7)V dU X A 69-3
(1999. 9. 2)

Ay 1 FTOE Y NGBS E AT
T9TF4 T TFINTY X L

HE X AR
AN LR FANRFERF B IER AR
T 815-8540 1R TR X I 4-9-1 T 606-8501 HUHR /2 3 X FHAHT
miyano@kyushu-id.ac.jp iwamaCkuis.kyoto-u.ac.jp

HOEL:

AT, 2KRT, ERVAXFa—, nxn Ay Vastg LTSy 54> 7
BT S (34+e)n B OREREFRT V714 v 77V T L% 57T, SODA99
CBWT, #ald, OMn)HOEERT 774 v 7T VI AABEET LI L%
ARLTW Lal, EEREOBERNREIIRLTES T, #OMEIEHHS 512 1000
PLEWZ o Tz,

F-T—F:I2REAv Va2, BEHRS Y7107, Vv MREBER

Bit-Reversal Permutation Techniques for
2-D Mesh Routing

Eiji M1YANO Kazuo TwaMA

School of Informatics
Kyoto University
Kyoto 606-8501, JAPAN
iwama@kuis.kyoto-u.ac.jp

Kyushu Institute of Design
Fukuoka 815-8540, JAPAN
miyano@kyushu-id.ac.jp

Abstract:

In this paper we present an deterministic, oblivious, routing algorithm which runs
in (3 4 ¢)n steps for any permutation routing on an n X n mesh using constant-
size queues. In SODA99, the same authors showed that there is an O(n) oblivious
routing algorithm, but they did not give any concrete values for the leading constant
factor, which is obviously more than 1000.

Key words: two-dimensional mesh, oblivious routing, bit-reversal permutation

1 TIntroduction

Mesh routing has received considerable attention
for the last decades, and a variety of algorithms
have been proposed. However, it is also true that
there still remain several important unknowns. For

example, until recently little had been known whether

one can achieve an optimal, linear time bound for
oblivious permutation routing on two-dimensional
(2D) meshes of constant-size queues. In [2], Iwama
and Miyano made a significant progress on this open
question by giving an affirmative answer; they pro-
posed a new technique, based on the bit-reversal
permutation, to achieve an average scattering of
packets, and by using this method they gave the
first optimal (up to constant factor) algorithm for
oblivious routing. Oblivious routing means that
the path of each packet must be determined by its
source and destination positions, which has been
constantly popular since it makes routing algorithms
significantly simple.

As for the queue-size, they need only two in [2},
which is probably optimal. However, as for the
time complexity, they only prove that their algo-
rithm runs in linear time and it involves large con-
stant factors partly due to making their proof on
the time complexity clearer and simpler. Actually,
the leading constant hidden in the big-O notation
is at least more than 1000. Since no linear-time
algorithms were known before, this must be an im-
portant progress theoretically. However, it is obvi-
ously questionable if this algorithm can claim much
practical importance.

In this paper we focus mainly on the running
time and present a (3 + €)n oblivious algorithm
which can route any permutation on 2D meshes
for any small constant €. Its queue-size is at most
12. The algorithm basically makes use of the bit-
reversal permutation as before and its running time
is around one and a half times as large as the net-
work diameter of the meshes. Thus, this result
shows that the oblivious algorithm based on the bit-
reversal permutation does have practical merits and
our new algorithm makes a major step toward ab-
solutely optimal, 2n-step algorithms with constant
queue-size.

A typical (and popular in practice) oblivious
strategy for mesh routing is called a dimension-
order algorithm, which consists of two phases, the
row routing and the column routing phases. Namely,
a packet first moves horizontally to its destination
column and then moves vertically to its destination
row. It is well known that in spite of very regu-
lar paths, the algorithm can route any permutation

on the mesh in 2n — 2 steps. Unfortunately, how-
ever, some processor requires {2(n)-size queue in the
worst case. To remove this bad path-congestion,
the algorithm in [2] performs several operations,
such as the bit-reversal permutation, against the se-
quence of packets. One drawback of this approach
is that we need a long path of processors for these
operations. To create such long paths, the algo-
rithm in [2] suffers from serious detours and big
constant factors. Fortunately, there is a standard
technique to reduce this path length, i.e., simulat-
ing several processors by a single processor with
a sacrifice of the queue-size (but still within some
constant). This allows us to design a rather easy
6.5n algorithm. Our new (3 + ¢)n algorithm needs
a sequence of careful improvements from this one.
One of them is a tighter analysis of the bit-reversal
permutation, which doubles the rate of packet flow
compared to the old algorithm.

