T T U X A 68-1
(1999. 5. 10)

WEEY & OREHNR D2 2R

REHR Mark de Berg? Otfried Cheong?
" Leonidas J. Guibas® Jack Snoeyink® EAR AKSE

P LI n BOKE m BOBEMNEX b L&, ZhbLOEYESD. BEESETE L+ 52
BT, HED & OXERRTE BET DRV L DR RO AMELE L, KROBEREPES

(i) BEEMS, HUNCAET B WO b S ERSY ThH B & &, 50 O (min(m?, my/m)) T
BB LD RESASUTEET S,

(ii) BEFD, EVZRDLRVERATHD & &, MM O(m) ThB L 5 llkriss
T 5, |

(i) FEESA. ENCED LR Kofo) HEWTHH LS FIITIR) K O(m +n)
ThB LI RESABLTEET 5,

CRLEDERETRTRETH S,

Spanning trees crossing few barriers

Tetsuo Asano! Mark de Berg? Otfried Cheong®
Leonidas J. Guibas* Jack Snoeyink® Hisao Tamaki®

We consider the problem of finding low-cost spanning trees for sets of n points in the plane,
where the cost of a spanning tree is defined as the total number of intersections of tree edges
with a given set of m barriers. We obtain the following results:

(i) if the barriers are possibly intersecting line segments, then there is always a spanning tree
of cost O(min(m?, my/n));

(ii) if the barriers are disjoint line segments, then there is always a spanning tree of cost O(m);
(iii) if the barriers are disjoint fat objects, discs for example, then there is always a spanning
tree of cost O(n + m).

All our bounds are worst-case optimal.

!Japan Advanced Institute of Science and Technology, Asahidai, Tatsunokuchi, Ishikawa, 923-1292 Japan.
Partly supported by Grant in Aid for Scientific Research of the Ministry of Education, Science and Cultures of
Japan.)) o
2Department of Computer Science, Utrecht University, P.O.Box 80.089, 3508 TB Utrecht, the Netherlands.

®Department of Computer Science, Hong'Kong University of Science and Technology, Clear Water
‘Bay,Kowloon, Hong Kong. Partly supported by HKUST Direct Allocation Grant 97/98.EG15, and RGC Com-
petitive Earmarked Grant HKUST 6144.98E.)) .

*Department of Computer Science, Stanford University, Stanford, CA 94305 USA. .

®Department of Computer Science, University of British Columbia, Vancouver, Canada; Partially supported
by grants frem the National Science and Engineering Research Council of Canada.

®Department of Computer Science, Meiji University, Higashi-Mita, Tama-ku, Kawasaki, 214 Japan. Partly
supp. ted by Grant in Aid for Scieniific Research of the Ministry of Education, Science and Cultures of Japan.

—] -

1 Introduction

Consider the problem of batched point loca-
tion, where the goal is to efficiently locate
n given points in a planar subdivision de-
fined by m line segments. This problem arises
in many applications, and in particular in
the linear-time reconstruction of common ge-
ometric structures such as Voronoi and Delau-
nay diagrams, or convex hulls [4]. In these ap-
plications the desired diagram is constructed
by adding the points in stages. In each stage,
the group of points currently being added
must be located among the regions of the di-
agram defined by all the previously inserted
points. This batched point location can easily
be solved by standard point location meth-
ods, or by line-sweep methods, at a logarith-
mic cost per point, but this would defeat the
linear-time reconstruction goal. One way to
avoid these logarithmic factors is to connect
the points together by a structure, such as a
spanning tree, that crosses the edges of the di-
agram only linearly many times. Then, once
one of the points is located, the spanning
structure can be traversed and the remaining
points located as they are encountered.

The construction of such spanning trees
motivated the current investigation, in which
we generalize the subdivision edges to more
general classes of geometric objects. Let P
be a set of n points in the plane, which we
call sites , and let B be a set of m geometric
objects, which we call barriers. We assume
that no site lies inside any of the barriers. An
edge e, which is a straight line segment join-
ing two sites, has a cost ¢(e) that equals the
number of barriers that e intersects. The cost
of a spanning tree 7 for P is the sum of the
costs of its edges:

o(T) =" cle).
e€T

. (It would be more precise to speak of the cost
with respect to B, but since the barrier set will
always be fixed and clear from the context,

we omit this addition.) We are interested in
cheap spanning trees, that is, spanning trees
with small cost, for several types of barriers.
We obtain the following results.

