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Conjugate Scalmg Technique for Fenchel-type Duality in
Discrete Convex Optimization

Satoru IWATA (Osdka University) - Maiko SHIGENO (Tsukuba University)

Abstract: This paper presents a polynomial time algorithm for solving submodular flow
problems with a class of discrete convex cost functions. The algorithm adopts a new scaling
technique that scales the discrete convex cost functions via the conjugacy relation. The algo-
rithm can be used to find a pair of optima in the form of the Fenchel-type duality theorem in
discrete convex analysis.

1 Introduction

~The Fenchel—‘type duality concerning M- and L-convex/concave functions is of fundamen-

tal importance in the theory of discrete convex analysis [17, 18, 19].- This paper aims at an |
algorithmic approach to this duality framework

Let V be a finite set and x, denote the characteristic vector of v € V. The characteristic
vector of X C V is denoted by yx. We write supp *(z) ={v|v eV, z(v) >0} and supp~ (z)
{v|v €V, 2(v) <0} for a vector z € ZV. For functions g : Z¥V -3 Z U {+c} and h : ZV —
Z U {—o0}, we denote by domg g and domg h their effective domains, i.e., domz g={z|ze
ZV, g(z) < +oo} and domg h = {z | z € ZV, h(z) > —o0}.

A function g :' ZY = Z U {400} with nonempty effective domain is said to be M-convex
[16 17, 18] if it satisfies the following: :

o V:r,,y € domg g, Vu € supp+(:c —y), v € supp~(z — y):
9(2) +9(y) > 9(& — xu + x0) + 9y + X0 — X0)-

It is not difficult to see that the effective domain of an M-convex function forms the set of mtegral
points in an base polyhedton with an mtegral rank function. A functmn h:ZV > ZU {—o0}
is called M-concave if —A is an M-convex function. M—concave functlons generahze valuatlons
on matroids invented by Dress and Wenzel [2 [2]. o

Let (-,-) designates the inner product of vectors, ie., (p;z) E{p(v) (w)|veV} In
particular, we denote z(X) = (xx,z) for X C V. If g-is an M-convex functlon, :c(V) is
constant for every r € domgg.

. For a pair of vectors p,q € ZY, let pV g and p A q denote the vectors defined by (pV q)(’v) =
max{p(v),q(v)} and (p A ¢)(v) = min{p(v), g(v)}, respectively. We also denote by 1 the vector -
in ZV with all its components-being equal to one, i.e., the characteristic vector-of V.



A function f : Z¥ — Z U {+0c0} with nonempty effective domain is said to be L-convex [18]
if it satisfies the following:

e IreZ,YpeZV: flp+1)= f(p)+r;

e Vp,g€Z: f(p)+ f(@) = foVa)+ flpAg).

L-convex functions generalize the Lovasz extensions of submodular functions [13]. They are
in a close relation to submodular integrally convex functions of Favati and Tardella [4]. See
Fujishige-Murota [8] for this connection. A function  : Z¥ — Z U {~oco} is called L-concave if
—h is an L-convex function.

These two notions of discrete convexity are conjugate each other. For a function g : ZV -
Z U {+oo}, we denote by g° the convex conjugate function defined by

g"(p) =sup{(p,z) —g(=) |c € 2"} (P Z").

The convex conjugate function of an M-convex function is L-convex, and vice versa [18]. The
concave conjugate function h° of h : ZV — Z U {—oo0} is similarly defined by

K(p) = inf{(p,0) — h(z) |z € 2V} (pEZY).

The concave conjugate function of an M-concave function is L-concave, and vice versa. This
conjugacy framework is a discrete counterpart of the well-known conjugate duality in convex
analysis [20].

Analogously to the Fenchel duality theorem in convex analysis, Murota [17) shows that any
pair of an M-convex function g and an M-concave function h satisfies

sup{h(z) — g(z) | = € 2"} = inf{g*(p) ~ F°(p) [P € 2"} Ly -

if g(z) — h(z) # +oo for some z € ZV or g*(p) —h°(p) # +oo for some p € Z¥. Throughout this
paper, we assume M-convex/concave functions to have bounded effective domains, and accord-
ingly L-convex/concave functions to take finite values in ZV. The equality (1.1) always holds in
this situation. The original proof by Murota [16] is based on an algorithm that solves submod-
ular flow problems with M-convex cost functions, which we call discrete convex submodular
flow problems. The time complexity of this algorithm is pseudopolynomial, i.e., polynomial in
the input values, but not in the input size. See Fujishige;Murota [9] for an alternative shorter
proof of this Fenchel-type duality theorem.

