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Abstract:

An O(V/N) oblivious permutation-routing algorithm for 2-dimensional meshes is
presented. The model is a standard mesh where v N x v/N processors are connected
via point-to-point connections and each processor has a queue which can hold only
a constant number of temporal packets. The previous bound was O(N*") [TKM98].

Key words: two-dimensional mesh, oblivious routing, upper bound



1 Introduction

Packet routing is clearly a fundamental problem in the area of parallel and/or distributed computing.
Furthermore, among several variations of the routing problem, permutation routing has been most popular
since it has been considered to be the best model to evaluate the overall efficiency of routing algorithms.
The problem has a long history and there is a large literature. However, there are still several important
unknowns; one of which was whether one can achieve an optimal time complexity by oblivious strategy, i.e.,
under the condition that the path of each packet is to be determined not depending on other packets. In
this paper, we give an affirmative answer to this question.

Roughly speaking, routing is to determine each packet’s path through the network by using various
information, such as source addresses, destinations, and the configuration of network. The efficiency of
a routing algorithm is generally measured by its running time and its queuve-size of a processor, which is
the maximum number of packets the processor temporally can hold at the same time during the routing.
One of the most popular approaches is adaptive path selection. An adaptive algorithm is one in which the
path a packet takes from its source to its destination may depend on other packets it encounters. For the
meshes, there exist very efficient algorithms: Leighton, Makedon, and Tollis [LMT95] gave a deterministic
algorithm with running time 2v/N — 2, matching the network diameter, and constant queue-size. Sibeyn,
Chlebus, and Kaufmann [SCK97] decreased the queue-size later. However, these algorithms are based on a
kind of sorting and may be too complicated to implement on existence computers. If adaptive algorithms
are limited to simpler ones, i.e., minimal, destination-exchangeable, and constant queue-size, then an lower
bound jumps up to Q(N) as proven by Chinn, Leighton, and Tompa [CLT96].

An oblivious path selection is another well-received approach [BH85, BRSU93, KKT91]. In the
oblivious path selection, the entire path of each packet has to be completely determined by its source and
destination before routing starts. Oblivious routing strategies generally make algorithms simple and hence
the obliviousness may be a much desired property in practice. However, since contention resolution at each
processor cannot change the moving direction of packets, it is quit tough problem to decrease both latency
and queue-size simultaneously. Actually, several inefficiencies of oblivious routing are reported: A typical
oblivious strategy for mesh network is the dimension-order path one. A packet first moves horizontally to
its destination column and then moves vertically to its destination row. It is well known that in spite of
very regular paths, the algorithm can route any permutation on the meshes in 2/N — 2 steps. However,
unfortunately, a processor requires {(v/V) size queue in the worst case. In other words, if the.queue-size is
limited to some constant, then the algorithm must require much larger number of steps. Indeed, in the case
of the bounded queue-size, Krizanc shows [Kri9 1] that any oblivious path selection on the meshes requires
a much higher Q(N) steps. This fact seems to imply that there does not exist a routing algorithm which is
both efficient and practical. , ;

However, more precisely, Krizanc’s model is imposed much stronger restrictions on the normal obliv-
ious condition; packet-scheduling has to be pure. The pure condition requires that each packet must move
if its next position is empty. Little has been known whether the Krinzanc’s Q(N) bound can be improved
by removing the pure conditions. Very recently, Iwama, Kambayashi, Miyano [ITKM98]) made a significant
progress on this question: They gave an O(N% ") algorithm on two-dimensional, constant queue-size meshes
by removing the pure condition. In this paper, we show that the O(N°7) bound can be further reduced
to O(\/Jv ) by applying more refined packet-scheduling. Our algorithm controls over the flow of packets by
using their column destinations and the queueing discipline to resolve link contention is sufficiently simple,
Le., only the turning-packet-first and farthest-packet-first rules are applied. This is the first deterministic
oblivious algorithm that achieves O(v/N) time in the constant queue-size case and our strategies may be
capable of wide application. It also shows that the real reason for the very slow “O(N)” lower bound
in [Kri91] was not the oblivious condition but the pure condition.