Section 2 deals with the case where the
barriers are possibly intersecting line seg-
ments. Here we show that there are con-
figurations where any spanning tree has cost
Q(min(m?,m+/n)). We also show how to con-
struct a spanning tree with this cost.

Section 3 deals with various types of dis-
joint barriers. Here it turns out that much
cheaper spanning trees can be constructed.
For instance, we are able to obtain a bound of
O(n + m) when the barriers are fat objects—
discs for example. This bound is tight in the
worst case.

The major result in this paper is given in
Section 4, where we prove that for any set
of n sites and any set of m barriers that
are (interior-)disjoint line segments, there is
a spanning tree of cost O(m), which is opti-
mal in the worst case. Our proof shows in
fact that a spanning tree is always possible
in which no barrier segment is crossed more
than four times. Such a linear cost spanning
tree solves the batched point location problem
we started with above (where the subdivision
edges are the barriers).

All our proofs are constructive. Our con-
struction in Section 3 indeed leads to an effi-
cient O((n + m)logm) algorithm to produce
a spanning tree of low cost. The existence
proofs are more interesting, however, since a
simple greedy algorithm will always construct
a spanning tree of minimal cost (and for the
linear-time reconstruction goal the computa-
tion of the tree happens during the prepro-
cessing in any case).

The bounds mentioned above are signifi-
cantly better then the naive O(nm) bound.
We close this introduction by noting that if
we wish to construct a triangulation on the
sites , not just a spanning tree, then the naive
bound cannot be improved in the worst case.

2 Intersecting segments

We start with the case where the barriers in
B are possibly intersecting line segments.

Theorem 1 (i) For any set P of n sites
and any set B of m possibly inter-
secting segments in the plane, a span-
ning tree for P exists with a cost of

O(min(m?, m/n)).

(ii) For any n and m there is a set P of n
sites and a set B of m segments in the
plane, such that any spanning tree for P

has a cost of Q(min(m?, m+/n)).

Proof: Omitted. O

3 Disjoint uncluttered

barriers

Let P be a set of n sites in the plane, B a set of
m disjoint barriers. We give an algorithm that
uses a binary space partition (BSP) for the set
of barriers to construct a spanning tree for P.
We analyze the cost of the resulting spanning
tree, assuming the BSP is orthogonal. Com-
bining our results with known results on BSPs
will then give us cheap spanning trees for so-
called uncluttered scenes (defined below).

Given a BSP, our algorithm constructs a
spanning tree for P recursively. Suppose we
come to a node v in the BSP with a set P, of
sites we wish to connect into a spanning tree;
initially v is the root of the BSP and P, = P.
There are three cases to consider.

(i) If P, contains at most one site , then no
spanning tree edges need to be added and
we are done.

(ii) If P, contains more than one site but »
is a leaf of the BSP, then we connect the
sites into a spanning tree in an arbitrary
manner.

(iif) The remaining case is where P, contains
more than one site and v is an internal
node of the BSP. Let ¢, be the splitting
line stored at ». The line ¢, partitions P,
into two subsets. (Points on the splitting
line all go to the same subset, say the
right one.) We recursively construct a
spanning tree for each of these subsets
by visiting the children of v with the rel-
evant subset. Finally, if both subsets are
non-empty we connect the two spanning
subtrees by adding an edge between the
sites closest to £, on either side of £,.

We now analyze the cost of the spanning tree
constructed in this manner for the special case
of orthogonal BSPs. (An orthonal BSP for B
is a BSP whose splitting lines are all horizon-
tal or vertical.) We assume that the leaves
of the BSP store at most ¢ objects, for some
constant ¢; thus the cells of the final subdi-
vision are intersected by at most ¢ objects.
(Note that we cannot require ¢ = 0 unless we
restricted our attention to orthogonal barrier
segments.)

The following result will imply the exis-
tance of spanning trees of linear cost for sev-
eral classes of barriers, including orthogonal
segments and convex fat objects.