Most previous algorithms are based on the adap-
tive strategy. In adaptive routing, the path of each
packet from its source to destination may depend on
other packets it encounters. For the meshes includ-
ing n x n processors, the adaptive algorithms can
provide very efficient time bounds: The first near-
optimal algorithm was proposed by Kunde [4]; he
showed that there is a deterministic algorithm with
running time 2n + O(n/k) and queue-size k. Using
Kunde’s technique, Leighton, Makedon, and Tol-
lis {7] gave a deterministic algorithm with running
time 2n — 2, matching the network diameter, and
constant queue-size. Rajasekaran and Overholt [9]
and Sibeyn, Chlebus, and Kaufmann [11] decreased
the queue-size later. However, all of these algo-
rithms involve a flavor of mesh-sorting algorithms
and may be too complicated to implement on ex-
isting computers. Thus, a simpler algorithm with a
smaller queue-size might be of more practical inter-
est, even if its running time is larger than 2n — 2.

There exist a lot of endeavors to simplify the
routing schemes. Under the randomized oblivious
setting, Valiant and Brebner gave a simple, ran-
domized, oblivious routing algorithm which runs in
3n + o(n) steps with high probability. Rajasekaran
and Tsantilas [10] reduced the time bound to 2n +
O(logn) later. However, the maximum queue-size
grows up to Q(logn/loglogn) large. By using an-
other simple path selection, Kaklamanis, Krizanc,
and Rao [3] gave a randomized algorithm with 2n-+
O(logn) steps and constant-size queues, but at the
sacrifice of the obliviousness. Under the adaptive
setting, Chinn, Leighton, and Tompa [1] provided a
minimal, adaptive routing algorithm which achieves
O(n) steps with constant size queue. However, in

the same paper, they proved that if adaptive algo-
rithms are limited to simpler ones, i.e., minimal,
destination-exchangeable, and constant queue-size,
then an lower bound jumps up to Q(n?).

In what follows, after giving a review of the O(n)
algorithm in [2], we first present the 6.5n algorithm
in Section 3. Then we observe two major demerits
of this algorithm and improves it into a 4n algo-
rithm in Section 4. Finally we furthermore intro-
duce technical improvements in Section 5, which
achieves our final goal, i.e., the (3 + €)n algorithm.
We believe this step-by-step description helps for
better exposition.

2 Models, Problems and Pre-
vious Algorithm

Our model in this paper is the standard, n x n
mesh illustrated in Figure 1. Each processor has
four input and four output queues. Each queue can
hold up to K packets at the same time. The one-
step computation As shown.in [6], if the queue-size
is limited to some constant, then the dimension-
order, greedy algorithm must require ©(n?) time in
the worst case because heavy path-congestion may
occur in the critical positions, where each packet
changes its direction and enters its correct column.
However, the following fact is also true: The greedy
algorithm performs very well on average, i.e., if each
packet has a random destination;.then it can route
all packets in 2n + O(logn) steps with high proba-
bility as proven by Leighton [5]. This allows us to
observe the congestion can also be avoided that if we
can change an arbitrary sequence of packets into the
sequence in such a way that packets of the same des-
tination are almost evenly distributed. Thus Iwama
and Miyano proposed the. following new scheme:
(1) Before routing those packets toward their desti-
nation, the order of packets in their flow is changed
to control the injecting ratio of packets into the crit-

Figure 1: Two-dimensional mesh

ical positions where serious delays can occur, by us-
ing the idea based on the bit-reversal permutation.
(i) Each packet move to its final destination. In
the remaining of this section we shall give a brief
overview of their key ideas.

