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The problem of optimizing the sum of m linear fractional functions (SOLF) in a fixed dimension d, subject to
n linear constraints, arises in a number of theoretical and applied areas. This paper presents an improved
algorithm for solving the SOLF problem in 2-D. A key subproblem to our solution is the off-line ratio
query (OLRQ) problem, which computes the optimal values of a sequence of m linear fractional functions
(called ratios), with the ratios subject to a dynamically changing feasible domain defined by O(n) linear
constraints. Based on useful geometric properties and the parametric linear programming technique, we
develop an algorithm that solves the 2-D OLRQ problem in O((m + n)log(m + n)) time. Our OLRQ
algorithm can be easily implemented and is robust. More importantly, it. enables us to speed up every
iteration of a known iterative SOLF algorithm in 2-D, from O(m(m + n)) time to O((m + n) log(m + n)).
Implementation results of our improved SOLF algorithm have shown that in most cases our algorithm
outperforms the commonly-used approaches for the SOLF problem.

1 Introduction _ L
The SOLF problem appears in the algorithmic so-

lutions for several geometric optimization problems.
In layered manufacturing, Majhi et al. [14] showed
that the length-optimal supports for a simple non-

The problem of optimizing the sum of linear frac-
tional functions (SOLF) is defined as follows:

= ng(z z4) convex polygon can be obtained by solving the 1-D
N . ASZEEEER] ing -
(Ih.r'r.l'a;*’fﬁs flrn,.yza) = ; di(z1,...,24) SOLF problem on an interval. Arkin et al. [1] for-
h mulated the problem of finding a minimum-area star-
such that for each ¢ = 1,2,... ,m,

ni(zry,...,zq) and di(zy,...,z4) are lin-
ear functions in a fixed d-D space R,
di{z1,...,z4) # 0 for any (z1,...,24) € S,
the feasible domain S is defined by n lin-
ear constraints (i.e., half-spaces in RY),
and § # ¢. Each linear fractional term

ni(zy,..xa) ;
Ty I called a ratio.

shaped or monotone polygon that contains a simple
polygon, which appears in material layout [1], [6],
[16] (e.g., cloth manufacturing) and manufacturing
[14], as one of optimizing the sum of 2-D fractional
polynomials of degrees 3 and 2 under linear con-
straints. We will show that the objective function
of this problem can actually be simplified to the 2-D
SOLF form. For the problem of finding optimal pen-



etrations among weighted regions [3], we shall show
that the L; and L., versions of this problem have
the 2-D SOLF problem as a key subproblem. The
SOLF problem also arises in other areas. For exam-
ple, in combinatorial optimization, a class of prob-
lems on finding a structure with the maximum (or
minimum) mean-weight cost can be solved by opti-
mizing some linear fractional functions [18]. In oper-
ations research, it was shown in [8], [19] that many
economic applications (e.g., maximization of produc-
tivity, return on investment, and return/risk) can be
reduced to solving the SOLF problem.

Quite a few solutions have been given for the
SOLF problem [1], [8], [12], {14], [20]. It is interesting
to note that the SOLF related problems were orig-
inally studied in economic applications, where the
number of variables is usually much bigger than the
number of fractional terms. As a result, many previ-
ous SOLF algorithms were designed to target prob-
lems with only a few fractional terms (less than 10)
for a reasonable running time [8], [12], [20]. On the
other hand, there are some general-purpose heuristic
packages which can generate local optimal solutions
[10], [11], [15]. However, they usually run in a long
time yet obtain solutions without quality guarantee.

