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A Strongly Polynomial-Time Algorithm for Minimizing
Submodular Functions

Satoru IwATA * Lisa FLEISCHER ! Satoru FUJISHIGE }

Abstract .

This paper presents a combinatorial polynomial-time algorithm for minimizing submod-
ular set functions. The algorithm employs a scaling scheme that uses a flow in the complete
directed graph on the underlying set with each arc capacity equal to the scaled parameter.
The resulting algorithm runs in time bounded by a polynomial in the size of the under-
lying set and the largest length of the function value. The paper also presents a strongly
polynomial-time version that runs in time bounded by a polynomial in the size of the un-
derlying set independent of the function value. These are the first combinatorial algorithms
for submodular function minimization that run in (strongly) polynomial time.
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1. Introduction

Groétschel, Lovéasz, and Schrijver [7] revealed the polynomial-time equivalence between the op-
timization and separation problems in combinatorial optimization via the ellipsoid method.
Since then, many combinatorial problems have been shown to be polynomial-time solvable by
means of their framework. The problem of minimizing submodular (set) functions is among
these problems. Later, they also devised a strongly polynomial-time algorithm within their
framework using the ellipsoid method [8]. Since the ellipsoid method is far from being efficient
in practice and is not combinatorial, efficient combinatorial algorithms for submodular function
minimization have been desired for a long time. '

In this paper, we present a combinatorial polynomial-time algorithm for submodular func-
tion minimization. Our algorithm uses an augmenting path approach with reference to a convex
combination of extreme bases. Such an approach was first introduced by Cunningham for mini-
mizing submodular functions that arise from the separation problem for matroid polyhedra [2].
This was adapted for general submodular function minimization by Bixby, Cunningham, and
Topkis [1] and improved by Cunningham [3] to obtain a pseudopolynomial-time algorithm. To
develop a capacity-scaling, augmenting-path algorithm for submodular function minimization,
our work in this paper builds on ideas by Iwata [9] and Fleischer, Iwata, and McCormick [5]. We
augment the arc set of the Hasse diagrams with the complete directed graph on the underlying
set, letting the capacity of this additional arc set depend directly on our scaling parameter. This
is the technique first introduced by Iwata [9], who used it to develop the first polynomial-time
capacity-scaling algorithm for the submodular flow problem. This algorithm was later refined
by Fleischer, Iwata, and McCormick [5] into one of the fastest algorithms for submodular flow.

2. Preliminaries

Denote by Z and R the set of integers and the set of reals, respectively. Let V be a finite
nonempty set of cardinality |V| = n. The set of functions z : V — R forms a linear space
‘RY. A vector in z € RY is usually identified with a modular function z : 2V — R defined by
#(X) = Y {z(v) | v € X} (X C V). For each u € V, we denote by ¥, the unit vector in RV
such that xyu(v) =1 (v =u) and =0 (v € V\{u}).

A function f : 2¥ — R is said to be submodular if it satisfies f(X)+ f(Y) > f(XUY) +
f(XNY) (XY C V). We suppose that f(#}) = 0 without loss of generality throughout this
. paper. For basic notation and facts about submodular functions, see Lovédsz [10] and Fujishige
[6], for example.

We define the submodular polyhedron P(f) and the base polyhedron B(f) associated with
the submodular function f by P(f) = {z | z € RV, VX C V : z(X) < f(X)} and B(f) =
{z | z € P(f), (V) = f(V)}, respectively. A vector x € B(f) is called a base. For any base
z € B(f) and any distinct u,v € V define the ezchange capacity as €(z,u,v) = max{a | o €
R,z + a(xu — x») € B(f)}- '

. We call an extreme point of B(f) an extreme base. It is known that for any extreme base
y € B(f) the set of the tight set D(y) = {X | X CV, y(X) = f(X)} is a distributive lattice,



which is equal to the set of (lower) ideals of a unique poset P(y) = (V,<,) on V, and that we
can construct the Hasse diagram H(y) = (V, A(y)) of the poset P(y) in O(n?) time by using
the evaluation oracle [1] (cf. [6, pp. 62-63]).

