7 U X b 67-4
(1999. 3. 15)

- A . g8

Eoge R N
YaNAC.TUT 4 NSVHFLAB. ST vF vy

Indian Statistical Institute

ANHYHF 700035 41K

TTANSU BRMLEAH P 25278 &, 20 (1B6D) TEEI (safety zone) G & 1%, M5 & (#
Z6D) Hila» b 7% 5 T, 4 POBREDEp & G DERLEDN geDL—21) v ¥ EE# d(p,q)
DERIEL 72 % 1Y (p,q) EWIT VBT PR P UROZ L Th b0 RRTIL. EEORALATD
BNEREEFRL IR TRO 2 7 VT XA % B~<5,

Safety Zone Problem

Subhas C. Nandy' and Bhargad B. Bhattacharya
Indian Statistical Institute
Calcutta 700 035, INDIA

Abstract : Given a simple polygon P, its safety zone G (of width 6) is a closed region consisting of
straight line segments and circular arcs (of radius), bounding the polygon P such that there exists no
pair of points p (on the boundary of P) and ¢ (on the boundary of @), having their Euclidean distance
d(p, q) less than 6. In this paper, we present a linear time algorithm for finding the minimum area safety
zone of an arbitrary shaped simple polygon.

Key words : Polygon triangulation, convex hull, resizing of VLSI circuits, algorithm, complexity.

1 Introduction

In this paper, we introduce a new problem, called safety zone problem which is as follows : given a simple
polygon P and a fixed parameter §, the safety zone (of width &) of the polygon P is a closed region Sp of
minimum area, such that P is completely inside $p, and there exists no pair of points p and ¢, where p is
on the boundary of P and g is on the boundary of Sp, such that d(p,q), the Euclidean distance between
p and g, is less than 6. Here Sp is not a polygonal region. It is composed of straight line segments
and circular arcs of radius 6, where each straight line segment is parallel to an edge of the polygon at
a distance § from that edge, and each circular arc (of radius §) is centered at an unique vertex of the
polygon. The boundary of Sp describes a simple region in the sense that its no two edges intersect in their
interior. It is easy to observe that for every point g on the boundary of the safety zone of the polygon
P, there exists at least one point p on P such that d(p,q) = 6. The safety zone of a simple polygon is
demonstrated in Figure 1. In this context, It is worth to mention that the safety zone (of width 6) of a
simple polygon P is the outer boundary of the Minkowski sum of P and a circle of radius %. It is already
known that the Minkowski sum of a monotone polygon and a convex polygon can also be computed in
time linear in the total number of vertices of both the polygons [1]. But to our knowledge, no linear time
algorithm exists for computing the Minkowski sum of an arbitrary simple polygon and a circle.

We present an algorithm for finding the minimum area safety zone of an arbitrary shaped simple polygon.
Using Chazelle’s linear time polygon triangulation algorithm [2], we show that the time complexity of
our algorithm is O(N), where N is the number of vertices of the polygon.. Our main motivation for
defining this problem comes from the problem of resizing the circuit components in VLSI physical design
[5]. It will also find its other applications in designing automatic metal cutting equipments, robot motion
planning, to name a few.

! Currently at School of Information Sciences, Japan Advanced Institute of Science and Technology, JAPAN.

Polygon P

Safty zone of P

[
l\a false hull edge

Pigure 1 : Safety zone of a simple polygon

2 Preliminaries

We classify a vertex of the polygon P as concave and conver depending on whether the angle between its
associated edges inside the polygon is greater than 180° or less than 180°. Consider the convex hull of
the polygon P. Choose a vertex v on the convex hull and label the vertices of P as vy (= v),v2,...,n,
moving along its boundary in clockwise direction. Now consider a PEN, having two tips which are §
distance apart. Its one tip moves along the polygonal boundary from vertex v; in clockwise direction,
and the other tip draws the safety zone staying orthogonal to the direction of motion of the former tip.
Needless to say, the safety zone Sp of an N vertex convex polygon can easily be obtained in O(N) time.
So, we concentrate on describing the method of drawing the safety zone of an arbitrary simple polygon.
Here, each hull edge may be classified as any of the following two types : (i) if it coincides with some
edge of the polygon, it is called a solid hull edge, and (ii) if it does not coincide with any of the polygonal
edges, it is called a false hull edge.