Now we define the following two notations on
sequences of packets on linear arrays:

Definition 1 (see e.g., [6]). Let 4;iy---i; denote
the binary representation of an integer i. Then ¥
denotes the integer whose binary representation is
tgig_y -+ 11. The bit-reversal permutation (BRP)
is a permutation from [0, 2%~ 1] onto [0, 2¢ ~ 1] such
that (i) = if. Let 2 .= 2, -2, be a se-
quence of packets. Then the bit-reversal permu-
tation-of z, denoted by BRP(z), is defined to be
BRP(:L‘) = ZTr(0)Lr(1) " 'xn’(2‘—1)~

When £ =3, ie., when ¢ = zoz 227324252627,
BRP(z) = 2oT422TcT1252327. Namely, z; is placed
at the w(j)th position in BRP(z) (the leftmost po-
sition is the Oth position).

Definition 2. For a sequence z of n packets,
SORT(z) = xs,@s, -~ Ts,_, denotes a sorted se-
quence according to the destination column, i.e.,
SORT(z) is the sequence such that the destination
column of xz,, is farther than or the same as the
destination column of 2, if i > j..

The following lemma plays a key role.

Lemma 1 [2] Let x = zgx1 - - -2,_1 be a sequence
where n = 2¢ for some integer £, and z = TiTiq1
T;+k-1 be its arbitrary subsequence of length k. Let
zj,, zj, and zj, be any three symbols in z that
appear in BRP(z) in this order. Then the distance
between z;, and z;, is at least [£].

Here is an important observation: Let n = 2¢
for some integer ¢ and suppose that a linear array
of 2n processors, Py through Py,_1, is available.
Also suppose that a sequence T = zgzy---2p_;
of n packets is initially placed on the left half n
processors of the linear array. Namely, Py through
P,_; hold z¢ through z,_; in this order initially.
Then it is known that we can obtain the sequence
BRP(SORT(z)) of n packets by using these 2n pro-
cessors, i.e., there is an algorithm which runs in lin-
ear time and which needs queue-size K = 2 and
by which the sequence BRP(SORT(z)) is finally
placed on the right half of the linear array, i.e., in
P, through Ps,_1. Take a look at the following se-
quence of n packets which has been already sorted

in farthest-first order:
s CkyrrrC2C bk2~~b2 bl ag, -+ -z ai.

Namely, ay,az - - -, ag, are the k; packets whose des-
tinations are all on the rightmost column, 4;,bq,- - -,
by, whose destinations are all on the second right-
most column, and so on. By Lemma 1, for exam-
ple, any two neighboring packets among ag,, -,
aq, a; are at least 7’;—1/2 = g5, positions apart in
BRP(SORT(z)) on average. One can see that if
ki packets of the same destination are truly even-
distributed, then the distance should be -, or four
times larger than what is guaranteed above. How-
ever, this can be compensated for easily if we do
not have to care much for the constant of the time
complexity. What we have to do is to insert three
spaces between any neighboring two packets. Then
the total length of the sequence becomes 4n and the
distance between the two neighboring packets also
becomes four times larger. Namely, by using the op-
eration based on the bit-reversal permutation (and
with the supplementary spacing operation), we can
change the order of packets in their flow into the
pseudo-random order which can remove serious de-
lays at the critical positions. Thus we can achieve
an O(n) algorithm on meshes of constant queue-
size. However, as mentioned above, we need 2n
positions to change the order of n packets in their
flow, i.e., we have to prepare the long permutation
zone to operate the bit-reversal permutation. This
is the main reason why the leading constant of the
running time was large. In the next section we will
see how to reduce this constant down to 6.5n.

3 A 6.5n Algorithm

Recall that, in the previous section, we needed a
linear array of 2n processors to obtain the sequence
BRP{SORT(z)) of n packets. However, by sim-
ulating several processors with a single processor,
the length of the linear array can be shortened with
a sacrifice of the queue-size. The following lemma
will be often used in the rest of the paper:

Lemma 2. For any positive constant, a linear array
of n processors, Py through P,_1, of queue-size K,
can be simulated by a shorter linear array of [cn]
processors, Qo through Qpea1-1, of queue-size [H
K.

