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Abstract: Unit disk graphs are the intersection graphs of equal sized circleé in the
plane. In this paper, we consider the maximum independent set problem on the unit
disk graph. When the given unit dlsk graph is defined on a slab whose width is k, we
propose an algorithm for finding a maximum independent set in O(n"[zk/ ‘/-]) time
where n denotes the nuber of vertices. We also propose a (1 — 1/r)-approximation
algorithm for the maximum independent set problems on a (general) unit disk graph
whose time complexity is bounded by O(rn* [2(--1)/v3] ).

1 Preliminaries

Unit disk graphs are the intersection graphs of equal sized circles in the plane.
Given a point-set P C RZV the unit disk graph defined by P, denoted by G(P), -
is an undirected graph (P, E) with vertex set P and edge set E satisfying that
E = {{p;,p;} | P;»p; € P, ||p; — p;|| £ 1}. The unit disk graphs provide a graph-
theoretic, model for broadcast network and for some problems in computational

geometry.



In this paper, we consider the maximum independent set problem on the unit
disk graph. A vertex subset P’ of a graph is called an independent set if each pair
in P’ is non-adjacent. The maximum independet set problem finds an independent
set in a given graph whose size is maximized. It is well-known that for general
graphs, the maximum independent set problem is hard to approximate. Unless
P=NP, there exists a constant £ > 0 such that no polynomial time algorithm for the
problem can provide a performance guarantee of O(n®) where n denote the number
of vertices [1]. In 1990, Clark, Colbourn and Johnson [2] proved that the maximum
independent set problem defined on unit disk graph is NP-hard. In 1995, Marathe
et al. [6] developed a (1/3)-approximation algorithm based on a graph coloring
heuristic proposed by Hochbaum in [3]. In this paper, we propose a polynomial
time algorithm for the independent set problem on unit disk graphs defined on a
fixed width slab. When the width of the slab is k, the time complexity of our
algorithm is O(|P ]41—%/ V3] ). Our approach also implies an approximation algorithm
for the independent set problem on a unit disk graph (defined on a variable width
slab), which finds a (1 — 1/r)-approximation solution in O(r|P|4[2("1)/ ‘/‘ﬂ) time.
It is easy to extend our algorithm for solving weighted independent set problem on

unit disk graph without increasing its time complexity.

2 Maximum independnt set problems

In this section, we consider unit disk graphs defined on a slab whose width is less
than k. More precisely, we assume that the point-set P is contained in the region
Sk ={(z,y) €R* |0 <y <k}

2.1 Well-solVable case

First, we consider a well-solvable case. If P C S and k < 1/3/2, we can solve the
independent set problem on the unit disk graph G(P) in polynomial time.

The following lemma shows an idea to solve the problem.

Lemmal If P C S, and k < /3/2, then the unit disk graph G(P) is a co-
comparability graph (the complement of a comparability graph).

Proof: Let G(P) be the complement of the unit disk graph ‘G(P). We direct each
edge in G(P) as follows. Let e be an edge in G(P) connecting two vertices (points)
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p1,p; € P. Without loss of generality, we can assume that the z-coordinate of p,
is less than that of p,, since the width of the slab is less than 1. We direct the edge
e from p; to p,. Now we show that the obtained directed graph, denoted by A(P),
satisfies the transitivity. Clearly, A(P) is acyclic. Assume that A(P) contains a pair
of directed edges e = (p;,p,) and f = (p,,ps). We denote the position of p; by
(zi,y;) for i = 1,2,3. Since ||p; — py|| > 1 and the width of the slab is less than
V/3/2, it is eay to show that z; + 1/2 < z,. In the same way, we can show that
T3+ 1/2 < z3. It implies that z; + 1 < z3 and so ||p; — ps|| > 1. It implies that
the complement G(P) contains the edge {p,,p;} and the above edge orientation
procedure directs the edge from p, to p;. Thus the directed graph A(P) satisfies
the transitivity and so the complement G(P) is a transitivity graph. //

The co-comparability graph is a class is perfect graphs and so we can solve the
maximum independent set problem, the coloring problem, and the maximum clique
problem in polynomial time [4]. However, we can solve the maximum independent
set problems easily in this case. The proof of the above lemma shows that each
directed path in the graph A(P) corresponds to an independent set of the unit disk
graph G(P). It is also easy to show that each independent set in G(P) corresponds
to the vertices in a directed path in A(G). Thus, the maximum independent set
problem is reduced to the problem for finding longest directed path in A(P). Since
A(P) is acyclic, we can solve the longest path problem in linear time with respect
to the number of directed edges. Thus we can find a maximum independent set of

G(P) in O(|P|?) time.

2.2 Fixed width problem

Here we assume that the width & of the slab is a fixed constant.

For any point subset P’ C P, we denote the value min{|z] | (z,y) € P'} by
min P’. A subset of points B C P is called an independent block when B is an
independent set of the unit disk graph G(P) and each point (z,y) in P’ satisfies
|z] = min B. Let B(P) be the family of all the independent blocks of P.

Now we introduce an auxiliary graph which is helpful for finding a maximum
independent set of G(P). The auxiliary graph, denoted by A(P), is a directed
graph with node set {s,t} U B(P) and arc (directed edge) set -

{(s, B) LVB € B(P)) U{(B,1) | VB € B(P)}
U{(B, B') € B(P) x B(P) | (min B) < (min B') and BU B’ is an independent set}.