In this paper, we present a polynomial time algorithm for solving the discrete convex sub-
modular flow problem. The new algonthm naturally provides an efficient method for finding
both optima in (1.1). See Murota [18] for this connection.

In order to obtain a polynomial time bound, it is now standard to apply the scaling approach
However, a straightforward scaling scheme does not work for M-convex cost functions. For
example, a function g’ defined by ¢'(z) = [g(z) /a] for an M-convex function g and a positive
integer a is not necessarily M-convex. Instead, we scale M-convex functions via the conjugacy
relation, exploiting the fact that if f is L-convex then so is f' defined by f'(p) = f(op).
This conjugate scaling method employs polynomial time minimization algorithms for L- and
M-convex functions respectively due to Favati-Tardella [4] and Shioura [21].



2 The Discrete Convex Submodular Flow Problem

Let G = (V;, A) be a directed graph with a vertex set V and an arc set A. The initial and
terminal vertices of an arc a are denoted by 8a and 9~a. For a vertex v € V, we denote by
§%v and 6~ v the set of arcs leaving v and those entermg v, respectively. The boundary d¢ of
a function ¢ on the arc set A is defined by

o) = ¥ o@)~ ¥ o@)  (wev).

acdty agd~v
We denote by n the cardinality of the vertex set V.
With the directed graph G = (V, A) are associated functions ¢: 4 = ZU{+oo} andc: A =
Z U {—oo} as upper and lower capacities. Let 7 : A — Z be a cost function on the arc set and
g : ZV = ZU{+0o0} an M-convex cost function such that z(V) = 0for z € domgg. Asacommon
generalization of the submodular flow problem [3, 6, 7] and the valuated matroid intersection
(14, 15], Murota [16, 18] addresses the following generalized submodular flow problem with a
nonseparable discrete convex cost functxon, which we call the discrete convex submodular flow
problem:
(DCSF) Minimize g(dp) + Y _ v(a)y(a)
acA
sub_]ect to ¢(a) < p(a) <e(a) (ac€ 4),

Oy € domgyg,
pla)€Z (ac€ A).

This is nothing but the submodular flow problem if the M-convex cost function g is constant.
Thus there are efficient algonthms (5, 10, 22] to find a feasible solution, which will be referred
to as a feasible flow. :

For a vector p € ZV, we denote by vp the reduced cost function, i.e.,

1(a) = v(a) +p(8%a) ~p(8~a)  (ac A).

Partition A into Af = {a | a € 4, y,(a) > 0}, Ay ={a |a'€ A, 1(a) =0}, and‘A; ={a|ae
A, yp(a) < 0}. The following theorem of Murota [16, 18] characterizes the optimality for the
discrete convex submodular flow problem.

Theorem 2.1 A feasible flow ¢ : A — Z is optimal if and only if there ezists a vector p € ZV
that satisfies the following (i)—(iii).

(i) Ya € 45 : p(a) =¢(a).
(i) Ya € 4} : ¢(a) = c(a).
(ili) g € argmin{g(z) — (p,z) |z € ZV}.
3 A Primal-Dual Algdrithm
This section introduces a continuous version of the discrete convex submodular flow problem
and presents an algorithm for solving it. The algorithm extends the primal-dual submodular

flow algorithm of Cunningham-Frank [1].



We first extend the concept of L-convexity by saying that a function f : ZV — RU {+oc}
is L-convex if it satisfies the following;:

e IreR,Vpe2V: flp+1) = f(p) %‘r;

* Vp,g € ZV: Fo)+£@)>fleva+flong).

Let f be an L-convex function that satisfies f(p + 1) f(p) for any p € ZV. The convex
conjugate function f* : RV — R U {+oco} is now defined by

f*(z) = sup{(p,z) — f(p) | € 2"} (=€ R").

We denote by domp f* the effective domain of f* in RV. Then z(V) = 0 for every z € domp f*.