Proof. This is a standard technique. See, e.g., [8].
O

For a while, we assume that the side-length n
of meshes is denoted by 2¢ for some constant £.

The extension to the general length will be given
at the end of the paper. Figure 2 illustrates how
each packet moves from its source to destination.
Roughly speaking, a packet whose source is in the
left half and whose destination in the right half, de-
noted by a LR-packets, moves on the so-called sim-
ple path. The path of an LL-packet is a bit more
complicated; it first goes to the left end of the row,
changes its direction 180 degrees, returns to its cor-
rect column position and then goes to its final po-
sition. Similarly for RL-packets and RR-packets.
One can see that the length of the path itself is
at most 2n — 2, which does not lose any optimal-
ity. Also, the path of each packet is not affected by
other packets, i.e., the algorithm is oblivious.

However, how each packet moves on the path is
not so simple. Figure 3 illustrates the left half of
the single row (the right half is similar). LR-packets
on this row are once “packed” into a small portion
of length ¢n which is located at the right-end of the
left half row. Here ¢ is a small constant (< 0.125)
and we call this small portion a cn-tube. LL-packets
are similarly packed into another cn-tube located
at the left-end of the row. Our first goal is to move
those packets so that their original sequence z will
be changed into BRP(SORT(z)) when they fit (in
the sense of Lemma 2) in the cn-tube. It should be
noted that the number of LR-packets in z can take
any number between 0 and n/2 — 1. However, we
consider that the length of z is always n/2, i.e., we
assume that a null packet exists in the place which
is originally occupied by an LL-packet. The packet
movement till this moment is called Stage 1.

In Stage 2, each packet comes out of the cn-tube
and moves to its correct column position. As de-
scribed later we need to insert spaces between neigh-
boring packets. In Stage 3, the packet moves on the
correct column and finally reaches its destination.

Now look at each stage in more detail:

Stage 1 (Permutation). The path of an LR-
packet p is actually a little different from the one

LR

Figure 2: Paths of an LL-packet and an LR-packet

previously described if p is originally placed in the
cn-tube. Now here is a lemma which gives the de-
tails of Stage 1:

Lemma 3. Let ¢ = zgx, <+ Tnfa-1 be a sequence
of LR-packets (possibly including null packets). Then
there is an oblivious algorithm which moves 2 into
the cn-tube where the order of the packets has been
changed into BRP(SORT(z)). Furthermore, the
running-time of the algorithm is n~1 and the max-
imum queue-size is K = [1/c] for some positive
constant ¢ < 0.125

Proof. The LR-packets originally placed in the right-
side cn-cube are once squeezed out of the en-tube

or shifted exactly cn positions to the left. This shift

operation is carried out along with the movement

of LL-packets originally placed in the same cn-tube.

Now the LR-packets stay P, through P, /3¢y, at

most one in each processor of Py through P, /3_5c,_1

and at most two in each of P, /59, through Pyjg_cp.
Then we start the sorting operation by moving those

LR-packets sequentially from the leftmost one. As

one can see in a moment, we do not have to post-

pone the start of this sorting process until the shift

is completed. Now here is a detailed description of

the algorithm:

The sorting operation appears in [1, 8]. For

0 <i<n/2—cn~1, P selects one packet which
should go to the farther column out of the pack-
ets it currently holds, and moves it to the right at
each step. However, P; starts this action at the
(74 1)th step and does nothing until then. If P; has
no packet, then it does nothing again.

The shift operation for LL-packets initially placed
in the right-side cn-tube is as follows: At the first
step, all the cn packets start moving leftward and
keep being shifted one position to the left if they still
need to move leftward. However, the following spe-
cial care is required: Recall that LL-packets move
leftward in the sorting phase in parallel, and those
LL-packets have to move to the farther columns
than the LR-packets, i.e., up to the left-end cn po-
sitions. Then if contention occurs, then we use the
farthest-packet-first rule as the contention resolu-
tion rule and the LL-packet always has a higher

n/2
|l ——l
b —— 77 ~—
— —
cn cn

Figure 3: Packing packets into the cn-tubes

priority. By using the above sorting operation, at
the cnth step the highest prioritized packet among
the cn packets of the cn-tube moves out of there, at
the (cn+1)th step the second highest packet among
those packets moves out and so on. Eventually, at
the (2¢n ~ 1)th step, the cnth farthest (nearest)
packet moves out of the en-tube. This means that
even if LL-packets are given a higher priority, all
the LR-packets can move out of the cn-tube and,
furthermore, each of them can arrive at its correct
(temporal) position in (2cn — 1) steps. Note that
since at the next step Py.,_; will start its first ac-

