leq q$ ; and (ii)  $|P_i \cap S| = n$  and  $|P_i \cap T| = m$  for all  $1 \leq i \leq q$ .

We can obtain an  $O(N \log N)$  time algorithm for finding the above desired partition by our proof, where N = mq + nq. We also proved that the above theorem holds for n = 1, and give a conjecture which says that the above theorem holds for all integer  $n \geq 3$ . We don't give a complete proof of this theorem because of lack of pages, and a complete proof can be seen in [3].

Key Works: balanced partition, point set, plane,

### 1 Introduction

For a set P of points in the plane, we denote by conv(P) the *convex hull* of P, which is the smallest convex set containing P. In [2], we proved the following theorem.

**Theorem A** Let m be a positive integer, and let  $S_1$ ,  $S_2$  and T be three disjoint sets of points in the plane such that no three points of  $S_1 \cup S_2 \cup T$  are collinear (i.e., no three points of it are on the same line) and  $|T| = (m-1)|S_1| + m|S_2|$ . Put  $q = |S_1 \cup S_2|$ . Then  $S_1 \cup S_2 \cup T$  can be partitioned into q subsets  $P_1, P_2, \dots, P_q$  which satisfy the following three conditions: (i) conv  $(P_i) \cap \text{conv}(P_j) = \phi$  for all  $1 \le i < j \le q$ ; (ii)  $|P_i \cap (S_1 \cup S_2)| = 1$  for all  $1 \le i \le q$ ; and (iii)  $|P_i \cap T| = m-1$  if  $|P_i \cap S_1| = 1$ , and  $|P_i \cap T| = m$  if  $|P_i \cap S_2| = 1$ .

In view of theorem A with  $S_1 = \emptyset$ , we gave the following conjecture in [2].

**Conjecture B** Let  $m \geq 2$ ,  $n \geq 2$  and q be positive integers. Let S and T be two disjoint sets of points in the plane such that no three points of  $S \cup T$  are collinear, |S| = nq and |T| = mq. Then  $S \cup T$  can be partitioned into q subsets  $P_1, P_2, \dots, P_q$  satisfying the following two conditions: (i) conv  $(P_i) \cap \text{conv}(P_j) = \phi$  for all  $1 \leq i < j \leq q$ ; and (ii)  $|P_i \cap S| = n$  and  $|P_i \cap T| = m$  for all  $1 \leq i \leq q$ .

The above conjecture is true when q=2 because the conjecture with q=2 is equivalent to well-known discrete Ham Sandwich Theorem on the plane ([1] p.212). In this paper we show that the conjecture is true in the case of n=2.

**Theorem 1** Let  $m \geq 2$  and  $q \geq 1$  be integers and let S and T be two disjoint sets of points in the plane such that no three points of  $S \cup T$  are collinear, |S| = 2q and |T| = mq. Then  $S \cup T$  can be partitioned into q disjoint subsets  $P_1, P_2, \dots, P_q$  satisfying the following two conditions:

```
(i) \operatorname{conv}(P_i) \cap \operatorname{conv}(P_j) = \phi for all 1 \le i < j \le q; and (ii) |P_i \cap S| = 2 and |P_i \cap T| = m for all 1 \le i \le q.
```

Let us note that from the proof of the above theorem, we can obtain a polynomial time algorithm for finding such a partition given in the theorem.

## 2 Proof of Theorem 1

In this paper, we deal with only directed lines in order to define the right side of a line and the left side of it. Thus a line means a directed line. A line l dissects the plane into three pieces: l and two open half-planes R(l) and L(l), where R(l) and L(l) denote the open half-planes which are on the right side and on the left side of l, respectively (see Figure 1). Let  $r_1$  and  $r_2$  be two rays emanating from the same point p. Then  $r_1 \cup r_2$  dissects the plane into three pieces:  $r_1 \cup r_2$  and two open regions  $R(r_1) \cap L(r_2)$  and  $L(r_1) \cap R(r_2)$ , where  $R(r_1) \cap L(r_2)$  denotes the open region which is on the right side of  $r_1$  and on the

left side of  $r_2$ , and  $L(r_1) \cap R(r_2)$  denotes the other open region (see Figure 1). Namely,  $R(r_1) \cap L(r_2)$  denotes the open region that is sweepted by the ray being rotated clockwise around p from  $r_1$  to  $r_2$ . If the internal angle  $\angle r_1pr_2 = \angle r_1r_2$  of  $R(r_1) \cap L(r_2)$  is less than  $\pi$ , then we call  $R(r_1) \cap L(r_2)$  the wedge defined by  $r_1$  and  $r_2$ , and denote it by  $\operatorname{wdg}(r_1pr_2)$  or  $\operatorname{wdg}(r_2pr_1)$ . Let us note that  $p \notin R(r_1) \cap L(r_2)$  and  $p \notin \operatorname{wdg}(r_1pr_2)$  since they are open regions and do not contain their boundaries.