With a directed graph G = (V, A) are associated upper and lower capacity functions ¢ :
A - RU{—oco} and ©: A = RU{+00} as well as an integral arc cost function y: A — Z. The
following continuous version of the discrete convex submodular flow problem will be referred to
as CSF(f,): ' ' ‘

Minimize f°(8¢) + Z ¥(a)p(a)
acA
subject to ¢(a) < p(a) <T(a) (a€A),
‘ dp € dome",

@) eR (a€ A);
For an integral vector p € ZV, let Bp(f) denote a polyhedron defined by

By(f)={z|z€RY,2(V)=0,YX CV :2(X) < f(p+xx) — f(P)}-

Recall the partition of A into A} ={a | a € 4, 1p(a) >0}, 45 ={a|a € 4, Yp(a) = 0}, and
Ay ={a|a€ A, vp(a) <0} An optimality criterion for CSF( f,7) is glven by the followmg
contmuous version of Theorem 2.1. :

Theorem 3.1 A feasible flow ¢ : A — R is optimal if and only if there exists a function
p:V — Z that satisfies the following (i)—(iii)-

(i) Va € A; : ¢(a) =2(a).
(i) Ya € Af : p(a) = c(a)

(i) Oy € By(f)-

Note that the “if” part is rather trivial. The “only if” part follows from the va.hdlty of the
primal-dual algorithm described below.

The primal-dual algorithm repeats the following process for a feasible flow ¢ and a potentialp
with 8¢ € Bp(f). Given such ¢ and p, we denote D (v) = {a|v = dt*a,a € 4, p(a) <T(a)},
D;(v)={a|v=20"a,a € A4f, p(a) >c(a)}, and Dy(v) = D} (v)UDg(v) forveV.

The algorithm picks up a vertex v* with nonempty Dy(v*). If no such vertex exists, the
current ¢ and p are optimal. Otherwise, with reference to the -new upper and lower capacxtles
defined by

o ola) (@€d) L (s oes)
- cla) (a€ApUAL) Tla) (a€AHUAD),



the algorithm solves the following maximum submodular flow problem:

(MSF) Maximize (D (v*)) —¥(Dy (v"))
subJect to c*(a) < 1/}(0,) <t*(a) (a€A)
0y € Bp(f)- '

A cut for (MSF) means a vertex subset that contains v*. For each cut W, let A+W and
A=W respectively denote the sets of arcs leaving W and entering W. We now consider the cut
capacity

ko(W) = T(AW\D,(v")) - (ATW\DZ(v"))
+ (DY (WNATW) — (D (vIWNATW) + f(p + xw) — f(P)-

Then it follows from [7, Theorem 5.11] that the optimal objective value of (MSF) is equal to
the minimum cut capacity min{s,(W) | v* € W C V} unless Dy (v*) becomes empty.

If Dy(v*) is empty, the algorithm updates ¢ to ¢ without changing p. Otherwise, it finds
a minimum capacity cut' W containing v*. Since %(W) = f(p + xw) — f(p); it follows from
0y € By(f) and Lemma 3.2 below that every X C V satisfies

DY) = BH(XUW)+3(X W) = Bp(W)
< flp+ xwux) + F@ + xwnx) — F®) = fo + xw)
< fe+xw+xx)-fe+xw),

which means 8% € Bpiyy, (f). Thus the algorithm updates p to p + xw as well as ¢ to ¢
without violating (iii).

“The primal-dual algorithm repeats thxs process untll (i) and (u) get satlsﬁed Note that one
iteration reduces at least by one the sum of max{|yp(a)|. | @ € Dy(v)} for those vertices with
nonempty Dy, (v). Since v, is integral, the algorithm eventually terminates after a finite number
of iterations. Thus Theorem 3.1 has been proved. ‘

The following easy lemma, which has been referred to in the above argument will also be
used later in Section 4.

Lemma 3.2 If f is an L-convex function, then Y C Z C 'V implies

fp)+ flp+xy +xz) 2 flo+xy) + flo+xz)

for any p € ZV.