“tion of the sorting, 4cn should be at most 0.5n, i.e.,

¢<0.125 v

Now we shall go back to the sorting. Since the
farthest packet among LR-packets never delay, it
enter into the right cn-tube at the (n/2 — en)th
step. Also, at the next step, the second farthest
packet enter into the cn-tube, and so on. Finally,
at the (n—en—1)th step, the nearest packet arrives
at Py/9_cn- The bit-reversal permutation can be
implemented in cn steps. As a result, the whole
algorithm can be executed in (n—cn—1)+cn = n—1
steps and its queue-size is [1/c]. 0

Stage 2 (Spacing): Recall that an LR-packet
moves along the simple path, on the other hand,
an LL-packet first goes to the left end of the row,
changes its direction 180 degrees, returns to its cor-
rect column position. We further execute the spac-
ing operation; seven spaces are inserted between
any neighboring packets. Consider the leftmost cn
processors Py through P.,_; on some row. Now
Py must hold the head [-ﬂ LL-packets of the bit-
reversally permuted sequence and P; must hold the
next head [ﬂ packets and so on. In the first step,
Py starts sending the head packet of the sequence
to the right, and then the packet keeps moving one
position to the right at each step. However, the
other packets do not move at all during the first
eight steps. In the ninth step, the second head
packet starts moving, in the 17th step, the third
head packet starts moving. Namely, seven steps are
inserted between the first actions of any neighboring
two packets. Then P; takes over the action, next P,
starts, and so on, but every packet moves along its
correct pat. Once each packet starts, it keeps being
shifted one position to the right if it still needs to
move rightward. The ¢n processors of the right-end
en-tube move their packets by using the same idea,
but always move them rightward.

Each packet changes the direction from right-
ward to upward/downward at the crossing of its cor-
rect destination column. As the contention resolu-

tion rule, turning packets are always given a higher
priority than straight-moving packets.

Stage 3 (Column routing): At each step each
processor moves upward/downward its packet if it
still needs to move.

Theorem 1. There is an oblivious routing algo-
rithm on 2D meshes of queue-size eight which runs
in 6.5n steps

Proof. We only need a large queue-size when we
pack the packets into the c¢n-tube. Note that there
is no congestion at the critical positions as shown
below. Thus by setting ¢ < 0.125, we can get the
queue-size of eight by Lemma 3.

As for the running time, one should recall that
the path-length of each packet is at most 2n. The
overhead occur when (i) the packets are packed and
(ii) spaces are inserted. (Again no delays occur at
the critical positions). (i) By Lemma 3, we need
n — 1 steps to pack the packets. If we would not
need this packing operation, then the first packet
would cross the middle of the mesh from left to
right at time-step zero. Actually, the first packet
cross there at time-step n. Thus the delay is 1.0n.
(ii) Seven spaces are inserted between neighboring
two packets. Hence the last packet cross the middle
in 4n steps since the first packet crossed there. Since
the last packet would cross there in 0.5n steps if we
would need no spaces. Thus the delay is 3.5n steps.
In total we need 2n 4 n + 3.5n = 6.5n steps (at
most) before routing is completed.