In geometric applications, however, the dimension
of the SOLF problem is often low (e.g., 2 or 3), while
the number of terms in the objective function can
be quite big (hundreds or even thousands) [1], {3],
[14]. In consequence, most previous approaches have
difficulties in dealing with SOLF problems of this
nature. A commonly-used approach by known ge-
ometric algorithms is to reduce the SOLF problem
to computing all real roots of a system of high de-
gree polynomial equations [1], [14]. For an objective
function in d-D (i.e., having d variables) consisting of
m linear fractional terms, there can be O(m?) roots.
The time for computing all the roots essentially de-
pends on the conditioning of these roots. To compute
an ill-conditioned root, substantially long precision is
needed in order to attain a certain degree of accuracy,
thus increasing the computation time significantly.
Clearly, the situation worsens as the number of ill-
conditioned roots increases. Another drawback of
the root-finding approach is the cost and possible nu-
merical errors of the construction of the polynomial
system from the SOLF problem. For example, even
in 2-D, each coefficient in the polynomial system is
computed from O(m) coefficients of the SOLF prob-
lem (by performing O(m?) multiplication and addi-
tion operations). Hence, it is likely that numerical
errors are introduced to the coefficients of the poly-
nomial system, making the solution for the SOLF
problem incorrect. Further, the overhead of O(m?)
time for creating the polynomial system can be quite

significant for a large m.

Falk and Palocsay (8] gave an interesting iterative
algorithm (we call it the FP algorithm) for solving
the general SOLF problem in any fixed dimension. In
this paper, we present an improved solution in 2-D.
By exploiting useful geometric properties and using
the parametric linear programming technique, we are
able to speed up the 2-D FP algorithm considerably.

A key subproblem to our algorithm is the following
2-D off-line ratio query (OLRQ) problem:

Given M linear ratios vy, T2, ..., Tpr and
a set C of N linear constraints in 2-D,
such that N > M and the feasible do-
main defined by the constraints in C is
nonempty, find the mazimum value of each
ratio v; subject to the constraints in C—Cj,
where C; C C, |C;] is a constant, the de-
nominator of each r; is non-zero on each
of its feasible points, and for any i,j €
{1,2,...,M}, C;nCj=¢ ifi # 5.
It turns out that the OLRQ problem constitutes a
key step to the iterative FP algorithm [8]. We treat
the computation on each ratio r; as a query, and
maintain a data structure for processing such queries
(on the dynamically changing constraints).

In [8], the computation on one ratio is done inde-
pendently of another; further, such a computation in
2-D is transformed to a 3-D linear programming (LP)
problem. Thus, solving the 2-D OLRQ problem in
the fashion of (8] would take O(MN) time (by using
Megiddo’s 3-D LP algorithm [?]). By combining the
parametric linear programming technique [19] with
some interesting geometric observations, we develop
a rather simple O((M + N)log N) time algorithm for
the 2-D OLRQ problem. Our algorithm is robust, as
ensured by a robustness theorem.

By making use of our OLRQ algorithm and by
other modifications, we reduce the time bound of
each iteration of the iterative FP algorithm in 2-D
[8] from O(m(m+n)) to O((m+n)log(m+n)). Our
preliminary implementation results on the improved
SOLF algorithm show that, in most cases, our ap-
proach outperforms the root-finding approaches and
some commonly-used global optimization methods.
Furthermore, since our approach directly computes
one optimal value instead of finding all the real roots,
in some degree it may avoid the problem of handling
many ill-conditioned roots, and it appears to use less
space than the usual root-finding approaches.

As applications, we show that the problem of com-
puting a minimum-area star-shaped (resp., mono-
tone) polygon to cover a simple polygon [1}, (6], [16]
(called the star-cover or monotone-cover problem)
and the problem of determining an optimal pene-
tration among weighted 2-D regions [3] (called the



penetration problem) under the L; and Ly, metrics
can all be reduced to solving a set of O(n?) (resp.,
O(n)) instances of the 2-D SOLF problem. Each
such problem instance involves a sum of O(n) linear
fractional functions over a convex domain, and thus
is solvable by our 2-D SOLF algorithm. By using
topological peeling [4] to traverse an arrangement of
O(n) lines, the O(n?) SOLF instances can be gen-
erated one by one in O(n?) time and O(n + Sr(n))
space, where S7(n) is the maximum space used by
the SOLF algorithm on each problem instance.