. Definition : A notch is a polygonal region outside the polygon P which is formed with a chain of edges
of P initiating and terminating at the two vertices of a false hull edge. Clearly the notches indicated by
different false hull edges will have disjoint sets of vertices.

The boundary of the safety zone Sp consists of the safety zones of the solid hull edges and hull vertices,
and the safety zone of all the notches. As the safety zone of solid hull edges and hull vertices are easy to
obtain, our problem now reduces to designing an efficient algorithm for drawing the safety zone inside a
notch. ‘

3 Safety zone inside a notch

During traversal along the boundary of the convex hull, the PEN identifies a notch when it encounters a
false hull edge. Consider such a notch attached to a false hull edge v;v;y 1, and having k+1 vertices, labeled
bY i, Vit1,. - ., Vitk. First of all, we triangulate the notch using a linear time algorithm due to Chazelle
[2]. An edge of a triangle is termed as triangulation edge if it is generated due to the triangulation,
otherwise it will be referred to as a polygonal edge. Each triangle must have at least one triangulation
edge. It is easy to see that the graph constructed with each triangle as a node, is a tree [3], referred to as
triangulation tree. Each edge of the tree can be mapped to a triengulation edge. We classify the triangles
into three categories, type-A, type-B and type-C, depending on whether the number of its triangulation
edge(s) is one, two or three. The root node of the tree corresponds to the triangle adjacent to the false
Rhull edge, and directions are assigned to the edges by traversing the tree in depth first manner. It is easy
to observe that the fype-A triangles correspond to the leaf nodes of the tree, and each internal node may
have one or two out-degree(s) depending on whether the corresponding triangle is type-B or type-C. A
triangle with vertices v;, v; and vy will be referred to as Av;vjug. The triangulation edge of Avivjvg,
through which the control reaches this triangle during the forward traversal, will be referred to as the

incoming edge of Avjvjvy. Its other triangulation edges (if any) will be referred to as outgoing edges.

While drawing safety zone inside a notch, the tree is processed in post-order. After traversing the
subtree(s) of a node, when the node is processed, the safety zones for all the elements (vertices and solid
triangulation edges, if any) of the corresponding triangle are drawn. The safety zone of an element ¢;
will be referred to as component of safety zome (CSZ(c;)). Next, a merge pass is performed to check
for possible intersection among CSZs’ of already drawn elements inside that triangle. Now note that,
the CSZs’ that are present inside a triangle may also intersect with the CSZs', that will be generated
while processing the predecessor or the other sibling of that triangle. So, after processing the current
triangle, we need to propagate a subset of these C'SZs’ to the predecessor of the current triangle. Below
we describe the concept of visibility list that will aid the merge pass-inside a triangle and the propagation
of CSZs’ from one triangle to its predecessor.

3.1 Visibility list

Let Av;vjvg be the triangle under current processing, whose incoming edge is v;v;. In order to detect
possible intersections among the CSZs’ generated after processing the tree rooted at the current node
(triangle) with some other C'SZs’ generated in its predecessor or the other sibling, we introduce the
concept of visibility list as follows.

Consider a pair of lines £ and £, both parallel to v;v; at a distance & from it. Let £ crosses the interior
of Av;v v, and £’ stays completely outside of Av;vjv,. The component of the safety zone of an element,
say CSZ*, which is present inside Av;v;u; may intersect another CSZ , say CSZ**, belonging to its
predecessor, if CSZ* spans above £. The reason is that CSZ** can not penetrate inside the triangle
beyond £ due to the width constraint &.° Surely, a CSZ* can not also span above the line ¢, from the
interior of Av;vjvy.

Definition : The active zone of a triangulation edge v;vy is a connected region inside the polygon
bounded by ¢, £/ and which contains v;vy in its interior. In Figure 2, the shaded area is the active zone
of the triangulation edge v;vy.

A CSZ is said to be inside the active zone of an edge if it (or a part of it) spans inside that region, and
this can easily be tested by comparing the CSZ with ¢ or £ corresponding to that edge.

Definition : A component of the safety zone (CSZ) is said to be visible to a triangulation edge (v;vi)
if it spans in the active zone of v;uk, and a line drawn from any point of v;vr and perpendicular to it,
cuts the component before cutting any other component of the safety zone or some edge of the polygon.

Lemma 1 The projections (foot of perpendiculars) of the end points of the members of V-LIST(v;uz) on
v;v; are linearly ordered along it.]