Now we shall prove that no congestion occurs
at the critical positions. Suppose that the upper-
most row includes k; a;’s, the second uppermost
row includes ks as’s and so on. Here o;’s are pack-
ets whose column destinations are the same, say,
the jth column and move upward in the column.
In general, the ith row includes k; o;’s

Now consider a processor F; ; at the cross-point
of the ith row and jth column. It is important
to note that, from Lemma 1, P;; receives at most
two o;’s during some particular window A; of %

(€8x ["/ b steps since the length of the sequence

is n/2 and seven spaces are inserted between any
neighboring two packets in the second stage of the
algorithm. If neither of those two packets a;’s can
move up on at some step, then there must be a
packet which is now ready to enter the jth column
by making a turn at some upper position than F ;,
and which can move on in the next time-step. Let
us call such a packet blocking packet against o;’s
Note that the blocking packet against «;’s never

block them again. In the following, we shall show
that the total number of a,’s (1 < m < i-—1)
which Py ; through P;_1; can receive during the
window A; is at most 2—" — 2. In other words, there
must be at least two tlme slots such that no packets
flow on the jth column. Since there are no blocking
packets at those time-slots, the two «;’s currently
held in P;; can move up during the window A;.

Since Py, j can receive at most two apm’s in [2]
steps, the number of ay,’s which Py, j receives dur-
ing A; of &2 2" * steps is at most

2n 4n 2n 2ky,

|2 <o s P =T

Hence, the total number of o’s which Py g through
P;_1; can receive is at most

2ky ke 4+ + ki)
k; ok

since k1 + ko + - + ki_1 < n — k;. The same
argument can apply for any j (1 < j < n) and for
any window A; (1 <7< n). As a result, any delay
does not happen in the column routing phase.

4 A 4n Algorithm

Recall that there are two different overheads in the
6.5n algorithm, 1.0n for due to packing and 3.5n
due to spacing. In this section, we remove the latter
delay. Unfortunately, it doubles the first delay and
so the total delay will be 2.0 or the time complexity
will be 4n.

To remove the spacing delay, we introduce two
measures. One is a tighter analysis of the bit-reversal
permutation, which will given in Section 4.1. The
other is more technical: Recall that there was the
equation k1 + -+ + k;—1 < n — k; in the proof of
Theorem 1. Reading carefully the argument there,
one can see that if this equation can be changed
to ky + -+ ki=y < % — ki, then the number of
spaces can be decreased into three. This new equa-
tion means that the number of packets which can
be blocking packets against ¢; is at most n/2. This
observation must be true if at most n/2 packets (in-
stead of n packets currently) enter a single column.
In Section 4.2, we divide the whole mesh into two
portions, a upper half and a lower half. All packets
whose destination is in the upper (lower) half are
first moved to the upper (lower) half. Then rout-
ing is conducted independently in the upper and
the lower halves, which meets our requirement men-
tioned above.

4.1 Tighter Analysis of Bit-Reversal
Permutation

Recall that Lemma 1 says that the distance between
any neighboring two packets which come from a
subsequence of k packets is at most - on aver-
age. On the other hand, the distance is expected
to be 7 if the packets are truly distributed at ran-
dom. This observation suggests that there is room
for tighter analysis of the bit-reversal permutation
than the previous one.

Lemma 4. Let © = zoz; - 2,1 be a sequence
where n = 2¢ for some integer £. Also let y; be a
subsequence of x such that z = yoy; - y= -1 where
lyil = L = 2% for some integer £; < £. Namely,
Yi = LG-1)LEG-1)L+1 " TiL-1 Let z;, and z;, be
any two symbols in y; that appear in BRP(z) in
this order. Then the distance between xz;, and z;,
Is exactly #.

Proof. Let bin(j) be the binary representation of
the integer j. Consider the subsequence y; = z(;_1)y,
T(i—1)L+1 " - TiL-1. Since (i — 1)L (= the leftmost
position of y;) can be divided by L and |y;| = L,
the lower 4, digits of bin((i — 1)L) are all 0 and the
lower ¢, digits of bin(¢- L—1) are all 1. Furthermore,
the upper (¢ — £;) digits of bin((¢ — 1)L), bin((¢ —
1)L +1),---,bin(i - L — 1) are all the same. That
means that the lower (£ — ¢;) digits of din(((s —
L)LY, bin(((i—1)L+1)R), - - bin((s-L—1)7) are all
the same. It then follows that any two neighboring
symbols among z(;_1yr, T(s-1)141, **» Li.L~1 L€ €X-
actly 274 = 2 positions apart in BRP(z). 0

Lemma 5. Let £ = zgz;---z,-1 be a sequence
where n = 2¢ for some integer ¢, and z = TiLiyy
T;yr—1 be its any subsequence of length & > 13.
Let z;,,2;,,---,z;,, be any 13 symbols in z that
appear in BRP(z) in this order. Then the distance
between z;, and z;,, is at least [£2].