Under the randomized oblivious setting, Rajasekaran and Tsantilas [RT92] propose a simple ran-



domized algorithm which runs in 2/ N + O(log /N) steps with high probability. However, the queue-size
grows up to Q(log v/N/loglog +/N) large. In the same paper, they reduces the queue-size to some constant,
unfortunately, at the sacrifice of the obliviousness. For three or more dimensional meshes, our knowledge is
much less. For example, Iwama and Miyano shows an Q(N?/3) lower bound in [IM97].

2 Our Models and Problems

Two-dimensional meshes are illustrated in Figure 1. A position is denoted by (4,7), 1 < 4, j < VN and
a processor whose position is (i,§) is denoted by P;j. A connection between the neighboring processors
is called a (communication) link. A packet is denoted by [i,]], which shows that the destination of the
packet is (i, 7). (A real packet includes more information besides its destination such as its original position
and body data, but they are not important within this paper and are omitted.) So we have N different
packets in total. An instance of (permutation) routing consists of a sequence 010, -+ on of packets that is
a permutation of the n? packets [1, 1,[1,2], -+, VN, /N, where o, is originally placed in Py, 02 in Py
and so on. Each processor has four input and four output queues. Each queue can hold up to k packets at
the same time. The one-step computation consists of the following two steps: (i) Suppose that there remain
1 (> 0) packets, or there are k —1 spaces, in an output queue @ of processor P;. Then P; selects at most k—!
packets from its input queues, and moves them to Q. (ii) Let P; and Pi41 be neighboring processors (i.e.,
Py’s right output queue @; be connected to Pi41’s left input queue Qit1). Then if the input queue Qi1 has
space, then P; selects at most one packet (at most one packet can flow on each link in each time-step) from
Q; and send it to Q;4,. Note that F makes several decisions due to a specific algorithm in both steps (i)
and (ii). When making these decisions, P; can use any information such as the information of the packets
now held in its queues. Other kind of information, such as how many packets have moved horizontally in
the recent ¢ time-slots, can also be used. v . ’

If we fix an algorithm and an instance, then the path R of each packet is determined, which is
a sequence of processors, Pi(= source), Py, -+, Pj(= destination). A routing algorithm, A, is said to be
oblivious if the path of each packet is completely determined by its source and destination. Furthermore,
A is said to be source-oblivious if the moving direction of each packet only depends on its current position
and destination (regardless of its source position). A is said to be pureif a packet never stays at the current
position when it is possible for the packet to advance. o

As an example, in the case where the queue—size‘is bounded to two, the dimension-order algorithm,
say, Ap for the meshes performs as follows: (i) If an input queue is empty, then it is always filled by a
packet from its neighboring output queue. That is, Ao is pure. (ii) Suppose that'the top output queue of
processor P; has space only for one packet. Then P; selects one packet whose destination is upward on this
column. If there are more than one such packets, then the priority is given in the order of the left, right
and bottom input queues. (Namely, if there is a packet that makes a turn in this processor, then it has a
higher priority than a straight-moving packet.) Similarly for the bottom, left and right output queues, i.e.,
a turning packet has a priority if competition occurs.

3 Previous Results

For pure and source-oblivious routing on the meshes, Krizanc [Kri91] gave an (V) lower bound. On
the other hand, Iwama et al. [IKM98] could design an oblivious routing algorithm which can route any
permutation in O(N 0.75) steps by removing the pure condition. In this section, we point out how this
algorithm broke Krizanc’s linear lower bound. )

We first observe why pure oblivious routing requires a lot of time. Consider the pure algorithm Ag
presented in the previous section and the following instance: Packets in the lower-left one-fourth plane are
to move to the upper-right plane, and vice versa. The other packets in the lower-right and upper-left planes



do not move at all. One can see that Aq begins with moving (or shifting) packets in the lower-left plane to
the right. Suppose that the flow of those packets looks like the following illustration: Here a shows a packet
whose destination is on the rightmost column, 4 on the second rightmost colurmn and so on. Note that the
uppermost row includes a long sequence of a’s. The second row includes ten a’s and a long b’s, the third
row includes ten a’s, ten & ’s and long ¢’s and so on. We call such a sequence of packets which have the
same destination column a lump of packets.