Definition : The visibility list V-LIS T(v,"vk), attached to a triangulation edge v;vy, is a doubly connected
link list containing a set of C'SZs’ which are drawn while processing the tree rooted at the current node,
and are visible to that triangulation edge. Its each member is attached with a count field. The role of
count field will be clear in due course.

It needs to mention that the V-LIST of a polygonal edge will consist two members : (i) C8Z of the
polygonal edge, which is a line segment parallel to that edge, and (ii) the C'SZ of the vertex, which is
common to that polygonal edge and the incoming edge of the triangle. ’

While processing the triangle Av;vjvy, it is assumed that V-LISTS of its outgoing edges (vjv;) and (vjvg)
are already available; they are either inherited from its successor(s), or are prepared by drawing the
CS8Zs of the elements (vertices/ edges) of the triangle at the beginning of processing this triangle.

3.2 Data structure _

While processing a notch, the algorithm maintains the following data structures.

poly_chain : It is an array of vertices and edges of the notch stored in clockwise order.

DS; : The triangulation tree of the notch. With each edge of the tree a V-LIST is maintained as described
in the previous section. :

DS, : A list containing CSZ for the elements (vertices and polygonal edges) inside a notch. Each
element in this list has a pointer to its neighboring CSZ in clockwise order. This will be recursively
constructed while traversing the tree. At the time of processing a triangle, the CSZ of its edge(s) and
vertices inside the triangle are created in the DS, list if they are not already present. During merge pass,
if an intersection between two CSZs’ (say CSZ* and CSZ**) is detected, these CSZs’ are updated by
removing the portions behind the the intersection. An appropriate pointer is established among CSz*
and CSZ**. Finally, after processing the root node, the DS list gives the safety zone of the notch.

3.3 Merging a pair of V-LISTs

Let Av;vjug be a triangle under process, whose incoming edge is v, and two outgoing edges are v;v; and
v;uy, (see Figure 2). In order to detect the intersection(s) among CSZs’ present in V-LIS T(vjv;) and V-
LIST(vjvy), they are merged from their end corresponding to v; with the help of two pointers indicating
the current elements of the respective lists. By Lemma 1, we can fix a point m;; on v;v;. Our choice of
@j; is such that, during the merge pass inside Av;v;vg, a CSZ € V-LIST(v;v;) can never intersect with
any CSZ of V-LIST(vjuy) if the projection of the former one on v;v; lies completely outside the line
segment v;m; ;. :

Active £V, v,
e zone ofv v,

Figure 2 : Demonstration of merge pass

Definition : During the proéessing of Avyvjvg, a CSZ € V-LIST(vjv;) is said to be favorable, if the
projection of its at least one end point on v;v; lies on the line segment v;m;;.

While processing Av;v;vy, our merge pass progresses along V-LIST(vjv;) and V-LIST(vjv) starting
from their ends corresponding to v;. This merge pass terminates as soon as it finds a CSZ in either
V-LIST(vjv;) or V-LIST(vjvx) which is not favorable inside Av;v;vk. The choice of mj; and 7 follows
from the following observation :

Figure 3 : Selection of the members of two V-LISTs corresponding to the outgoing edges
of a triangle which are favourable for the merge pass inside the triangle.

Observation 1 Consider the bisector L of the Zv;v;jvi and choose a point p on it such that the length
of the perpendiculars on v;v; and vjvy from p is equal to &. Let the foot of perpendiculars of p on vjv;
and v;v be @ and S respectively. Now the following cases arise.

Case 1 : Both of a and S fall on the closed segment v;v; and v;v respectively. In this case, a CSZs’ of
V-LIST(v;v;) (V-LIST(vjui)) becomes favorable if the projection (foot of perpendicular) of its at least
one end point on v;v; (v;vy) is closer to v; than a (B) (see Figure 3a). Thus, in this case, 7j; = a and
ik = P.

Case 2 : Both of a and g fall outside the closed segment v;v; and v;v respectively, and Av;v;vg is an
acute angle triangle. Here the CSZ(v;) and CSZ(v;) will intersect. But, there may exist some CSZ
who can intersect both of CSZ(v;) and CSZ(vi). So, a merge pass inside this triangle is needed, and:
mj; = v; and 7;; = vy in this case (see Figure 3b).