Proof. Divide z into subsequences such that z =
Yoy1 - --Yp—1 where |y;| = & and L = 2% for some

Similarly for y;+2. Since a from part of y; is included
in z, the distance of any two neighboring symbols
among y; is more than ¥. By the similar reason,
the distance of any two symbols among y; 4.3 is more
than . Thus some sequence of ¥ — 1 symbols in
BRP(z) includes at most one symbols of y;. Also,
the sequence includes at most one symbols of each of
Yi+1 through y;43. Since k > 2L, some sequence of
%cﬂ < % includes at most four symbols of 2, i.e., the
distance between any five symbols of 2 in BRP(z) is
at least %cﬂ This means that the distance between
zj, and z;,, is at least 3 22 < [82].

(1-2) 2z covers a part of y;, y;41, and a part
of ¥;42. By the same argument as above, some se-
quence of %:"— < ¥ includes at most one symbols of
each of y;, y;11 and y; 45, Le., three symbols in total.
Thus, the distance between x;, and z;,, is at least
4. ’27? < f%’l], which clearly satisfies the statement
of the lemma.

Case 2. In the case of 3L < k < 4L, there are
also the following two cases:

(2-1) z covers a part of y;, Yit1, Yir2, Yiss, and
a part of y;;4. By Lemma 4, any neighboring two
symbols are % positions apart in BRP(z). Similarly
for yit1, ¥it2, Yi+3, Yi+a. Since some sequence of
3 < 2 in BRP(z) includes at most five symbols of
z, i.e., the distance between any six symbols of z in
BRP(z)is at least 3%. This means that the distance
between r;, and z;,,, is at least 2'%’ < [ST”], which
satisfies the lemma.

(2-2) z covers a part of y;, yiy1, and a part of
Yi+2- By the same argument as (2-1), some se-
quence of %’l < # includes at most one symbols
of each of y;, Yit1, Yiv2 and yiys, Le., four symbols
in total. Thus, the distance between z;, and =z;,,
is at least 3 - %} < f%’i], which satisfies the lemma.

O

4.2 Removing Spaces

Before packing packets into the cn-tubes, we exe-
cute the following column routing:

Stage 0 (Column routing): All the packets

integer £ < £. If z exactly coincide with g;y;41 - - - y;.;Vhich move from the upper half pl.a.ne to the lower
then we can use the previous lemma. Otherwise, z half plane are shifted exactly % positions downward,

starts at some middle position of y; and ends also
at some middle position of y;44.

We consider the following two cases due to the
value of &k, 2L < k < 3L and 3L < k < 4L.

Case 1. In the case of 2L < k < 3L, there are
further two cases:

(1-1) z covers a part of y;, Yit1, Yiyn, and a
part of y;+3. From Lemma 4, any two neighboring
symbols among y;, are exactly apart in BRP(x).

one position at each step. Also, all the packets
which move from the lower half plane to the upper
half plane are shifted exactly 2 positions upward,
one position at each step.

This stage apparently takes at most % steps,
t.e.,, no overhead occurs at this moment. One can
see that there are (at most) n packets in total on
the left half of some row, at most two packets per
each processor. In Stage 1, we pack those n packets

into a cn-tube by using the similar sorting process.
Unfortunately, however, a new 1.0n overhead is cre-
ated for Stage 2. Although the farthest packet can
enter its cn-tube at most in 0.5n steps, the nearest
packet has to wait all the n — 1 packets instead of
0.5n — 1 packets previously. Also, the last packet
has to wait within the c¢n-tube until the other n —1
packets cross the middle instead of 0.5n — 1. How-
ever, the total overhead will be reduced: We can re-
move the spacing overhead greatly due to decrease
of the total number of packets which may flow in
a single column. By combining the tighter analysis
of the bit-reversal permutation with this improve-
ment, we can show that the spacing operation is no
longer required:

Theorem 2. There is an oblivious routing algo-
rithm on 2D meshes of queue-size 12 which runs in
(1 + €)n steps for any small constant e.