4 Conjugate Scaling

. This section presents a cost-scaling framework to solve the discrete convex submodular flow
problem (DCSF). :

Given a veector y € domyg, we can efficiently find an mteger subgradient of g at y, ie., a
vector p € ZV such that g(z) — g(y).> (p,z — y) holds for z € ZV. Thus we henceforth assume
without loss of generality that an initial submodular flow ¢ satisfies (iii) in Theorem 2.1 for
p=0by replacing g appropriately.



Let fo: ZV - RU {400} with @ € Z be an L-convex function defined by

=2 ey,

Recall here that g* denotes the convex conjugate function of the M-convex function g. Our cost-
scaling algorithm repeatedly applies the primal-dual algorithm concerning f, with an integer
parameter « as follows.

Algorithm CONJUGATE SCALING

Step 0: Let ¢ be an initial feasible flow satisfying 8¢ € arg min{g(z) € z € Z}. Put p* + 0,
K « max{|y(a)| | a € A}, and o « 2M8 K1,

Step 1: Repeat the following (1-1)—(1-4) while o > 1.

(1-1) &(a) « [v(a)/a] for a € A.

(1-2) Find an integer vector p € ZV that maximizes (p, 0p) — fo(p) subject to 2p* < p <
2p* + nl.

(1-3) Solve CSF(fa,&) by the primal-dual algorithm starting from @ and p to obtain an
optimal flow ¢* and an optimal potential p*. ‘

(1-4) ¢+ ¢*, a + a/2.

Recall that the primal-dual algorithm requires initial ¢ and p with 0y € By(fo). We now
intend to verify that the integer vector p obtained in (2-2) satisfies this condition.

. Let ¢ be a minimal integer vector that maximizes (g, 8p) — f.(g) subject to ¢ > 2p*. Denote
by d the minimum positive integer that is not equal to g(v) —2p*(v) for any v € V, and consider
a vertex subset U = {u | g(u) — 2p*(u) > d}. Note that g(v) = 2p*(v) holds for some v € V
because fo(p) = fo(p+ 1) for any p € ZV.

Lemma 4.1 The vertex subset U is empty.
Proof. We first claim

fa(20* + 2xv) — fal20" + xv) < fo(9) = falg — xv). (4.2)

Put £ = max{g(v) — 2p*(v)}, and consider ¥; = {v | g(v) — 2p*(v) > i} fori =1,...,£ We also
denote g; = 2p* + Zii:l xy; for j =0,1,...,£ Note that g =2p*, ¢y =¢q,and Yy =Yy, = U
hold. Since ¥; 2 U for i = 1,...,d, Lemma 3.2 implies that fo(gj—1+ 2xv) — fal(gj—1 + xv) <
falgi + 2xv) — falgj + xv) for j=1,...,d — 1. Since ¥; C U for i = d,...,¢, Lemma 3.2 also
implies that fa(q;) — fa(gj — xv) < falgj+1) — fa(gj41 — xv) for j =d+1,...,4— 1. Thus, by
9d-1 + XU = ¢4 = ga+1 — XU, We obtain (4.2).

The current ¢, obtained by the primal-dual algorithm in the previous scaling phase, satisfies
0o(U) < f2a(P* +xv) ~ f2a(P*) = {fa(2P* +2xv) — fa(20*)}/2. The L-convexity of f, implies
fa(20" + xv) = fa(2P") = fa(20* + xv + 1) = fa(20" + 1) < fo(20* + 2xv) — Ffal20* + xv).
Therefore, 8p(U) < fa(2p" +2X0) — fa(20* +XU) < fa(a) = falg—xv), where the last inequality



follows from (4.2). Hence (g, 8¢) — fa(q) < (g — xv,0¢) — falg — xv), which contradicts the
definition of ¢ unless U is empty.' O

As a consequence of Lemma 4.1, we have g < 2p* +nl. Hence the integer vector p obtained
in (2-2) in fact maximizes (p,dp) — fo(p) over Z". In particular, (p+ xx,8¢) — fa(p + xx) <
(p, 0) — fa(p) holds for every X C V, which implies dp € Bp(fa).