Theorem 2 Let B be a set of disjoint simply-
connected barriers in the plane, and let P be a
set of n sites in the plane. Suppose an orthog-
onal BSP for B exists that generates f frag-
ments and whose leaf cells intersect at most
c barriers. Then there is a spanning tree for
P with cost at most O(f + k + cn), where k
is the total number of vertical and horizontal
tangencies on barrier boundaries.

Proof: Omitted.)

A k-cluttered scene in the plane is a set B
of objects such that any square whose inte-
rior does not contain a bounding-box vertex
of any of the the objects in B is intersected by

at most k objects in B. A scene is called un-
cluttered if it is x-cluttered for a (small) con-

stant . It is known that any set of disjoint fat -

objects, discs for instance, is uncluttered—see
the paper by de Berg et al. [1] for a overview of
these models and the relations between them.

Theorem 3 Let B be a set of m disjoint 0b-
jects in the plane, each with a constant num-
ber of vertical and horizontal tangents, that
forms a k-cluttered scene, for a (small) con-
stant k. Let P be a set of n sites . Then there
is a spanning tree for P with cost O(m + n).
This bound is tight in the worst case, even for
unit discs. A spanning tree with this cost can
be computed in time O((m + n)logm).

Proof: Omitted. |

Theorem 2 also implies that we can always
find a spanning tree of cost O(m) when the
barriers are disjoint orthogonal segments, be-
cause Paterson and Yao [3] have shown that
any set of orthogonal line segments in the
plane admits an orthogonal BSP of size O(m)
whose leaf cells are empty. We can construct
such a spanning tree in time O((n+m)log m):
we need O(mlogm) time to construct the
BSP, plus O((n+m) logm) time to locate the
sites in the BSP subdivision using an optimal
point location structure [2], and O(n +m) for
the bottom-up construction of the spanning
tree.

In the next section we will show that a
linear-cost spanning tree exists for any set of
disjoint barrier segments (even if they are not
orthogonal), however, we do not know of an
equally efficient way to construct the tree in
the general case.

4 Disjoint segments

We now present the main result of our paper:
Given any set P of n sites in the plane and
any set B of m disjoint segments in the plane,
there is a spanning tree for P whose cost-is

O(m).

There are several ways in which we can
obtain a spanning tree of cost O(mlog(n +
m)). One possibility is to analyze a slightly
adapted version of the BSP-based algorithm
in terms of the depth of the underlying BSP,
and use the fact that any set of m disjoint
segments in the plane allows a BSP of size
O(mlogm) and depth O(logm) [3]. Another
possibility is to use a divide-and-conquer ap-
proach based on cuttings. With neither of
these two approaches we have been able to ob-
tain a linear bound. The solution presented
next therefore uses a different, incremental
approach.

We assume that the segments and the sites
are all strictly contained in a fixed bounding
box, say an axis parallel unit square. We de-
note the upper-left and the upper-right cor-
ners of the bounding box by ¢; and ¢, respec-
tively. We will assume in the following that
the sites , the endpoints of the segments of
B, and the two points ¢; and ¢, are in a gen-
eral position collectively. This is not a seri-
ous restriction, but does make the description
easier.

Let 7 be a spanning tree on P U {¢;, ¢ }
with straight edges and no self-intersections.
(Note that the minimum cost spanning tree
may require self-intersections. Our approach
proves that self-intersections are not neces-
sary to achieve the linear bound.) We call
the path between ¢; and ¢, in 7 the spine of
7.

The spine of 7 partitions the bounding box
into two parts: the part above the spine which
is bordered by the spine and the upper edge
of the bounding box, and the remaining part
below the spine. Note that a point above the
spine, in this definition, may see some edge of
the spine above it since we are not assuming
z-monotonicity of the spine. We'say that the
tree 7T is spined if

(1) all the sites are either on or above the
spine, and ~
(2) both ¢ and ¢, are leaves of T.

Lemma 4 Let P be a set of sites and B a set
of straight segments both strictly contained in
the bounding box. Then there is o spined tree
T of PU{ci, ¢, } such that each segment s € B
is stabbed by T at most 2 + u(s) times where
u(s) denotes the number of endpoints of s that
are above the spine of T (and hence is at most
two).