| VN | E
© vV aaaa e aaaaaaaaaa T
- vvu bbb .. ‘ bbbbbbbbbb aaaaaaaaaa
co-cee e ecccceceee bbbbbbbbbb aaaaaaaaaa eV N
- ddd < dddddddddd ccccceecee bbbbbbbbbb aaaaadaaaa
eeeeceeeee dddddddddd ccecececee bbbbbbbbbb aagaacacaa l

The behavior of Ay must be as follows: All lumps of a’s reach the rightmost column at the same
time. Then the a’s in the uppermost row can move into the vertical line smoothly and the the following
packets can reach to their bending position smoothly also: Thus nothing bad happens against the uppermost
row. However, the packet stream in the second row will encounter two different kinds of “blocks:” (1) The
sequence of ten a’s is blocked at the upper-right corner since the ev/N a’s in the uppermost row have
privileges. (2) One can verify that the last (leftmost) a of these ten a’s stops at the left queue of the second
rightmost processor, which blocks the next sequence of b’s, namely, they cannot enter the second rightmost
column even if it is empty. Thus, we need ev/N steps before the long b’s start moving. After they start
moving, those b’s in turn block the ten b’s on the third row and below. This argument can continue until
the ev/Nth row, which means A requires at least (eVN)? steps only to move those packets.

What becomes possible if the pure condition is removed? — Suppose that a processor P first receives
a packet @ and then b from the left processor and sends both to the right. Without the pure condition, it
is possible for P to keep a even if P’s right input queue is empty. Hence P can send b first and then a to
the right. Namely, the order of the flow of packets can be changed.

Now we seem to be able to route much quickly for the above instance as follows: As for the second
row, we move the long lump of b’s ahead of a’s and turn b’s into their column without any delay. Also as
for the third row, the long ¢’s move ahead of other packets and turn into their column smoothly, and so
on. Actually, it is possible to execute this idea efficiently as shown in [IKM98]. The basic strategy of the
O(N°78Y algorithm proposed in [TKM98] is now clear: (i) The sequence of packets is divided into two groups,
one consisting of only long lumps of af least N25 packets and the other consisting of only short lumps of
al most N%25 packets. (ii) The algorithm first routes only long lumps and then routes the remaining short
lumps. The stages (i) and (ii) are performed in O(v/N) and O(N°-75) steps, respectively.

4 New Algorithm
4.1 Basic Ideas

As shown in the previous section, the naive oblivious routing algorithms requires a large number of steps
in the worst case. However, on average, if the packets which should go to the same column are evenly
distributed, then the algorithms can perform much better. Take a look at the following instance, which is
similar to the previous example, but now packets of the same destination are distributed almost at random:
The top row.includes a large number of a’s, a few b’s and a few ¢’s. The second row row includes a few
a’s and many b’s, the third row includes a few a’s and b’s, and many c’s and so on. As before, there is no
delay in the top row. Also, everything will go well for the second row: The leftmost four b’s reach to their



column and move up vertically. Subsequently, the next a reaches to its column but is blocked by the long
a’s of the top row. However, fortunately, this block does not do anything wrong. (i) The second leftmost
b’s also can move into their column smoothly. (ii) In a little while, the blocked a can advance since 1t finds
a blank space in the top sequence of packets, the space which used to be occupied by ancther packet but a.
Similar to the other rows. Thus serious delays should not occur. ‘

...qa--abaa---acaa--rabaa--raaaa
coeabb---bcbbbabb---bcbb ---babbbbd

cce@ceeie ¢cbece--rcacc---chbe---cecce

So far we have observed the randomized sequence of packets. However, we can change any sequence
of packets into the sequence such that packets of the same destination are uniformly distributed in a
deterministic way. In the next section we will see how to achieve this, by inverse-sorting.

4.2 Inverse-Sorting

We introduce two operations, shuffle and inverse-sort, for sequence of packets. The inverse-sort is very similar
to the bit-reversal permutation introduced in {Lei92].

Let £ = 212+ & and ¥y = y1Y2 - -~ Ym be sequences of packets. Then shuffle of z and y denoted by
SFL(z,y) is defined as follows:

SFL(x y) _ T1Y1Z2Y2 TmYmIm+l Tp ifn _>_ m
] T1Y1Z2Y2 e TnYnlntl e UYm ‘ lfn <m.