Computing exchange capacities in general is as hard as minimizing submodular functions.
However, Lemma 2.1 given below shows that if y € B(f) is an extreme base, then the exchange
capacity ¢(y,u,v) can be easily computed for all (u,v) € A(y). We denote by Jy(u) the principal
ideal of P(y) generated by u. That is, J,(u) is the unique minimal ideal of P(y) that contains
u. Note that Jy(u) is the same as dep(y,u) in [6].

Lemma 2.1: For an extreme base y € B(f) let (u,v) € A(y). Then we have E(y,u,v) =

FIy(\{v}) — y(Jy()\{v}). B

For any vector z € RV, we denote by z~ the vector in RV defined by z~ (v) = min{0, z(v)}
for v € V. The following fundamental lemma easily follows from a theorem of Edmonds [4] on
the vector reduction of polymatroids (see [6, Corollaries 3.4 and 3.5]).

Lemma 2.2: For a submodular function f : 2V — R we have
max{z~(V) | = € B(f)} = min{f(X) | X C V}.
If f is integer-valued, then the mazimizer z can be chosen from among integral bases. . W

We will not use the integrality property indicated in the latter half of this lemma. Lemma
2.2 shows a min-max relation of strong duality. A weak duality is described as follows: for any
base z € B(f) and any X C V we have z7(V) < f(X). We call the difference f(X) — z~(V)
a duality gap. Note that, if f is integer-valued and the duality gap f(X) — 2~ (V) is less than
one for some z € B(f) and X C V, then X minimizes f.

3. A Scaling Algorithm

The present section gives a combinatorial algorithm for minimizing an integer-valued submod-
ular function f : 2V — Z with f(#) = 0. We assume an evaluation oracle for the function value
of f. Let M denote an upper bound on |f(X)| (X C V). Note that we can easily compute M
by O(n) calls for the evaluation oracle.

3.1. Algorithm Outline

As indicated earlier, our algorithm uses an augmenting path approach to submodular function
minimization {1, 2, 3]. As with previous algorithms, we maintain a base z € B(f) as a convex
combination of extreme bases y; € B(f) (i € I), so that z = 3", Aiy;.

"To adapt this procedure to a scaling framework, we augment the arc set |J;c; A(y;) with
the complete directed graph on V, let the capacity of this graph depend directly on our scaling
parameter §, an idea first introduced for submodular flows in [9]. In this regard, we actually
concern ourselves with a vector z = z — 8p where ¢ : V. x V — R is maintained .as skew-
symmetric, i.e.,"o(u,v) + p(v,u) = 0 for u,v € V, and §-feasible in that it satisfies capacity



constraints —6 < ¢(u,v) < & for every u,v € V. The function ¢ can be regarded as a flow in
the complete directed graph G = (V, E) with the vertex set V and the arc set E =V x V. The
boundary dp : V — R of ¢ is defined by 9p(v) = Yycp @(u,v) (v € V).

We start with z € B(f) as an extreme point, which is easily obtainable using the greedy
algorithm, and ¢ as the zero flow. Thus, initially 2~ (V) = 27(V) > —nM. We seek to increase
z=(V), and in doing so, obtain improvements in z~(V'), via the §-feasibilty of ¢.

The algorithm consists of scaling phases with a positive parameter 4. It starts with §=M,
cuts § in half at the beginning of each scaling phase, and ends with § < 1/ n?. Each é-scaling
phase maintains a d-feasible flow ¢, and uses the residual graph G(p) = (V, E(p)) with the arc
set E(p) = {{u,v) | u,v € V, u # v, p(u,v) < 0}.

A phase starts by preprocessing ¢ to make it d-feasible, and then repeatedly searches to
send flow along augmenting paths in G(p) from S == {v | v € V, z(v) < dp(v) =} ={v|v €
V, 2(v) < =6} to T := {v | v € V, z(v) > 8p(v) + 8} = {v | v € V, 2(v) > 6}. Such a directed
path is called a §-augmenting path.