—3—



Then it is clear that for any directed path in the auxiliary graph from s to ¢, the
anion of independent blocks corresponding to internal nodes is an independent set
of G(P). Conversely, for any independent set in G(P) there exists a corresponding
directed s-t path in A(P). For each non-terminal node (independent block) of the
auxiliary graph, we associate the weight which is equal to the size of the corre-
sponding independent block. Then the sum of the node weights in a directed path
is equal to the size of corresponding independent set in G(P). Thus, the maximum
independent set problem onG(P) is reduced to the problem for finding the longest
directed path in the auxiliary graph.

We can generate all the indepent blocks by applying an enumeration algorithm
for maximal independent sets in [7] which requires O(|P|3|B(P)|) time. Since the
weighted auxiliary graph is acyclic and directed, the ordinary dynamic program-
ming method finds the longest path in linear time with respect to the number of
arcs (see the algorithm for the shortest path problem on acyclic graph in [5], for ex-
ample). From the above, the total time complexity of our algorithm is bounded by
O(|PP|B(P)| + |B(P)[%). When we denote the size of maximum independent block
by o, |B(P)| = O(|P|*). If we consder the non-trivial problem instances satisfying
that a > 2, the total time complexity of our algorithm is bounded by O(|P|**)

The following lemma shows a simple upper bound of the value a.
Lemma 2 We define the value ay ‘by

ar = max{|P'| | P' € [0,1) X [0,k), Vp;,Vp; € P',p; # p; = |Ip; — p;|| > 1}
Then oy, < 2 [2k//3).

Proof: Let T be the rectangle {(z,y) | v3/2 >y >0, 1 > z > 0}. Then the length
of a diagonal line of T is equal to 1. Thus the distance of any pair of points in 7" is
less than or equal to 1. It is clear that the region [0,1) x [0,k) can be covered by
2 [Zk/ \/?_;l copies of the rébtangle T. Each copy of the rectangle contains at most
one points of each independent set. //

The above upper bound implies that the time complexity of our algorithm is
bounded by O(|P|* [2¢/ ‘/ﬂ) when we apply our algorithm to the problem defined on
the slab whose width is equal to k. ' ’

Lastly, we consider the memory space. The naive implementation of the above

algorithm requires the memory space to maintain the auxiliary graph. However, the
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layerd structure of the auxiliary graph implies that we only need to maintain the
nodes of the auxiliary graph. ;

For any integer k', we denote the set of independent blocks {B € B(P) | ¥' =
min B} by Bi(P). Without loss of generality, we can assume that B(P) can be
partitioned into the families of independent blocks Bo(P), Bi(P),...,Bn(P). Also
we can asuume that By/(P) # 0 for all ¥ € {0,...,m}, since if there exists a
family By/(P) = 0 we can decompose the original problem to two small subproblems
defined by the sets of points Bo(P) U -+ U Br—1(P) and B1(P) U -« - U B (P).
Under the above assumption, every maximal independent set of G(P) contains at
least one independent block B € By_1(P) U By(P) for all ¥’ € {1,...,m}. Thus
we can delete arcs in the auxiliry graph without sacrificing the correctness of our

algorithm, i.e., we only need the following arcs

{(s,B) | VB € B(P)} U{(B,t) | VB € B(P)}
U{(B,B’) | (min B) + 1 < (min B’) < (min B) + 2 and (B, B’) is an arc inA(P)}.

When we apply the ordinary labeling procedure for solving the longest path
problem on A(P) (see [5] for example), we only need to maintain consecutive three
families of independent blocks By_; (P)UBy/(P)UBysy1(P) for labeling independent
blocks in By 1(P). When we label an independent block B in By.y1(P), we generate
arcs in A(P) entering to B one by one. and so we do not need to maintain set of
arcs connecting independent blocks in Bgi—1(P) U B(P) U Byrg1(P)

2.3 Approximation algorithfn

In the following, we propose (1 — 1/r)-approximation algorithm for any positive
integer r, which finds an independent set whose size is greater than or equal to
(1 — 1/r)z* where z* is the size of a maximum independent set.

For any s € {0,1,...,r — 1}, the region {(z,y) € R’ | s < (y mod r) <
s + 1} is denoted by T,. We construct point-subsets Fy, Py,...,P._; defined by
P, = P\ T,. Next we solve the maximum independent set problems defined on
the graphs G(Fp), G(P1),...,G(Pr-1) and output one of the best solutions. The
size of the output independent set is greater than or equal to (1 — 1/r)z*. It is
because, a maximum independent set P* satisfies that for any s € {0,1,...,r — 1},
P*\T, C P\T, and max{|P*\ T,| | s € {0,1,...,r —=1}} > (1 = 1/r)| P*|.

By using the simple upper bound in the previous lemma, the time complexity of

our algorithm is bounded by O(r|P[?*-1) = O(r|P|4[2('—1)/\/5])_
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It is easy to extend our algorithm for the weighted version; a problem defined by
the point-set P and point-weights. By substituting the node weights of the auxiliary
graph by the sum of weights of points in the corresponding independent block, the
algorithm in the previous subsection finds a maximum weight independent set in
the same time complexity. The algorithm described in this subsection finds an

approximate solution in the same time complexity.
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