For a sequence & = Zj - - - Tn, its front half, zr, is defined as z; - - - 2747 and its rear half, zg, is T[ 3741 n-
Then inverse-sort of string z, denoted by SORT }(z), is defined as follows:

If |z] =0,ie, z=¢, SORT }(e) =¢
Otherwise, SORT~*(z) = SFL(SORT™(zF), SORT ' (z))-

Example 1.

SORT !(z123) = 7122
) SORT_1(1:1 v 1:4) = I1X3T2T4

SORT-.l(Il ce .’Bs) = Z1252327T2T6T4T8

Thus after the inverse-sort is applied, any subsequence in the original sequence 2123 - Z16, 5aY; 52627
is evenly distributed in the resulting sequence. Now the following lemma formally shows that inverse-sort
realizes the desirable even distribution of packets.

Lemma 1. Let £ = z,%, - -- &, be a sequence and z = &;Zit1 - Titk-1 be its any subsequence of
length k. Let z;,, z;, and z;, be any three symbols in z that appear in SORT(z) in this order. Then
the distance between z;, and z;, is at least [&].

Proof. For simplicity we assume that n is a power of two.

Case 1. k is also a power of two and moreover i (= the starting position of z) is also a power of
two. This case can be illustrated as in Figure‘ 2, i.e., z = 2z9. Let Zj = SORT™!(z). Then, for example,
Z33 = SORT_l(Zzzg) can be written as SFL(%7,%73). This means one symbols in 73 is inserted between
each pair of neighboring two symbols in Z3. Now another two symbols are inserted when obtaining Zgs and
another four symbols are inserted when obtaining Zo7 = SORT ~1(z). Thus there are § —1 symbols inserted
between the two symbols in z, namely, the distance between these two symbols in § ORT !(z) is 2. This
clearly satisfies the lemma. e



Case 2. k is a power of two but i is not. See Figure 3. z can be written as zyzr where z; is a part of
z1 and a part of z;. Among the these symbols Zj,, Zj, and xj,, two of them must come from zf or z,. The
distance between those two symbols in SORT () is % as described in Case 1. The distance between z;,
and z;, is at least as large as this value.

Case 3. k is not a power of two. Now extend k into the minimal k' > k that is a power of two and
apply the argument in Case 2. Since k > ’“7', the distance between zj, and z;, is at least F> O

Lemma 2. Let w = wywy-- 1w, be a sorted-sequence of n' packets in increasing order according to
the horizontal distance. Namely, w is the sequence such that the destination column of w; is farther than
or the same as the destination colurmn of wj for ¢ > j. Then any sequence of n packets can be changed
into SORT‘I(w), called a completely-inverse-sorted sequence, on a linear array of 2n processors of constant
queue-size in O(n) steps.

Proof. For better exposition, we describe the operation using a sequence diaibiazcibyaze; of eight
packets and a linear array of 16 processor, P; through Pig (the sequence of packets may include spaces, but
it does not cause any problem by regarding them as the null packets). Note that a should go to the farthest
column, b the second farthest and so on as before. Also note that the sorted-sequence w and SORT~*(w)
are as follows (see Example 1 again):

w = dicicabibraiagas (=w1wgw3w4w5wsw7ws)

SORT"’(w) = dibyczasciarbias (=w1w5w3w7w2w5w4u’3)

Initially, the eight packets are placed on the left half of the 16 processors, one by one:

P P Py P, Py Ps P P3 P, P, P, Py Pi3 Py Pis P
d1 a bl as C1 b2 as Ca

Finally, the inverse-sorted sequence SORT™(w) is included in the right half of the linear array (those
destination may be temporary and each processor holds one packet):

P P Py P, P, Ps P, Py P, P, Py Py P Py P Py
dl bz Cy as C1 a) bl as

The basic idea is that (i) we first move those eight packets into the right half of the linear array in
sorted-order, and then (ii) keep moving each packet up to its correct position. For example, a, is the fifth
packet to enter into the right half and goes to Pj,. It is known that the first idea (i) can be implemented in
O(n) steps [IKM98]. The idea (ii) is much easier: One can verify that.for example a; which is now currently
placed on Py arrives at the temporal destination Py in third steps further, i.e., at the 12th step. As another
example, c; arrives at Py in the 13th step, and finally at Py in the 15th step. Similarly to other packets.
One can see that (ii) can be realized in O(n) steps. O