We now discuss the time complexity, provided that an evaluation oracle for the M-convex
function g is available. The algorithm perfbrms O(log K) scaling phases. In each scaling
phase, f, is computed in polynomial time by an M-convex function minimization algorithm of
Shioura [21]. The maximization problem in (1-2) is solved in polynomial time with the aid of
the ellipsoid method because it is equivalent, by a result of Fujishige-Murota [8], to minimizing
a submodular integrally convex function in the sense of Favati-Tardella [4]. The number of
iterations in the primal-dual algorithm in (2-3) is at most 3_, max{|y,(a)| | a € Dy(v)}, where
the summation is taken over those vertices adjacent to arcs violating (i) or (ii) in Theorem 3.1,
and hence bounded by O(n?). Each iteration solves one maximum submodular flow problem in
polynomial time. Thus we have the following theorem.

Theorem 4.2 The algorithm CONJUGATE SCALING solves the discrete convez submodular flow
problem (DCSF) in polynomial time.

5 Conclusion

We have devised a polynomial time algorithm for the discrete convex submodular flow
problem by scaling the convex cost function via the conjugacy relation. The resulting algorithm
is an extension of the primal-dual algorithm of Cunningham-Frank [1]. It may be interesting
to know if other polynomial time submodular flow algorithms [11, 12] extend to this general
framework.
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Abstraht ,

This paper proposes a general method to construct a faull-tolerant network G* for any network
G with N processors such that G* has O(N) processors_and contains a fault-free isomorphic
copy of G with high probability. even if processors fail independently with constant probability.
Based on the construction, we also show that we-can construct such fault-tolerant networks with
O(N) processors and O(M log N) communication links for a circulant network, hypercube, de
Bruijn network, shuffle-ezchange network, and cube-connected-cycles with N processors and M.
communication links.

edges, and that there exists a graph G such that any
RFT graph for G has w(|E(G)|) edges. It is also
known that for an N-vertex path[l, 2], cycle[2], and
tree with bounded vertex degree[3]; there exist RFT
graphs with O(N) edges; for an N-vertex mesh and
torus[5), there exist RFT graphs with O(N loglog N)

1 Introduction

This paper considers.the following problem in connec-
tion . with the design of fault-tolerant interconnection
networks for multiprocessor systems: Given an N-
vertex graph G, construct an O(N)-vertex graph G~

with a minimum number of edges such that even after
deleting vertices from G* independently with constant
~ probability, the remaining graph contains G as a sub-

graph, with probability converging to 1, as N — oco.

. G* is called an RFT (random-fault-tolerant) graph for
G. Let V(G) and E(G) be the vertex set and edge
set of a graph G, respectively. Fraigniand, Kenyon,
‘and Pelc showed that for any N-vertex graph G, there
exists an RFT graph for G with O(|E(G)| - log? N)

edges; and for an N-vertex tree, there exists an RET
graph with O(N log N) edges [2]. }

In this paper, we propose a general method to con-
struct an RFT graph for any graph. Based on the con-
struction, we show that if G is an N-vertex circulant
graph, hypercube, de Bruijn graph, shuffle-exchange

graph, or cube-connected-cycles, we can construct an

RFT graph for G with O(|E(G)| -log N) edges.



2 General Construction

For any positive integer k, let [k] = {0,1,...,k —1}.
For any set of S, a collection § = {Sy,S1,..., Sk 1}
of subsets of S is a partition of S if Uieps Si = S and
S5:NS; =0 forany i # j.

Let G be any N-vertex graph. For any partition
V={V,W,...,Vk=1} of V(G), define

A(G,V) = {(i,4)] 3(u,v) € E(G)(u € Vi,v € V;)}
and

AG,V) = AG V).

Let 0 < p < 1 be the probability for each vertex to
be deleted. A deleted and undeleted vertex are said to
be faulty and fault-free, respectively.

Let V = (Vo, W1, ..., Vi—1) be any partition of V(G)
such that (V] < alnN and & < SN/In N for some
fixed positive numbers o« and 3. Let Ve, Vi, ..., and
Vi_1 be k sets such that [V*| = [yIn N for any i € [k]
and V" NV} = @ for any i # j, where

(\/2oz+ +1)2
2l-p

Note that v is fixed since & and p are fixed. Then,
G*[V] is the graph defined as follows:

VIGTV) = VuWwu-- U
- —_ x| WEV, vt eV,
EG'V]) = {(u ,v") (5,7) € A(G,V) }
Theorem 1 Let G be any N-vertex graph, and let
V ={V,Vi,...,Vi-1} be any partition of V(G) such
that |Vi| = O(InN) and k = O(N/In N). Then G*[V)

is an RFT graph for G with O(X(G,V) -log? N) edges.