Figure 1: Open regions R(l), L(l) and  $L(r_1) \cap R(r_2)$  and a wedge  $wdg(r_1pr_2) = R(r_1) \cap L(r_2)$ .

Let  $l_i$  be a line with suffix i, and p be a point on  $l_i$ . Then we denote by  $l_i^*$  the line which is obtained from  $l_i$  by reversing its direction. Moreover, we define the two rays  $r_i$  and  $r_i^*$  lying on the line  $l_i$  and having the same starting point p such that  $r_i$  has the same direction as  $l_i$  and  $r_i^*$  has the opposite direction of  $l_i$ . In particular,  $l_i = r_i \cup r_i^*$  (see Figure 2). Conversely, given a ray  $r_i$ , we can similarly define the ray  $r_i^*$ , whose direction is opposite to  $r_i$ , and the two lines  $l_i$  and  $l_i^*$ .



Figure 2: Lines  $l_i$  and  $l_i^*$ , and rays  $r_i$  and  $r_i^*$ .

For a region W in the plane, we define the integer-valued function f of W with respect to S and T by

$$f(W) := m|S \cap W| - 2|T \cap W|,$$

where S and T are the two disjoint sets of points in the plane given in Theorem 1. Hereafter f always denotes this function. A region W is said to be balanced if f(W) = 0. For example,  $\operatorname{conv}(S \cup T)$  and  $\operatorname{conv}(P_i)$  are balanced, where  $P_i$  is a subset of  $S \cup T$  given in Theorem 1. In order to prove Theorem 1, we need the following lemma.

**Lemma 2** Let S and T be two disjoint sets of points in the plane given in Theorem 1. If there exist two lines  $l_1$  and  $l_2$  such that  $|R(l_1) \cap S| = |R(l_2) \cap S|$  and  $|R(l_1) \cap T| < |R(l_2) \cap T|$ , then for every integer i,  $|R(l_1) \cap T| \le i \le |R(l_2) \cap T|$ , there exists a line  $l_3$  such that  $|R(l_3) \cap S| = |R(l_1) \cap S|$  and  $|R(l_3) \cap T| = i$ .

**Proof** We first assume that  $R(l_1) \cap S = R(l_2) \cap S$  (see Figure 3). Then we can continuously move a line l from  $l_1$  to  $l_2$  in such a way that each line l passes through at most one point of T but no point of S. Then  $R(l) \cap S = R(l_1) \cap S$ , and the number  $|R(l) \cap T|$  changes  $\pm 1$  when l hits or passes a point of T. Therefore we can find the desired line  $l_3$ .

We next assume  $R(l_1) \cap S \neq R(l_2) \cap S$ . Consider two convex hulls  $\operatorname{conv}(S \cap R(l_1))$  and  $\operatorname{conv}(S \setminus R(l_1))$ . Then we can find two vertices  $x \in \operatorname{conv}(S \cap R(l_1))$  and  $y \in \operatorname{conv}(S \setminus R(l_1))$  such that a line  $l_4$  passing through x and y satisfies  $2l_2l_4 < 2l_2l_1$  (see Figure 3). Let  $l'_4$  denote a line very close to  $l_4$  such that  $R(l'_4)$  contains x but not y, and  $l''_4$  denote a line very close to  $l_4$  such that  $R(l''_4)$  contains y but not x. We may assume that no point of  $(S \cup T) \setminus \{x,y\}$  lies between  $l'_4$  and  $l''_4$ . We can continuously move a line l from  $l_1$  to  $l'_4$  in such a way that l passes no point of S and the number  $|R(l) \cap T|$  changes  $\pm 1$ . Moreover it follows that  $R(l''_4) \cap T = R(l'_4) \cap T$  and  $R(l''_4) \cap S = ((R(l'_4) \cap S) \setminus \{x\}) \cup \{y\}$ .



Figure 3: Two cases of the proof of Lemma 3.

Since  $|R(l_1) \cap S| = |R(l_2) \cap S|$ , by repeating this procedure we can obtain a line  $l_5$  possessing the property that  $R(l_5) \cap S = R(l_2) \cap S$  and that for every integer j between  $|R(l_1) \cap T|$  and  $|R(l_5) \cap T|$ , there exists a line  $l_6$  such that  $|R(l_6) \cap S| = |R(l_1) \cap S|$  and  $|R(l_6) \cap T| = j$ . Since  $l_2$  and  $l_5$  satisfy the condition of the previous case, the lemma is proved.  $\square$ 

**Proof of Theorem 1** We now prove Theorem 1 by induction on |S|. Unless otherwise stated, except when it moves, we always consider lines that pass through no points of  $S \cup T$ . We begin with the following Claim.