If there are no J-augmenting paths, then the algorithm checks the set of arcs in |J; Alyi)
to try to augment along these arcs individually. Such an augmentation changes both z and @
together without changing z and may increase the set of vertices reachable from S in G(p).
This is an extension of a technique for handling exchange capacity arcs in submodular flows
first developed in [5]. Once a §-augmenting path is found, the algorithm augments the flow
¢ by J through the path without changing z. As a consequence, 2z~ (V) increases by ¢ in one

iteration.

3.2. Algorithm Details

We now describe the scaling algorithm more precisely.

At the beginning of the é-scaling phase, after J is cut in half, the current flow ¢ is 26-feasible.
Then the algorithm modifies each ¢(u, v) to the nearest value within the interval [4, 6] to make
it d-feasible. This may decrease 2~ (V) for z = z — 0y by at most (3)d. The rest of the é-scaling
phase aims at increasing 2z~ (V') by augmenting flow along J-augmenting paths. ,

Let W denote the set of vertices reachable by directed paths from S in G(p). For eachi € I,
consider U; = {u | u € W, v € V\W, v <, u}. Then Uj is empty if and only if no arc in H(y;)
leaves W. A pair of i € I and u € W is called admissible if u is minimal in U; with respect to
jyi'

If WNT =0, there is no -augmenting path in G(p). Then, as long as the Hasse diagram
H(y;) for some ¢ € I has an arc leaving W, the algorithm repeatedly picks up an admissible
pair of i € T and u € W. It scans the pair (i,u) by applying the operation Push (i, u,v),
depicted in Figure 1, to each arc (u,v) € A(y;) with v € V\W. The operation Push(i, u,v)
starts with reducing the flow through (u,v) by & = min{d, \;€(y;,u,v)}. It is called saturating if
a = Ai&(yi, u,v), and nonsaturating otherwise. A saturating Push(i,u,v) updates y; as y; := 4+
E(ys, u, v) (Xu—Xv) while nonsaturating one adds to I a new index k with yx := y;+¢(yi, v, v) (Xu—
xv) and Ay = a/E(y;, u,v) and updates A; as A; := A\; — a/€(y;, u,v). Consequently, z moves to
z + a(xy — Xv) in either case. Thus z = z — Oy is invariant. .



Push(i, u, v):

a + min{d, A\;C(y;,u,v)}
(P(ua 'U) « QO('LL, 'U) —o
p(v,u) « pv,u) +a
If o < AC(ys,u,v) then

k « a new index

I« 1U{k}

Ax  a/c(yi,u,v)

Ai «— )\i — Ak

Yk < i + S(¥ir %, ) (Xu — Xo)
else y; < y; + (¥, u, v) (Xu — Xv)
T Yier Aivi

Figure 1: Algorithmic description of the operation Push(z, u,v).

Each time the algorithm applies the push operation, it updates the set W of vertices reach-
able from S in G(y). If Push(4,u, v) is nonsaturating, it makes v reachable from S in G(p), and
hence W is enlarged. Therefore, we encounter at most n nonsaturating pushes before we find
a d-augmenting path or all the admissible pairs disappear. A scan continues until W increases,
or all arcs (u,v) € A(y;) with v € V\W disappear. In the first case, the scan is interrupted.
Thus, if a scan is completed, all pushes are saturating.

If we find a d-augmenting path, the algorithm augments ¢ units of flow along the path, which
effectively increases 2~ (V) by §. We also compute an expression for « as a convex combination
of at most n affinely independent extreme bases y; (i € I), chosen from the current y;’s. This
computation is a standard linear programming technique of transforming feasible solutions into
basic ones by using Gaussian elimination. Since a new index k is added to I only as a result
of a nonsaturating push, |I| < 2n after finding an augmentmg path. Thus, computing a new
expression for z requires O(n?) time.

A é-scaling phase ends when either S = @, 7' = 0, or we find the set W of vertices reachable
from S in G(y) being disjoint with 7" and having no leaving arcs in {J;c; A(y;)-

3.3. Correctness and Complexity

We first show that the use of the push operation results in correct and efficient augmentations.