Before proving the lemma, we show an exam-
ple in Fig. 1. It consists of 5 segments and 9
sites , including the artificial sites ¢; and e,.
The spine of the spined tree 7 is depicted by
solid bold lines. Proof: The proof is by in-

4 cr

® site

segment,
e gpine edge
------------- non-spine edge

Figure 1: Deﬁmtlon of a spine and a spined

tree.

duction on the number of sites . We fix the
segment set B throughout.

If P is empty, there are only two sites ¢
and ¢,. The edge between ¢; and ¢, does not
stab any segment of B, so the claim holds.

Assume now that P contains at least one
site . Let p be the lowest site , that is, the
site with the smallest y-coordinate, and let
P' = P\ p. Let T’ be the spined tree of
P" U {c;,c.} provided by the induction hy-
pothesis. For two sites ¢q,7 of 77, we denote

- by path(q,r) the path of 7’ between q and
r. . This notation will always be used where
g and r are sites on the spine of 77 so that

path(q,r) is a subpath of the spine. We will
also write lpath(q) for path(c;, q) and rpath(q)
for path(q,c,). We will abuse these notations
allowing ¢ or r to be an arbitrary point (not
necessarily a site) on the spine of 7’ consid-
ered as a geometric curve.

We say that a point ¢ in the bounding box
is visible from p if the segment pg does not
intersect the spine of 7’ except possibly at
g. Let Q = {ql,qg, .,q:} denote the set of
sites of the spine of 7” that are visible from p,
listed in order from ¢; to ¢,. Note that @ =q
if ¢; is visible from p and ¢, =c, if ¢, is.

We say that a segment s € B blocks a site
q € Q if s intersects both the segment pg and
the spine of 7’. In this case, the maximal
subsegment b of s lying below the spine of 77
and being stabbed by pq is called a blocker
of ¢; we also say that s supports the blocker
b and b blocks g. We call an endpoint of a
blocker b that is on the spine of 77 an anchor
of b.

Suppose v is an anchor of a blocker of q.
We call v a right anchor of the blocker if v is
in rpath(q); a left anchor if it is in Ipath(q).

~A blocker may have one anchor (left or
right) or two anchors (both left and right).
Note that, when a blocker has both left and
right anchors the left anchor may lie geomet-
rically to the right of the right anchor, since
the spine may not be z-monotone.

We say that two consecutive visible sites

¢ =gq, 1= ¢+1 in @ and an edge e in

path(g,r) form a good triple (g,7,€) if the fol-
lowing three conditions hold (see Fig. 2):

(1) ¢ and r do not have a common blocker.

(2) If any blocker of r has a left anchor then
it is on e; if any blocker of ¢ has a right
‘anchor then it is also on e.

(3) If ¢ = ¢ then e is incident to ¢} if r = ¢,
then e is incident to ¢,.

Claim 5 There is at least one good triple
(‘L T, C), T E€Q,e€ path(‘]) r).

[¥] Cr

Figure 2: A good triple (g, 1, €).

We defer the proof of the claim and first
show how we construct the spined tree of
PU{e;, ¢, } based on the claim. Let (p, g, e) be
a good triple in Q. Our spined tree 7 is ob-
tained from 7’ by adding two edges pg and pr
and removing e. Since g and r are visible from
p, we do not create any self-intersections, and
since ¢ is in path(g,r), 7 remains a tree. The
new spine goes through the edges pg and pr
and it is clear that all sites are either on or
above this spine. Condition (3) above guar-
antees that ¢ and ¢, remain leaves of the
tree. Therefore, T is indeed a spined tree of
PU{c, e}

New stabbings are created when a segment
s € B is stabbed by pg or pr. We consider
three cases: (a) s is stabbed by both pg and
pr, (b) s is stabbed by pg but not by pr, and
(c) s is stabbed by pr but not by pg. Since
case (c) is symmetric to case (b), we consider
cases (a) and (b). '

In case (a), s is not stabbed by any edge
of 7' because otherwise s would support a
common blocker of g and r contradicting con-
dition (1) of a good triple. Thus, the stabbing
number of s is two without .violating the in-
duction hypothesis. , .

Next consider case, (b): s is stabbed by pq
but not by pr. Let C denote the closed curve
formed by edges pq, pr and path(q,r).