**Claim 3** For every integer i,  $0 \le i \le q-1$ , there exist a line l that passes through two distinct points of S and satisfies  $|R(l) \cap S| = i$ .

**Proof** Let i be an integer such that  $0 \le i \le q-1$ . Let x be a vertex of  $\operatorname{conv}(S)$  which lies on the bottom of  $\operatorname{conv}(S)$ , and let  $l_1$  be the line that passes through x and the rightmost edge incident with x and goes upward. Then  $|R(l_1) \cap S| = 0$  and  $|L(l_1) \cap S| = 2q - 2$ . By a suitable counterclockwise rotation of  $l_1$  around x, we can find a line l which passes through x and one more point of S and satisfies  $|R(l) \cap S| = i$  since no three points of S are collinear.  $\square$ 

Claim 4 If q is even, then the theorem holds. Thus we may assume that q is odd. In particular, we can put q = 2k + 1,  $k \ge 1$ .

**Proof** Suppose that q is even. Then by Ham Sandwich Theorem, there exists a line l such that  $|R(l) \cap S| = |L(l) \cap S| = |S|/2$  and  $|R(l) \cap T| = |L(l) \cap T| = |T|/2$ , which imply that both R(l) and L(l) are balanced regions. By the inductive hypotheses on R(l) and on L(l), we can obtain the required partition of  $S \cup T$ .  $\square$ 

By the same argument in the above proof, if there exists a line l such that f(R(l)) = 0 and  $0 < |R(l) \cap S| < |S|$ , then both R(l) and L(l) are balanced, and thus we can obtain the desired partition of  $S \cup T$  by the inductive hypotheses on R(l) and on L(l). Therefore we may assume that

$$f(R(l)) \neq 0$$
 for every line  $l$  with  $0 < |R(l) \cap S| < |S|$ . (1)

We put

$$q = 2k + 1$$
,  $|S| = 4k + 2$  and  $|T| = m(2k + 1)$ .

Claim 5 We may assume that for every line l for which  $2 \le |R(l) \cap S| = 2j \le 2k$ , we have  $|R(l) \cap T| > mj$ , in particular, f(R(l)) < 0 because otherwise the theorem holds.

**Proof** If there exist two lines  $l_1$  and  $l_2$  such that  $2 \leq |R(l_1) \cap S| = |R(l_2) \cap S| = 2j \leq 2k$  and  $|R(l_1) \cap T| < mj < |R(l_2) \cap T|$ , then by Lemma 2 we can find a line  $l_3$  for which  $|R(l_3) \cap S| = 2j$  and  $|R(l_3) \cap T| = mj$ , which contradicts (1). Therefore the existence of a line l such that  $|R(l) \cap S| = 2j$  and  $|R(l) \cap T| > mj$  (or < mj) is equivalent to the assertion that for every line l with  $|R(l) \cap S| = 2j$ , we have  $|R(l) \cap T| > mj$  (or < mj). Thus it is enough to prove that for every  $1 \leq j \leq k$ , there exists a line l for which  $|R(l) \cap S| = 2j$  and  $|R(l) \cap T| > mj$ .

We prove this by induction on j from j=k to j=1. By Claim 3, there exists a line  $l_4$  such that  $l_4$  passes through two points of S and  $|R(l_4) \cap S| = 2k$ , which implies  $|L(l_4) \cap S| = 2k$ . Since  $l_4$  does not pass through any point of T and by the equality  $|R(l_4) \cap S| = |L(l_4) \cap S|$ , we may assume that  $|R(l_4) \cap T| \ge |T|/2 > mk$ , and thus the statement holds when j=k.

Suppose that the claim holds for j+1 but does not for j, that is, assume that there exists a line  $l_1$  such that  $|R(l_1) \cap S| = 2j$  and  $|R(l_1) \cap T| < mj$ . Then for every line  $l_2$  with  $|R(l_2) \cap S| = 2j$ , we have  $|R(l_2) \cap T| < mj$ . By Claim 3, there exists a line  $l_3$  such that  $l_3$  passes through two points, say x and y, of S and  $|R(l_3) \cap S| = 2j$ . Since no three points of  $S \cup T$  are collinear, we can move  $l_3$  leftward very slightly so that the resulting line  $l_4$  satisfies that  $R(l_4) \cap S = (R(l_3) \cap S) \cup \{x,y\}$  and  $R(l_4) \cap T = R(l_3) \cap T$ . Thus  $|R(l_4) \cap S| = 2(j+1)$  and  $|R(l_4) \cap T| < mj < m(j+1)$ , which contradicts the fact that the claim holds for j+1. Consequently the claim is proved.