Proof. Again consider a processor P;; on the ith
row and jth column and the same situation as the
proof of Theorem 1. Then, from Lemma 5, F; ; re-
ceives at most 12 ¢;’s during new particular window
A;of 73— steps. Similarly, the number of o, ’s which
P, ; receives during A; is at most 12km /k;. Hence,
the total number of a’s which P, ; through P;_j;
can receive is at most

120k + kot kioa) 6n
k,‘ —ki

since ky + ko + -+ ki_1 <n/2—k;. Thus, 12 o;’s
currently held in P, ; can move upward/downward
during the window A; and the spacing is no longer
required. Since we can remove 3.5n overhead at the
sacrifice of 1.0n overhead, the time complexity is
reduced to 6.5n — 3.5n + 1.0n = 4.0n steps. 0

5 A (3+¢e)n Algorithm

Now we are suffering from 2n overhead for the pack-
ing operation, which will be reduced into (1 +¢)n
in this section. The basic idea is as follows: See
Figure 4 which illustrates the left half of some row.
Let x; and zo be the sequence of LR-packets after
Stage 2 of the 4n algorithm (each processor may

T T

x H ox]

Figure 4: Parallel sort

have two packets). Previously, z; and z, are sorted
as a one sequence, which created roughly n over-
head since the leftmost packet may have to wait all
the other packets. This time we sort 1 and zy in
parallel and then merge them. More in detailed, z;
is sorted and into 7" which is a similar tube as T
but placed in the left-end quarter. z is also sorted
into T'. Then we can merge these two sequences as
moving them to the right by using the similar sort-
ing process, where we use the rank of each packet
within the whole bit-reversal permutation as key.
By this, the overhead can be roughly valued and
this reduction of overhead can farther be achieved
by increasing the degree of parallelism.

Theorem 3. There is an oblivious routing algo-
rithm on 2D meshes of queue-size 12 which runs in
(1 + ¢)n steps for any small constant €.

References

[1] D.D. Chinn, T. Leighton and M. Tompa,
“Minimal adaptive routing on the mesh with
bounded queue size,” J. Parallel and Dus-
tributed Computing 34 (1996) 154-170.

[2] K. Iwama and E. Miyano, “An O(v/N) oblivi-
ous routing algorithms for 2-D meshes of con-
stant queue-size,” In Proc SODA’99 (1999)
466-475.

(3] C. Kaklamanis, D. Krizanc, S. Rao, “Simple
path selection for optimal routing on processor
arrays,” In Proc SPAA’92 (1992} 23-30.

[4] M. Kunde, “Routing and sorting on mesh con-
nected processor arrays,” In Proc VLSI Algo-
rithms and Architectures (1988) 423-433.

[5] F.T. Leighton, “Average case analysis of
greedy routing algorithms on arrays,” In Proc
SPAA’90 (1990) 2-10.

[6] F.T. Leighton, Introduction to Parallel Algo-
rithms and Architectures: Arrays, Trees, Hy-
percubes, Morgan Kaufmann (1992).

[7] F.T. Leighton, F. Makedon and I. Tollis, “A
2n — 2 step algorithm for routing in an n x n

array with constant queue sizes,” Algorithmica
14 (1995) 291-304.

[8] R. Miller and Q.F. Stout, Parallel algorithms
for regular archilectures: meshes and pyra-
mids, The MIT Press (1996).

[9] S. Rajasekaran and R. Overholt, “Constant

queue routing on a mesh,” J. Parallel and Dis-

tributed Computing 15 (1992) 160-166.

S. Rajasekaran and T. Tsantilas, “Optimal

routing algorithms for mesh-connected proces-

sor arrays,” Algorithmica 8 (1992) 21-38.

J.F. Sibeyn, B.S. Chlebus and M. Kauf-

mann, “Deterministic permutation routing on
meshes,” J. Algorithms 22 (1997) 111-141.