Case 3 : a lies inside the closed segment v;v; but 3 is outside the closed segment v;vg. Here CSZ(vy)
must participate in the merge pass. Now consider a line perpendicular to w;v; which touches (not
intersects) CSZ(vy) inside Av;vjvp. Let it be meeting v;v; at a point 4. Note that, as the vertex vy
lies in one side of the line v;v;, and the centers of all the CSZs’ in V-LIST(v;v;) lie in the other side of
vjv;, if any one of them intersects C.SZ(vz), its projection on v;v; must overlap the line segment v;7 (as
shown in Figure 3c). So, in this case a CSZ € V-LIST(v;v;) remains favorable if its projection on vjU;
overlaps the line segment v;7y. Thus, we have 7;; = v and 7;x = vy, in this case. A similar case arises if
a lies outside the closed segment vjv; but 3 is inside the closed segment v;vg.

Case 4 : Both of a and § fall outside the closed segment v;v; and vjvg respectively, and Awvvjuy is
an obtuse angle triangle whose Zvjupv; > 90°. As CSZ(vj) must participate in the merge pass, here
ik = vt and 7;j; is chosen in a similar manner as in the earlier two cases. m}

During the merge inside Av;vjvy, let CSZ* € V-LIST(vjv;) be a favorable candidate. First of all, we
test whether C'SZ* penetrates inside the active zone of v;vy, or not. In case of negative answer, we skip
CSZ* and consider the next element of V-LIST(v;v;). But in case of affirmative answer, we need to
check CSZ* with the members of V-LIST(v;jvy) for possible intersection. We draw perpendiculars from
the end points of CSZ* on L, which hit L at the points a; and ey. Now, the favorable members of
V-LIST(vjvi), whose projections on L overlap a;az, will be considered one by one to detect for possible
intersection(s) with C.SZ*, if any. The cost of each comparison, excepting the last one, is charged by
incrementing the count field of the participating element of V-LIST(v;v;). For the last comparison, we
charge its cost to CSZ*. The merge pass then proceeds considering the next element of V-LIST(v;v;).
As soon as a member in either of V-LIST(v;v;) or V-LIST(v;v:) is reached which is not favorable inside
Awv;vjug, the merge pass terminates.

During the merge pass, the intersection (if any) which is observed most recently, are preserved. Let
the participating members be CSZ* € V-LIST(vjv;) and CSZ** € V-LIST(vjuy), at the end of the
merge pass. We update CSZ* and CSZ** by deleting the portions behind the point of intersection, and
establish an appropriate pointer among CSZ* and CSZ** in the DS, list.

The processing of the current triangle ends by decrementing the count field of last two compared element
during the merge pass inside it. Conceptually, the cost of last comparison is charged to the triangle itself.
As the merge pass inside a triangle is performed at most once, such a charging to a triangle may also be
done at most once during the entire execution process of the notch.

Lemma 2 The merge jaass inside a triangle requires time linear to the number of elements in the V-LISTs
of both of its outgoing edges.]

Lemma 3 If Zv;vjvi > 90°, members of V-LIST(v;v;) and V-LIST(v;vy) will not intersect.

Proof : Let us draw the projections of the point p € L on v;v; and vjuy, (as defined in the first paragraph
of this section) which touch the respective lines at o and 3 respectively. As Lpujv; (Lpvjug) > 45°, both
vja and v;f3 will be less than 6. So all the CSZs’ of V-LIST(vjv;) (V-LIST(vjvi)) spanned over o (8)
have been be covered by C'SZ(v;), and are not present in the respective V-LISTs. Again as mj; and 7k is
determined by & and S respectively in this case, the merge pass need not be executed in such a triangle.
Hence the result follows. , n]

3.4 Creation of new V-LIST

After the completion of the merge pass inside a triangle Av;v;vs, the V-LIST of its incoming edge v;vug
is created by the selected members of V-LIST(v;v;) and V-LIST(vjvg). In this context, the following
results are important. ‘

Lemma 4 If Zv;v;u, > 90° then, the members of V-LIST(vjv;) will not intersect with the CSZs’ gen-
erated inside the other sibling or in the predecessor triangle of the current node. So, no element of
V-LIST(vjv;) need to be propagated to V-LIST(v;uy). o

Lemma 5 If Zv;viv; > 90°, there ezists at most one element of V-LIST(v;v;) which will be compared
with members of V-LIST(v;vr) as well as propagated to V-LIST(v;vy).