For a saturating Push(i,u,v), we denote the new y; by y;’ and the previous one by y;. By
Lemma 2.1, Jy, (w)\{v} is tight for 4. Thus, Jy,(u) C Jy(u) \ {v}. For any w € W with
Jy; (w) C W, we have Jy(w) = Jy;(w) € W. These two facts are fundamental in the proof of
the following lemmas. »

Lemma 3.1: After a saturating Push(i,u,v), if v € U; and‘v € V\W, then (i,u) remains
admissible. T



Lemma 3.2: For a vertez v € V\W, Push(i,u,v) is not repeated during a scan of (i,u).

Lemma 3.3: Once (i,u) is scanned, it does not become admissible again before the next aug-

mentation.

Lemmas 3.1 and 3.2 imply that there are at most n—1 pushes in a scan, whereas Lemma 3.3
implies that there are at most 2n? scans before an augmenting path is found.

We now investigate the number of iterations in each é-scaling phase. To do this, we prove
relaxed weak and strong dualities. The next lemma shows a relaxed weak duality.

Lemma 3.4: For any base x € B(f) and any d-feasible flow o, the vector z = z — 8¢ satzsﬁes
2= (V) < f(X)+(5)0 for any X C V.

A relaxed strong duality is given as follows.
Lemma 3.5: At the end of each §-scaling phase, the following (1)~(iii) hold for z and z = z—3d¢p.
(i) If S = 0, then (V) > f(0) —n?%§ and 2= (V) > f(B) — nd.
(i) If T =0, then z=(V) > f(V) —n?5 and 2= (V) > f(V) —nd.

(iti) If S # 0 and T # 0, then 2= (V) > f(W) — n?6 and 2= (V) > f(W) — nd.

Lemma 3.5 implies that at the beginning of the d-scaling phase, after d is cut in half, 2~ (V)
is at least f(X) — 2nd for some X C V. Making the current flow J-feasible decreases z~ (V) by
at most (3)d. Bach d-augmentation increases z™ (V) by 6. Since 27 (V) is at most f(X) + (3)d
at the end of a é-scaling phase by Lemma 3.4 the number of -augmentations per phase is
at most n? + n for all phases after the first. Since 27 (V) = z7(V) > —nM at the start of
the algorithm, setting the initial § = M is more than sufficient obtain a similar bound on the
number of augmentations in the first phase.

As an immediate consequence of Lemmas 2.2 and 3.5, we also obtain the following.

Theorem 3.6: The algorithm obtains a minimizer of f at the end of the §-scaling phase 'wzth
§ < 1/n?

Theorem 3.7: Algorithm SFM runs in O(n” log(nM)) time.

In this section, we have shown a weakly polynomial-time algorithm for minimizing integer-
valued submodular functions. The integrality of a submodular function f guarantees that if we
have a base z € B(f) and a subset X of V such that the duality gap f(X ) 2~ (V) is less than
one, X is a minimizer of f.

4. A Strongly Polynomial-Time Algorithm

This section presents a strongly polynomial-time algorithm for minimizing submodular functions
using the scaling algorithm in Section 3. The new algorithm exploits the following proximity
lemma.



Lemma 4.1: At the end of the d-scaling phase, if z(w) < —n?3, then w belongs to every
minimizer of f. B

Let f : 2V — R be a submodular function and z € B(f) an extreme base whose components
are bounded from above by n > 0. Assume that there exists a subset ¥ C V such that
f(Y) £ —& for some positive parameter <. We then apply the scaling algorithm starting with
§ = 1 and the extreme base z € B(f). After [og,(n3n/k)] scaling phases, § becomes less
than x/n®. Since z(Y) < f(Y) < —~, at least one element w € Y satisfies z(w) < —n26. By

Lemma 4.1, such an element w belongs to every minimizer of f. We denote this procedure by
Fix(f,z,n).