Proof : We prove the theorem by a series of lem-
mas. It is easy to see the following two lemmas.

Lemma 1 [V(G*V])] < iﬂ’% Tyl NY. ]
Lemma 2 |[E(G*[V])| < MG, V)-[ylaN]2. B

Now we prove that G*[V] is an RFT graph for G.
We need a few probabilistic notations and lemmas.

For any event E, let Prob[E] denote the probability
of E. For any random variable X and real number
7, let {X < r} denote the event that X < r. The
probability of {X < r} is denoted by Prob[X < r]
instead of Prob[{X < r}]. The following inequality is
well-known as Chernoff Bound,

Lemma 3 [4] Let X be the binomial variable with pa-
ramelers m and q; that is, the number of successes in
m Bernoulli trials with probabilities q for success and
1~ q for failure. Then, for any constant 0 < e < 1,

Prob[X < (1 — €)gm] < exp(— %EQQTTL),

Lemma 4 Let Y; be the number of fauli-free vertices
of V*. Then, for anyie [lc]
1
b[Y; < N} < —
Prob[Y; < aln N} < N
Moreover,

k-1

Prob[U{Y <alnN} < <
=0

Proof : Sete=2/(v/Z2a+1+1),¢=1-p, and
=[yInN]. Since 0 < e < 1,

4

nN’

(1 —e€)gm

\/201+ -1

P (Via+1 +1)2-nN

Varir 070 T,
2a .(\/WH)Z_IHN

(V2Za+1+41)2 2

= alnN,

and

%ezqm
1 4 (-p) (V2o +1+41)
2 (V3a+1+1) s 2Al-p)

= InN,
we obtain by Lemma 3 that

ProblY; < elnN] < Prob[Y; < (1~ €)gm]

IA

exp(~5¢gm)
1

&

IA

Moreover,

k-1 k-1
Prob{| J{¥i < alnN}]
i=0

IN

Prob][ Y, < alnN]
i=0

B
nN’

-

IA

Lemma 5 G*[V] is an RFT graphs for G.

Proof: Let ¢ be a one-to-one mapping from V(G)
to V(G*[V]) such that ¢(v) is a fault-free vertex of
V;* for any v € V;. By Lemma 4, such ¢ e)nsts with
probablhty at least 1 — (8/In N).

Now we show that (¢(u), ¢(v)) € E(G*[V]) for any
(4,v) € E(G). Let u € V; and v € V;. Then, (i,j) €
A(G, V). Since ¢(u) € V;* and ¢(v) € V", we conclude
that (¢(u),¢(v)) € E(G*[V]) Hence G*[V] is an RFT
graphs for G. 1

This completes the proof of Theorem 1. ]

Since A(G,V) < |E(G)|, we obtain the following
corollary.

-In

N



Corollary 1 [2] Let G be any N-vertez graph, and let
V= {Vo,V1,...,Ve-1} be any partition of V(G) such
that |V;] = O(InN) and k = O(N/InN). G*]V] is an
RFT graph for G with O(|E(G)| - log? N) edges.

3 RFT Graphs for Circulant
Graphs
Let N be a positive integer and let S C [N]. The N-

vertex circulant graph with connection set S, denoted
by Cn(S), is the graph defined as follows:

V(Cn(9))
E(Cn(S))

[NV);
{(u,v)| 35 € S(v = (u £ s) mod N)}.

An edge (u,v) is said to be of offset s if v = (u £
s)mod N.
It is easy to see the following lemma.

Lemma 6 Let S’ = {s| s € S and s < N/2} U{N —
s| s €S ands > Nf2}. Then Cn(S') is isomorphic
to Cn(S). Moreover,

(21| - 1)N/2

_ if N/2€ S,
IB(ChI = { IS’|N . otherwise.
|
Let ¢y = [log N] and ky = [N/cy]. Define U; =

{v € [N)} |v/en] = i} for any i € [kn]. Then,
Un = (Ug,U1,...,Ukpy-1) is a partition of [N] such
that |U;| < ey < logN + 1 for any i € [kn] and
Un|=kn =[N/en] < (N/logN)+1. -

‘Theorem 2 C}(S)[Un] is an RFT graph for Cn(S)
with O(|E(Cn(S))| - log N) edges.