Proof : Consider a pair of elements CSZ* and CSZ** € V-LIST(v;v;) which are favorable with respect
to the merge pass inside Av;v;vg. Let CSZ* appears after CSZ** during the above merge pass. The
question of propagation of CSZ** to V-LIST(v;vy) arise if CSZ** is inside the active zone of v;vg. Surely,
CSZ* will also be inside the active zone of (v;vx) in this case, and will be compared with CSZ(v;). Now
if CSZ* intersects CSZ(vk), then CSZ** will immediately be deleted from the DS, list. Otherwise,
by Case 3 of Observation 1, as 7j; is the point of intersection of v;v;, and a vertical line which is the
tangent of CSZ(vy), the orthogonal visibility of CSZ** from v;vy, is lost. So, CSZ** can not belong to
V-LIST(v;vr). Thus it is sufficient to propagate CSZ* to V-LIST(v;uz). o

Thus Lemmata 3, 4 and 5 lead to the fact that if the triangle Av;v;vy is an obtuse angle triangle, there
may exist at most one element of V-LIST(vjv;) which (i) will be compared with members of V-LIST(v;vs)
during the merge pass inside Av;v;vg, and (ii) will be propagated to V-LIST(v;ui). So, it remains to
study the situation if Av;v;v, is an acute angle triangle. As Zv;vjv; < 90°, the merge pass has already
been performed inside Av;v;vg. Similar to the Observation 1, let us consider the point p on the bisector
of the angle Zv;vjvg, and its projection a on v;v;. By Case 1 of Observation 1, o determines m;;. Now,

if o lies outside the active region of v;u;, (see Figure 3a) then the members of V-LIST(v;v;), that have
participated in the merge pass inside Aw;vjvg, will fail to belong inside the active zone of v;vk. So,
they need not be propagated to V-LIST(vivk).

On the contrary, if « lies inside the active region of v;uy, (as in Figure 3b), few elements of V-LIST(v;v;)
which has been compared in Av;v;v; may need to be propagated to V-LIST(v;vy).

During the progress of the merge pass inside a triangle Aw;v;v, two pointers are maintained corresponding
to the V-LISTs of its two outgoing edges v;v; and vjvg. At the end of the merge pass, each of them will
contain the address of an element of the respective V-LIST which has been compared last during the
current merge pass. Let CSZ' € V-LIST(v;v;) and CSZ" € V-LIST(vjvi) be the above two elements.
The V- LIS T of the incoming edge v;vs will be constructed by following the steps described below.

o If the projection of both the end points of CSZ' is closer to v; than 7j;, the pointer along V-LIS T(‘u,v,)
advances to get its first member, say CSZ*, which lies inside the active zone of v;vp.

e If the point 7 ; lies in the interior of the projection of CSZ' on vjv;, then CSZ*, the first member
which lies to the active zone of v;vg, is CSZ' itself.

o If the projection of both the end points of CSZ' is far from v; than 7j;, the pomter along V- LIST(‘UJ’U‘)
backtracks to get its first member CSZ*, lying inside the active zone of v;vs.

Any one of the aforesaid three situations may appear regardlng the selection of CSZ**, first member
of V-LIST(vjvi), which lies inside the active zone of v;vg.

e Finally, CSZ* and CSZ** are connected using bidirectional pointers. Now, the V-LIST of the incoming
edge v;vp, is a list of CSZs’ whose two terminal members correspond to the last element of V-
LIST(vjv;) towards v; and the last element of V-LIST(v;vx) towards vy respectively.

Now note that, the elements of V-LIST(v;v;) (V-LIST(vjvy)) which are encountered during back track,
are considered during current merge pass and their count fields have been incremented. But the count
field of CSZ' (CSZ") remains unchanged as it is considered last during current merge pass.

;From the earlier discussions we notice that while processing a type-B and a type-C triangle, there may
exist some situation when some CSZ of V-LIST(vjv;) may be considered in the merge pass of both
Awv;vjue and in its predecessor triangle. This gives an impression that after the generation of a CSZ,
it may participate in the merge pass of different triangles arising along a path of DSy, which indicates
an O(n?) time complexity of our algorithm. Below we prove that a CSZ, after-its generation, may
participate in the merge pass of at most two triangles.