Let  $l_1$  be a line which passes through two points of S, say x and y, and satisfies  $R(l_1) \cap S = \emptyset$ . By a suitable rotation of the plane, we may assume that  $l_1$  lies horizontal and goes from right to left (see Figure 4). By considering a line  $l'_1$  lying very little below  $l_1$ , we have  $|R(l_1) \cap T| = |R(l'_1) \cap T| > m$  by  $|R(l'_1) \cap S| = 2$  and Claim 5. As it is easily seen, there exists a point z in  $L(l_1) \cap S$  such that letting  $l_2$  be the line passing through x and z,  $|R(l_2) \cap S| = |L(l_2) \cap S| = 2k$ . We assume that  $l_2$  is directed from x to z, which

means that  $l_2$  goes downward (see Figure 4). Then by Claim 5, we have  $|R(l_2) \cap T| > mk$  and  $|L(l_2) \cap T| > mk$ . Let

$$a := |R(l_2) \cap T| - mk$$
 and  $b := |L(l_2) \cap T| - mk$ .

Since  $|R(l_2) \cap T| + |L(l_2) \cap T| = |T| = m(2k+1)$ , we have

$$a > 0$$
,  $b > 0$ ,  $a + b = m$ ,  $f(R(l_2)) = -2a$  and  $f(L(l_2)) = -2b$ . (2)



Figure 4: Lines  $l_1$ ,  $l_2$  and rays  $r_3$  and  $r_4$ .

Hereafter we consider rays emanating from x, and so, unless otherwise stated, a ray means such a ray.

Claim 6 Let  $r_2$  denote the ray lying on  $l_2$ . We may assume that there exists two rays  $r_3$  in  $L(l_2)$  and  $r_4$  in  $R(l_2)$  such that both wedges  $\operatorname{wdg}(r_2xr_3)$  and  $\operatorname{wdg}(r_2xr_4)$  are balanced and  $L(r_3) \cap R(r_4)$  contains exactly m points of T but no point of S. Of course,  $r_3$  must lie in  $\operatorname{wdg}(r_1^*xr_2^*)$  and it may happend that  $r_4$  lies below  $r_1$  (see Figure 4).

**Proof** We shall prove only the existence of  $r_3$  which satisfies that  $\operatorname{wdg}(r_2xr_3)$  is balanced and  $\operatorname{wdg}(r_3xr_2^*)$  contains exactly a points of T but no point of S because we can show the existence of  $r_4$  satisfying the similar conditions by the same argument, and the existence of these two rays implies Claim 6 by (2).

Recall that unless otherwise stated, we consider lines and rays which pass through no point of  $S \cup T$ . Note that an empty wedge  $\operatorname{wdg}(r_2xr_2)$  has no point of  $S \cup T$  and is clearly balanced, that is,  $f(\operatorname{wdg}(r_2xr_2)) = 0$ . We choose a ray  $r_3$  in  $L(l_2)$  so that

- (a)  $|\operatorname{wdg}(r_2xr_3) \cap S|$  is even,
- (b)  $f(\text{wdg}(r_2xr_3)) \geq 0$ , and
- (c)  $|wdg(r_2xr_3) \cap (S \cup T)|$  is maximum subject to (a) and (b).

We begin with a observation that the value f(W) of a region W is always even when W contains even number of points in S, and that  $|L(l_2) \cap S| = 2k$ . We consider two cases.

Case 1 wdg $(r_3xr_2^*)$  contains at most m-1 points of  $S \cup T$ .

Since  $|\operatorname{wdg}(r_3xr_2^*) \cap S|$  is even, if  $\operatorname{wdg}(r_3xr_2^*)$  contains at least one point of S, then it contains at least two points of S, and so  $f(\operatorname{wdg}(r_3xr_2^*)) \geq 2m - 2(m-3) > 0$ . Hence  $f(L(l_2)) = f(\operatorname{wdg}(r_2xr_3)) + f(\operatorname{wdg}(r_3xr_2^*)) > 0$ , contradicting the fact that  $f(L(l_2)) < 0$ 

0. Therefore  $\operatorname{wdg}(r_3xr_2^*)$  contains no point in S, and hence  $f(\operatorname{wdg}(r_2xr_3)) = 0$  by the maximality (c) of  $|\operatorname{wdg}(r_2xr_3) \cap (S \cup T)|$ . Consequently  $\operatorname{wdg}(r_2xr_3)$ ) is balanced, and moreover  $\operatorname{wdg}(r_3xr_2^*)$  contains exactly a points of T since  $f(L(l_2)) = f(\operatorname{wdg}(r_2xr_3)) + f(\operatorname{wdg}(r_3xr_2^*)) = 0 - 2|\operatorname{wdg}(r_3xr_2^*) \cap T| = -2a$ .