Proof : By Lemma 6, we may assume that if s € S
then s < N/2. Thus, By Theorem 1 and Lemma 6, it
suffices to prove that A(Cn (S),Un) = O(|S|N/log N).

Consider any edge (u,v) € E(Cn(S)) of offset s €
S. Assume without loss of generality that v = (u +
s)mod N. Let u = icy +a and v = jey + b, where
0<a,b<ecy. Then u € U; and v € U;. We have the
following two cases:

(1) u< N —s: We have v = u+s. Then, jey +b =
icy+a+s, andso j=1i+(s+a—b)/ey. Since i
and j are integers, | = (s + a — b)/cy is an integer.
Thus, [s/en] =1+ |(b—a)/en]. that is I = |s/en] —
[(b—a)/en]. Since 0 < a,b < ey, |(b—a)/en| =0
or —1, and so l = {s/ex] or I = |s/en] + 1. Hence
Jj=1i+|sfenjorj=i+4[s/en] +1.

(i) u > N—s: We have v = u+s—N. Then, jen+
b=icy+a+s—N,andsoj=1i+(a—b+s—N)/en.
Since N = kpnepn —d by the definition of k-, we obtain
J=t—kn+{(a—-b+d+s)/cy, where 0 < d < cp.
Since i and j are integers, [ = (a — b+ d+s)/cy is an
integer. Thus, |s/cn] =1+ [(b—a — d)/cn], that is

Il=|s/en] — [(b—a—d)/en]. Since 0 < a,b,d < cp,
[(6—a~d)/en} = 0, =1, or -2, and so we have
l=|s/en], = |s/en] +1,0r I =|s/en] + 2. Hence
Jj=(i+|s/en]) mod ky, j = (i+[s/en]+1) mod ky,
or j=(i+ |s/en] +2) mod ky.
Thus,
A(Cn,V)
€ {7 =(i+ [s/cn]) mod kn}
U{(i, )i = (i< [s/ev] + 1) mod kn}
U{(,9)l5 = (i £ [s/en] + 2) mod kn},
and we have

3}S|N |S|N

MCn(8),Un) < 3ISlky < 7=+ 3151 = O(—)-

4 RFT Graphs for Hypercubic
Graphs

For any v = [v,,vn_1,-..,v1] € [2]7, let
. 0'(’0) = [vﬂ"ll"')vllun])
X,’('U) = [vﬂv'~~yvi+1,ﬁyvi—-ly--wvl]| and
pi(v) = [vi,...,m),

where 7; denotes the complement of v;, that is 77 = 1
if v; = 0, and 77 = 0 otherwise.
Let ‘
Vo= {U € [2]n| pn-[]ogn](v) = .’E}
for any z € [2]*~1"°6"] and let
V, = {Vil 2 € (2]~ Tlesmly,

Then V, is a partition of [2]* such that |V;| < 2log N
for any ¢ € [2]"‘“”?"'l and |Vp| < N/log N, where
= |l2r =

4.1 RFT Graphs for Hypercubes

The n-cube (n-dimensional cube) Q(r) is the graph
defined as follows:

V(Q(n) = .
E@(n)) = {(w,v)|v=xi(u), 1<i<n}
It is easy to see that |[V(Q(n))| = N and |E(Q(n))| =
Nlog N/2, where N = 2™, An edge (u,v) is called an
i-edge if v = x;(u). A graph G is called a hypercube
if 7 is isomorphic to @(n) for some n.

(2"

Theorem 3 Q*(n)[V,] is an RFT graph for Q(n) with
O(Nlog? N) edges.



Proof : By Theorem 1, it suffices to prove that
A(Q(m),V,) = O(N).