Theorem 1 After the generation of ¢ CSZ, its count field may be zncremented to at most 2 during its
propagation while backtrack along DS;.

Proof : In order to prove this result, we have to study two triangles along a path of DS;. We assume
that currently the control is in the successor triangle, and the merge pass has already been performed
inside the current triangle. Our aim is to prove that, a CSZ whose count field is incremented during

the current merge pass, will participate to at most one more merge pass inside some other predecessor
triangle incrementing its count field. For the sake of simplicity in the proof, we assume that the two
triangles under consideration share a common triangulation edge.

Let Av;v;v; be the current triangle under consideration and Aw;vxv, be its predecessor triangle. If
Zv;vjvg > 90°, then by Lemma 3, the merge pass need not be performed inside Av;v;vg. So, we assume
Lv;vjvg < 90°. Surely, at least one of the other three angles of the quadrilateral, formed by concatenating
Av;vjvg and Av;vgvg, must be greater than 90°. This gives birth to three different cases as follows :

Case 1 : vjvjvg > 90°. Here, by Lemma 3, the members of V—LIS"T(vjvi) will not be able to enter in
the active zone of the edge v;v,. Thus the members of V-LIST(v;v;) will either not be compared with
the members of V-LIST(v;vg), or will not participate in the. V-LIST(v;v¢), depending on whether vjv, or
v;vg is the incoming edge of Av;viv,. Thus in either case, their count fields will remain unchanged inside
Av,;‘vk’l)g.

Case 2 : v;ugvg > 90°. By Lemma 5, the two subsets of members of V-LIST(v;v:), which will participate
in the merge pass inside Av;v;v; and which needs to be propagated to V-LIST of the incoming edge of
Awv;v,v,, may have at most one element common, whose count field will not be incremented during the
merge pass inside Av;vugve. Thus if there exists any member(s) of V-LIST(vjv;), which also need(s) to
be propagated to the V-LIST of the incoming edge of Av;vzve, will have its count field unincremented
during the merge pass of Av;vive.)

Case 3 : vgupu; > 90°. Here three situations, stated beldw, need to be considered separately.

Case 3.1 : Zvjvive > 90°. If v;v, is the incoming edge, the elements of V-LIS T(vivk) will not participate
in the merge pass with V-LIST(vgve) (by Lemma 3). So, the elements of V-LIST(vivx) which are
inherited from V-LIST(v;v;) and needs to be propagated to V-LIS T(v;vs) will have their count field
unchanged inside Av;vgve. Similarly, if vxve is the incoming edge, the elements of V-LIST(v;vy) will not
be propagated to V-LIST(vive).

Case 3.2 : [vjuiv; > 90°. Here the elements of the V-LIST(v;vi) which have been propagated from
V-LIST(vjv;) will have their count field unchanged inside Av;vjvy, (by Lemma 4). Among them, if some
one participates in the merge pass inside Av;uvy, its count field may be incremented to at most 2. In
Case 3.3, we show that, the CSZs’ of vjv; whose count field have been incremented during the merge pass
inside two adjacent triangles, say Av;v;ug and Av;vgve, will not be propagated further. The same result
is true if the count field of a CSZ is incremented during the merge pass of two triangles, not necessarily
adjacent.

Case 3.3 : Both Lv;vpv; and Lv;vpvg are less than 90°. As we are discussing the nature of propagation
of the CSZs’ of V-LIST(v;v;), we assume that Zvjv;up < 90°.

Case 3.3.1 : The incoming edge of Av;uv, is vxve. We study this case by considering a hypothetical
triangle Av;v;v; whose incoming edge is v;v; and the predecessor triangle is Av;v;vg. In other words,
the triangulation edge v;v, is assumed to be replaced by v;ve. After the merge pass among V-LIS T(vjv;)
and ‘V-LIST(viv¢) the elements in V-LIST(vjv,) will be linearly ordered on vjv;. Now arguing in a
similar manner as in Case 2 of this proof, the elements in V-LIST(v;v,) can be splitted into two subsets.
One of these subsets will participate in the merge pass with V-LIST(vjv;) and the other subset will be
propagated to V-LIST(vivs). Among these two subsets, we may have at most one element common,
whose count field will not be incremented during the merge pass of this hypothetical triangle Avjvgvg.
This leads to the conclusion that there may exists at most one element of V-LIST(v;v;) which will be
considered in the merge passes of both the actual triangles Av;v;v; and Av;vpvg.