4.3 The Whole algorithm

The entire plane is divided into 16 subplanes, SP;; through SP4 4 as shown in Figure 4. For simplicity,
the total number of processors in 2D meshes is hereafter denoted by not N but 16n2, i.e., each subplane
consists of n X n processors. o

The algorithm consists of 16 x 16 phases. In the first phase only packets whose sources and destinations
are both in SP; ; move. In the second phase only packets from SPy 1 to SPy 3 move, and so on. Here is
an outline of each phase: Suppose that it is now the phase where packets from SP33 to SPy4 move.
(i) They first move to 5Py, ie., first move into the temporal subplane which is two subplanes away
from the destination subplane both horizontally and vertically; furthermore, without changing their relative
positions. (ii) The order of the sequence of those packets can be changed into the completely inverse-sorted
order in two consecutive subplanes SP4,3 and SPy 3, called the inverse-sorting zone. (iii) The packets move



to SP44, called the critical zone. The critical zone is the most important zone where each packet enters
its correct column position (relatively within the subplane). (iv) Finally, they move towards their final
subplane SP, 4. The path of the packets are not shortest as shown by a line in Figure 4. Apparently no
congestion as described before occurs in stages (i) and (iv). Our goal is to reduce the congestion in the
critical zone with a help of the inverse-sorting zone.

Now we are ready to give more detailed description of a single phase:

Stage 1: The packets move to the inverse-sorting zone without changing their relative positions.

Stage 2 (Inverse-Sorting Zone): All the packets once stop moving at their temporal positions
and tesume moving through the inverse-sorting zone, two consecutive subplanes, SPy3 and SPy43 in the
case of the above example. A sequence of packets on some row of SP43 moves into the next SP43, and
finally, all the packets are placed on n? processors of SP4 3 in completely-inverse-sorted order.

Stage 3 (Critical Zone): The packets enter the critical zone, however, we further need a new
operation, spacing. Now the completely inverse-sorted sequence of packets are in SP43:

P, Py Pun P2 Pis Pu Pis Pis
d1 b2 Cy as Cy ay bl as

In the first step, only the leftmost packet ag starts moving to the right. In the fourth step, the second
leftmost by starts moving, in the eighth step the third a, starts moving, and so on. Namely, three spaces
are inserted between any neighboring two packets. Each packet changes the direction from row to column
at the crossing of its correct destination column (relatively in the subplane) but turning packets are given
a higher priority. .

Stage 4: All packets move towards their final goals without changing their relative positions.

4.4 Time Complexities

We shall investigate the time complexity of the above algorithm. Since Stages 1, 2 and 4 are apparently
linear in n (or O(v/N)), the following discussions are only about what happens in the critical zone.
~Fixa single phase and consider the inverse-sorting zones, SP; and SP3, and the critical zone, SP3.
Suppbse that the uppermost row of SP3 includes k1 a’s, where o’s show packets whose destinations are on
the jth column from left in the critical zone, the second uppermost row includes ks a’s and so on. Also,
suppose that the completely-inverse-sorted sequence of packets on every row is now placed in SP;.

Now consider a processor P;; at the cross-point of the ith row and jth column. Note that, from
Lemma 1, P; ; can receive at most two a’s during some particular window A of %kL:' = %ﬂ steps since three
spaces are inserted between any neighboring two packets in the third stage of the algorithm. Then we will
show that the total number of a’s which Py ; through P;_y; can receive during the window A is at most
%%— 9 and hence the two a’s currently held in P; ; can move up during the window A, for some i (1 < i < n).

Since some Pp; (1 <1 < i— 1) can receive at most two packets in [éfl- steps, the number of a’s
which the processor P ; receives during A of % steps is at most

2n , [ 2n 4n 2n 2k
iy O Bk <y 22
(k;/{kz]) 2_ki/kl ki

Hence, the total number of a’s which Py ; through P;_1 ; can receive is at most

-2

kit kot thiy) 2n
k; = ki

since ky 4 kg + - + ki_1 < n — k; holds. The same argument can be applied for each j (1< j < n).
As a result, any delay does not happen in the critical zone and hence Stage 3 is also linear in n.
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