First suppose that s is not stabbed by

path(q,r). Then, one endpoint of s is in the
interior of the cycle C. Since the interior of C'
is below the spine of 7’ and above the spine
of 7, the number of endpoints of s above the
spine is increased by one, accounting for the
new stabbing and maintaining the induction

hypothesis.
Next suppose that s is stabbed by
path(g,r). This means that s supports a

blocker of ¢ that has a right anchor. Con-
dition (2) of a good triple implies that this
right anchor lies in e, that is, e is the edge in
path(g,r) that stabs s. Since e is removed in
forming 7, the induction hypothesis is main-
tained in this case as well. m

Before we prove the claim, we introduce
some more notation. Let B denote the set
of all blockers (the site p € P is still fixed as
the lowest site in P).

For each blocker b € B and each site
g € Q visible from p, we define a line seg-
ment seg(g,b) as follows: If b blocks g, then
seg(g,b) denotes the line segment gg’, where
¢ is the point at which pg stabs b. When b
does not block ¢, we use the convention that
seg(gq, b) is empty. ,

For any site ¢ €) visible from p, we can
now introduce a partial order <, on B as fol-
lows: by =<, by if and only if b and b, both
block ¢ and seg(g, b1) is properly contained in
seg (qa bZ) ! :

Finally, we define < to be the transitive clo-
sure of the union of <, over all ¢ € Q. We
claim that < is anti-symmetric and is there-
fore indeed a partial order on B. To see this,
consider a chain by <4 b2 <g, A sim-
ple induction shows that seg(q,b;) contains
Ui<ic; seg(g, b;) for every g € Q@ blocked by
b;. Therefore, by < b implies that b; <, by
does not hold for any ¢. Therefore, < is anti-
symmetric.

The following proposition will be used later.

Proposition 6 Let bi and by be two block-
ers with by < by and assume-that by blocks

q. Then, the left anchor of by, if any, is in
lpath(q) and the right anchor of by, if any, is
in rpath(q). .

Proof: *Proof of Claim 5. If there is no
blocker then the existence of a good triple is
trivial. So assume that the set of blockers B
is non-empty. Without loss of generality, we
may assume that at least one of the block-
ers that is maximal with respect to < has a
right anchor (otherwise we argue symmetri-
cally, swapping left and right). Among all the
maximal blockers with a right anchor, choose
the one whose right anchor is the closest to
¢, in the spine of 7’ and call it b,. Let v,
denote the right anchor of 4, and e the spine
edge of 7' that contains vy. We define ¢ (r,
resp.) to be the first, site visible from p when
we traverse the spine of 7' from vy towards ¢
(e, resp.).

We study the three conditions of (g,r,¢)
being a good triple.

(1) g and r do not have a common blocker,
since such a common blocker would contradict
the maximality of bg. '

(2) Let ¢',r" be the points on path(q,r)
such that path(q’,r’) is the maximal subpath
of path(q,r) that is visible from p. Note
that p,q,q" are collinear with possibly ¢ = ¢/
and p,r,r’ are colinear with possibly r = »'*
Note therefore that if any blocker of ¢ has a
right anchor then it is on rpath(q’) and if any
blocker of r has a left anchor then it is on
Ipath(r').

Suppose r has a blocker b with left anchor
v. Since by is maximal, b cannot block q.
Therefore, v must lie on path(vy,r). Com-
bined with the above note, v must lie on
path(vo,r’). Since vg is on rpath(q’), it fol-
lows that path(vo, v) is entirely visible from p.
This in turn implies that vo and v are on the
same spine edge, namely e. This establishes
the first half of condition (2). For the second

- half, that is the condition that the right an-
chor of any blocker of ¢ lies in e, first note
that the maximality of by, combined with the

above note, implies that any such right an-
chor must lie on path(q’,vo). Thus, if ¢’ is on
e, we are done. So suppose ¢’ is not on e. This
implies that e lies entirely within path(r’,r).
Therefore we must have r # r' in this case.
Moreover, r does not have a blocker with a
left anchor since any such anchor must lie on
path(vo,r) Nlpath(r'), which is empty in this
case. We conclude that condition (2) is satis-

fled as long as r =+ or r has a blocker with

a left anchor.