Case 3.3.2 : The incoming edge of Av;viv, is vivg. Let CSZ* € V-LIST(vjv;) be compared last
during merge pass inside Av;v;vg. It may have been compared with CSZ(vy) or some element preceding
CSZ(v) € V-LIST(v;vi). The merge pass inside Avyuyve starts with CS5Z(vy) as the first element
of V-LIST(vgve). So, the subset of members (if any) of V-LIST(vjv;) which need to be propagated to
V-LIST(v;v:) and the subset of V-LIST(v;v;) that have participated in the current merge pass may have
at most one element common, which is CSZ*. Also note that, the count field of CSZ* has not been
incremented during the merge pass inside Avjv;vg. =]

Based on the observations stated above related to the merging and creation of visibility lists, we are in
a position to analyze the complexity of of our proposed method.

4 Complexity analysis

The convex hull of an N vertex simple polygon can be drawn in O(NN) time using the algorithm suggested
in [4]. Let it gives birth to K notches, where the i-th notch is assumed to have N; vertices. Below we
describe a few results related to the analysis of the time complexity of processing the notches.

Lemma 6 Time required for drawing the safety zone of a notch of N; vertices is O(N;).

Proof : The triangulation of a notch of N; vertices can be done in O(N;) time [2]. It gives birth to
(N; — 2) triangles. The total number of vertices and polygonal edges considering all the triangles are
3(Ni —2) and (N; — 1) respectively. So, the time required for drawing of safety zone of O(N;) vertices
and edges of the notch is O(N;). By Lemma 2, the time required to conduct the merge pass in each
triangle is linear in the number of CSZs’ attached to V-LISTs’ of its outgoing edges. But a CSZ(c;)
corresponding to an element c; of the notch may participate in the merge pass more than one triangles.
Each time when it is considered, either its count field is incremented or the triangles inside which the
merge pass is conducted, is charged. Theorem 1 shows that for any C'SZ generated inside a notch, its
count field may be incremented to at most be 2. Moreover, a triangle is charged at most once, provided
a merge pass takes place inside it. Thus, apart from generation of CSZs’, the total time required for the

merge passes of all the triangles is also O(N;). o

Lemma 7 At any point of time, the total space occupied by the V-LISTs’ of all the triangulation edges
is O(N). o

Lemmata 6 and 7 lead to the fact that the time required for the generation of the safety zone of each
notch is linear in the number of its vertices. Again, since the notches around the convex hull of the
polygon are disjoint, the total time complexity for drawing safety zones of all the notches is also linear
in the total number of vertices of all the notches.

The time required to draw the safety zone of all solid hull edges and the hull vertices may be O(N) in the
worst case. Next, we may have to concatenate safety zone of a notch to the safety zones of some other
notch or solid hull edge which are attached with the two vertices of its corresponding false hull edge. This
requires O(K) time, where K is the number of notches. A further pass is required, for reporting the
safety zone by traversing along the DS, list. This requires time linear to the number of CSZs’ describing
the safety zone of the polygon. Thus we have the following theorem describing the time complexity of
our proposed algorithm.

Theorem 2 The time and space complezities of our proposed algorithm are both O(N), where N is the
total number of vertices of the polygon.)]

Acknowledgment : The first author acknowledges Dr. Antonio Hernnandez Barrera for pointing out
the relation of the safety zone problem with the Minkowski sum of a simple polygon and a circle of
specified radius.

References

" [1] A. Hernandez-Barrera, Computing the Minkowski sum of monotone polygons, |IEICE Transactions on Informa-
tion and Systems, vol. E80-D, No. 2, pp. 218-222, 1996. .

[2] B. Chazelle, Triangulating a simple polygon in linear time, Discrete.and Computational Geometry, wvol. 6, pp.
485-524, 1991.

[3] M. R. Garey, D. S. Johnson,‘ F. P. Preparata and R. E. Tarjan, Tﬁanéulating a simple polygon, Information
Processing Letters, vol. 7, pp. 175-179, 1978.

[4] D. T. Lee, On finding the convez hull of a simple polygon, Int’l Journal on Computer and Information Science,
vol. 12(2), pp. 87-98, 1983. :

[5] T. Ohtsuki, Layout Design and Verification, Nort;h-leland, Amsterdam, 1986.