We now discuss how to apply this procedure to design a strongly polynomial-time algorithm
for minimizing a submodular function f. If f(V') > 0, we replace the value f(V) by zero. The
set of minimizers remains the same unless the minimum value is zero, in which case we may
assert that ¢ minimizes f.

An ordered pair (u,v) of distinct vertices u,v € V is said to be compatible with f if u € X
implies v € X for every minimizer X of f. Our algorithm keeps a directed acyclic graph
D = (V, F) whose arcs are compatible with f. Initially, the arc set F' is empty. Each time the
algorithm finds a compatible pair (u,v) with f, it adds (u,v) to F. When this gives rise to a
cycle in D, the algorithm contracts the strongly connected component U C V to a single vertex
and modifies the submodular function f by regarding U as a singleton.

For each v € V, let R(v) denote the set of vertices reachable from v in D and f, the
submodular function on the subsets of V'\ R(v) defined by f,(X) = f(XUR(v))~ f(R(v)) (X C
VA\R(v)). An ordering (vy,---,v,) of V is called consistent with D if i < j implies (vi,v;) ¢ F.
Consider an extreme base z € B(f) obtained by the greedy algorithm with a consistent ordering
(v1,-+,vy). That is, let z(vy) = f(v1) and z(v;) = f{v1,v2,..,05}) — F({v1,v2,...,v5-1})
for j =2,...,n. The extreme base obtained from a consistent ordering is also called consistent.
Then it follows from the submodularity of f that any consistent extreme base x € B(f) satisfies
z(v) < f(R(v)) — f(R(v)\{v}) for each v € V.

In each iteration, the algorithm computes

n = max{f(R(v)) ~ f(R()\{v}) v € V}. (4.1)

If 7 < 0, an extreme base z € B(f) consistent with D satisfies z(v) < 0 for each v € V, which
implies that V' minimizes f. If in addition f(V) =0, then the original function may have had
a positive value of f(V). Therefore, the algorithm returns § or V as a minimizer, according to
whether f(V) =0or f(V) <O0.

Ifn > 0, let u be an element that attains the maximum in the right-hand side of (4.1). Then
we have f(R(u)) = f(R(u)\{u})+n, which implies either f(R(u)) >7/2 > 0 or f(R(u)\{u}) <
-1/2 < 0 holds.

In the former case (f(R(u)) > 7/2), we have fu(V\R(u)) = f(V) — f(R(u)) < —n/2. The
algorithm finds a consistent extreme base z € B(f,) by the greedy algorithm with an ordering
(v1,---,vg) of V\R(u) such that i < j implies (v;,v;) ¢ F. That is, let xz(v1) = fu(v1) and
z(v;) = ful{vi,ve,...,v5}) — fu({vl,bz,...,vj_l}) for j = 2,...,k. Then the extreme base
z € B(fu) satisfies z(v) < f(R(v)) — f(R(v)\{v}) < 1. Thus we may apply the procedure



Fix(fu,2,n) to find an element w € V\R(u) that belongs to every minimizer of fy. Since
% = 1/2, the procedure terminates within O(logn) scaling phases. Consequently, we obtain a
new pair (u,w) that is compatible with f. Hence the algorithm adds the arc (u,w) to F. .

In the latter case (f(R(u)\{u}) < —1/2), we compute an extreme base z € B(f) consistent
with D by the greedy algorithm, and then apply the procedure Fix(f,z,n) to find an element
w € R(u) that belongs to every minimizer of f. Since z(v) < n for every v € V and & = /2
again, the procedure terminates within O(log n) scaling phases. Note that every minimizer of f
includes R(w). Thus it suffices to minimize the submodular function fy, which is now defined
on a smaller underlying set. ‘

Theorem 4.2: The proposed algorithm computes a minimizer of a submodular function in
O(n®logn) time, which is strongly polynomial.

Proof. Each time we call the procedure Fix, the algorithm adds a new arc to D or deletes a set
of vertices. This can happen at most n? times. Thus the overall running time of the algorithm
is O(n® logn), which is strongly polynomial.
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