(3) If ¢ = ¢; then e is incident to ¢; because
it is impossible for the spine edge incident to
¢ to be invisible from p in the neighborhood
of ¢; while ¢ is visible. If r = ¢, then e is

incident to ¢, for an analogous reason.

To deal with the remaining case where con-
dition (2) may not be satisfied by the triple
(g,7,€), suppose that r # r’ and that r does
not have a blocker with a left anchor. In this
case, the last edge of path(vg,r) is invisible
from p so that the first edge f of rpath(r) is
visible from p at least locally at r. Let w be
the next visible site in the spine of 7’ after r.
We claim that (r,w, f) is a good triple.

We first argue that r does not have a
blocker at all. Suppose r did have a blocker
b. Let b* be the maximal blocker such that
b < b*. If b* had a right anchor, then by
Proposition 6 this anchor would have to be
in rpath(r), contradicting the choice of b,.
Therefore, b* must have a left anchor u. By
Proposition 6 again, u must lie on lpath(r).
However, u cannot lie on lpath(vy) because
this would contradict the maximality of b,.

Therefore, u must lie on path(vo,), but this

implies that b* is a blocker of r with a left an-
chor;- contradicting our assumption. There-
fore, r does not have a blocker at all. This
trivially implies that r and w do not have a
common blocker, condition (1) of (r,w, f) be-
ing a good triple. For condition .(2) we need
only consider blockers of w with left anchors.

~Since f is:the only edge in path(r,w) that has

a part visible from p and f is incident to r,

such left anchors must all lie on f. Finally,
a reasoning analogous to the one for (g,r,¢)
shows that the triple (r,w, f) satisfies condi-
tion (3). o

Now we come to our main theorem.

Theorem 7 Given a
set B of non-intersecting line segments and
a set P of sites in the plane, there is always
a straight-edge spanning tree of P that stabs
each line segment of B at most 4 times.

Proof: We first compute a bounding box
that properly contains all the objects of B
and P. Let ¢ and ¢, be the upper-left and
upper-right corners of the bounding box, re-
‘spectively. Then, applying the lemma to B
and P U {c, ¢}, we obtain a spined tree 7.
Removing the artificial sites ¢; and ¢, from 7,
it remains a tree since ¢; and ¢, are leaves of
T . It follows from the statement of the lemma
that the resultant tree is a spanning tree over
P that stabs each line segment of B at most
4 times. v O

5 Conclusions

In this paper we have studied spanning trees
among n points whose edges cross few among
a .given set of m barriers.. When the barriers
are disjoint, near-linear bounds for the cost of
such a tree can be obtained by several simple
arguments. Using more sophisticated tech-
niques, we were able to show that a linear
cost spanning tree is possible in many cases.

One of the techniques we used is the. con-
struction of certain BSPs on the barriers.
This raises the question of whether our other
methods, by ‘reverse-engineering,’ can help
resolve some open questions about BSPs, in-
. cluding the long-standing one about the ex-
istence of a linear space BSP for disjoint line
segments in the plane.

We note that the number of barriers crossed
by linking two points is not a distance func-
tion and does not satisfy the triangle inequal-
ity. This means that the existence of other
low-cost structures among the points, such as
Hamiltonian tours and matchings, remains an
interesting research problem.

References

[1] M. de Berg, M. J. Katz, A. F. van der
Stappen, and J. Vleugels. Realistic in-
put models for geometric algorithms. In
Proc. 18th Annu. ACM Sympos. C’omput
Geom., 294-303, 1997

[2] H. Edelsbrunner, L. J. Guibas, and

~J. Stolfi. Optimal point location in a

monotone subdivision. SIAM J. Comput.,
15(2):317-340, 1986

[3] M. S. Paterson and F. F. Yao. Effi-
cient binary space partitions for hidden-
surface removal and solid modeling. Dis-
crete Comput. Geom., 5:485-503, 1990

[4] J. Snoeyink and M. van Kreveld. Linnear-
time reconstruction-of Delaunay triangu-
lations with applications. In Proc. Annu.
European Sympos. Algorithms, Lecture
Notes in Computer Science 1284, 459-471,
Springer-Verlag, 1997.