Case 2 wdg $(r_3xr_2^*)$  contains at least m points of  $S \cup T$ .

In this case we shall prove that the theorem holds. Let  $r_5$  be a ray in  $\operatorname{wdg}(r_3xr_2^*)$  such that  $\operatorname{wdg}(r_3xr_5)$  contains exactly m points of  $S \cup T$  (see Figure 5). We distinguish two cases.



Figure 5: Lines  $l_5$ ,  $l_6$  and rays  $r_5$  and  $r_6$ .

Subcase 2.1  $\operatorname{wdg}(r_3xr_5)$  contains no point of S.

We omit the proof of this case.

Subcase 2.2  $\operatorname{wdg}(r_3xr_5)$  contains at least one point of S.

We omit the proof of this case.  $\Box$ 

We turn our attention to the proof of the theorem. Choose rays  $r_3$  and  $r_4$  according to Claim 6. Then it is obvious that  $(L(r_3) \cap R(r_4)) \cup \{x,z\}$  is balanced. In order to deal with a set of points of  $S \cup T$  contained in  $(L(r_3) \cap R(r_4)) \cup \{x,z\}$ , we consider a point x' on  $l_2$  and two rays  $r'_3$  and  $r'_4$  whose starting points are x'. First let x',  $r'_3$  and  $r'_4$  and are x,  $r_3$  and  $r_4$ , respectively. Then we continuously move x' on  $l_2$  toward the point z together with the rays  $r'_3$  and  $r'_4$  in such a way that both rays  $r'_3$  and  $r'_4$  pass through no point of  $S \cup T$ , and we stop moving if x' reaches z or at least one of rays  $r'_3$  and  $r'_4$  meets a point of  $S \cup T$  and x' cannot move more down, we consider two cases.

Case 1 x' arrives at z (see Figure 6).

We omit the proof of this case.

Case 2 x' cannot arrive at z.

In this case, x' stops above z since at least one of  $r_3'$  and  $r_4'$  meets a point of  $S \cup T$ . Without loss of generality, we may assume that  $r_3'$  meets a point of  $S \cup T$ . Then  $r_3'$  is tangent to  $\operatorname{conv}(\operatorname{wdg}(r_3xr_2^*) \cap T)$  at a vertex a and to  $\operatorname{conv}(\operatorname{wdg}(r_2xr_3) \cap (S \cup T))$  at a vertex b (see Figure 7).

Suppose that b is a point of S. Then  $(L(r_3') \cap R(r_4')) \cup \{a,b\}$ ,  $\operatorname{wdg}(r_2xr_3') \cup \{z\}$  and  $\operatorname{wdg}(r_2xr_4')$  are balanced regions, where  $L(r_3') \cap R(r_4') \ni x$  and  $\operatorname{wdg}(r_2xr_3') \cup \{z\} \not\ni b$ .



Figure 6: x' arrives at z.



Moreover, we can show that  $L(r'_3) \cap R(r'_4)$  is convex, (i.e.,  $\angle r'_3 x' r'_4 \leq \pi$ ) by applying Claim 5 to a line  $l'_3$  as in Case 1. Hence we can get the desired partition of  $S \cup T$  by inductive hypotheses. Therefore we may assume that b is a point of T.

It is celar that a is a point T. Then we move x' very little down and define a new  $r'_3$  to be a ray that is very close to an old  $r'_3$  and passes through below b and above a. Then a new region  $L(r'_3) \cap R(r'_4)$  contains exactly m points of T and both new regions,  $\operatorname{wdg}(r_2x'r'_3)$  and  $\operatorname{wdg}(r_2x'r'_4)$  are balanced. Thus we can move x' toward to z again. By repeating this procedure, we can get the desired partition. Consequently the proof is complete.  $\square$ 

## References

- [1] J. Goodman and J. O'Rourke, Handbook of Discrete and Computational Geometry, CRC Press, (1997)
- [2] A. Kaneko and M. Kano, A balanced partition of points in the plane and tree embedding problems, submitted.
- [3] A. Kaneko and M. Kano, Balanced partitions of two sets of points in the plane, submitted.