Consider any i-edge (u,v) € E(Q(n)). Let = =
Priflogn](¥) and y = pn_[15gn1(v). It is easy to see
that y = xi(x) if 1 < ¢ < n—[logn],and z = y
otherwise. Thus,

AQ(n), Va) € {(=z,y)l y = xi(e) or & =y},

and we have

NQMLVa) < {5(n— Mlogn)+ 1) -27~Te"]

N

log N

IN

{-;—(logN —loglog N) + 1} -
O(N).

i

4.2 RFT Graphs for de Bruijn Graphs
The n-dimensional de Bruijn graph dB(n) is the graph
defined as follows:
V(dB(n))
E(dB(n))

Il

[21%;

{(u,v)] v = o(u) or u = o(v)}

{ v =x1(o(u)) }
U< (u,v)

or _
u=x1(o(v))

It is easy to see that |V (dB(n))| = N and |E(dB(n))| =

2N, where N = 2",

il

Theorem 4 dB*(n)[V,] is an RFT graph for dB(n)
with O(N log N) edges.

Proof : By Theorem 1, it suffices to prove that
MdB(n),V,) = O(N/log N).

Consider any edge (i, v) € E(dB(n)). Assume with-

out loss of generality that v = o(u) or v = xl(a(u))

Let & = pp_[iogn](4¥) and ¥ = p,y_[10gn} (v). It is easy
‘to see that y = o(z) or y = x1(o(z)). Thus,

A(dB(n),Vn) C {(z,y)|l y=o(z) or z = a(y)}
‘ : ¥ = x1(o(z))
Us (=) |

or
).(dB(n) V,) < 27 lesrl+t <

z = xi(o(y))
and we have

2N (.N )
- logN log N’

4.3 RFT Graphs for Shuffle-Exchange
Graphs

The n-dimensional shufﬂe—exchange graph SE'(n) is the
graph defined as follows:

s e
{(u,v)| v=0(u) or u=o(v)}
U{(u, )] v = x1(u)}-

- V(SE(n))
E(SE(n))

I

- It is easy to see that |V (SE(n))| = N and |E(SE(n))| =

3N/2, where N = 2.

Theorem 5 SE"(n){V,] is an RFT graph for SE(n)
with O(N log N) edges.

Proof : By Theorem 1, it suffices to -prove that
A(SE(n),V,) = O(N/log N) )

Consider any edge (u,v) € E(SE(n)). Let ¢ =
Pn—logn] (1) and ¥ = pn_iogn](v). If v = o(u) then
we have y = o(z) or y = Xl(a’(:c)) If v = xq1(u) then
z = y. Thus,

ASEm), V) € {(z,9)| v = olz) or 2 = o(y)}
y=xi{e(z)) )
u {(m,y) }

U{(z,9) z =y},

z = x1(o(y))

and Wé have : .
3N N

n—[logn]
A(SE(n), Vo) < 3-2 < 1o = Oliog )

4.4 RFT Graphs for CCC’

The n~d1mensmnal cube—connected cycles(CCC), de-
noted by CCC(n), is the graph defined as follows:

@ xmE
(o D) 3 = (i 1) mod n)
U{([w;i], v, DI v = xi4a ()},
where u,v € [2]* and 7,j € [n]. It is easy to see that
IV(CC'C(n))I = N and |E(CCC(n))| = 3N/2 where
N =n2".
Let

Ve = {1l € V(COA)| pu-fiogm (W) = 2} -
for any z € [2]"~°en] and 1 € [n] and let

flegnl i € [n]}.

v(00Qm))
E(CCCn)

Vo=Vl = € 2"

It is easy to see that V), is a partition of V/( CCC(n))
such that [Vj; 4| < ZIOgN for any « € [2]*~ g1 and
i€ [n], and |V,] < 2N/log N.



Theorem 6 CCC'(n)[V'y] ¢s an RFT graph for
CCQn) with O(Nlog N) edges.

Proof : By Theorem 1, it suffices to prove that
ACCC(n),Vn) = O(N/log N).
Consider any edge ([u,],[v, j]) € E(CCC(n)). Let
Z = pp_flogn](u) and ¥ = py_fiegn](v). If u = v then
z =y Hv=xii1(u) then y = xit1(z) or z = y.
Thus,

A(cca(n), V')
C {([=z)i,ly.5ll = = y,§ = (£ 1) mod n}
U{lz, 4, 1,5l ¥ = xip1(2), i = 5}
U{lz,q, [y, ]l = = y,i = j},
and we have

gn2n— Mogn]

5N
log N
N
O(m).

A CCC(n),Vy)

IA
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