2 The Off-Line Ratio Query
Problem.

In this section, we show how to solve the 2-D off-line
ratio query (OLRQ) problem in O((M + N)log N)
time. Our algorithm, based on the parametric linear
programming technique, is actually quite simple. We
will first sketch our ideas for handling a single ratio
query over a convex polygonal domain by parametric
linear programming, and then describe a data struc-
ture for efficiently processing the sequence of M ratio
queries.

2.1 Parametric Linear Programming
over a Convex Polygonal Domain.

We first consider the following problem.

Problem 1 Mazimize ri(z,y) = Z—-g—g‘))- = 5—;{-33}%,

subject to (z,y) € S in 2-D, where S is defined by N
linear constraints, S # ¢, and d;(z,y) # 0 for any
point (z,y) € S.

For this problem, we further assume that the com-
mon intersection S of the N half-planes (specified by
the N linear constraints) is already computed and is
represented as an O(N)-vertex convex polygon (pos-
sibly unbounded with some vertices at infinity). We
also assume that a simple O(N)-time preprocessing
has been done on S to associate certain information
with the vertices of S (this will be discussed later).
Since the domain S is convex, the maximum value
of r;(z,y) is actually attained at a vertex of S, as
shown in [19]. This immediately implies a brute-
force method: First evaluate the value of r;(z,y) at
every vertex of S, and then take the maximum among
the resulted O(N) candidate values. This method
takes O(N) time once S is available, but using it to
solve the OLRQ problem would yield an expensive
O(MN) time algorithm. To obtain a better solution,
we consider the parametric version of the objective
function r;(z,y) = ;’y)) = % on S, ie.,
fi(d) =

m Ly - /\dz ’ )
(x,y?‘é‘s{” (z,9) (z,u)}

The function f;(A) is a parametric linear function. It
is clear that for any given value X, the value of f;(\)
is the solution to an LP problem P(\') on S whose
objective function is n;(z,y) — Nd;(z,y).

It is known [19] that maximizing r;(z,y) on S is
equivalent to computing the root A* of fi(A) = 0
(i.e.,.the maximum value of r;(z, y) occurs at A\*). To
compute A* efficiently, we make use of the fact that
the curve of f;(A) is monotone and piecewise linear
[18]; moreover, for all values of A corresponding to
each linear piece of f;(A), fi(A) actually attains its
values at the same vertex of S, say v. The union of
all A values (at vertex v) for a linear piece of f;(A)
forms an interval on the A-axis, denoted by vy. Also,
note that the slope of the parametric line n;(z,y) —
AMd;i(z,y) changes monotonically with respect to .

For a given A, the slope s of the objective func-
tion ny(z,y) — Adi(z, y) of the LP problem P(\) de-
termines O(1) vertices on the boundary of S such
that each of them has a tangent line with slope sy.
Obviously, one of them is the optimal point for P()),
i.e., the vertex of S at which f;(\) attains its value.
The slopes of all tangent lines at any vertex v of S

“clearly form an interval, which we denote by I, Ly

may contain +oco or —co). Hence, to decide whether
a vertex v of S is one of the O(1) candidates for the
optimal point of P()) (i.e., at such a candidate ver-
tex fi(A) is evaluated for its value), one only needs
to check whether I, contains sy. Due to the mono-
tonicity, every slope interval I, corresponds to one A
interval vy.

Lemma 2.1 Let vypper and viower be two vertices
on the upper and lower boundaries of S respectively,
such that I, ... and I, both contain the slope
=4, Then the values in vy change monotonically
while visiting the vertices v by walking counterclock-
wise along the boundary of S either from vypper to

Vlower OT from Viower t0 Vupper -

Lemma 2.1 and the properties of f;(\) imply that
we can perform a binary search on the vertices of S
to find out at which vertex the root A* of f;(\) lies.

" Suppose the search is visiting a vertex v for a value

A (ie., vy contains A\). Without loss of generality
(WLOG), we assume that v is on the upper bound-
ary of S. To compute f;(A\) correctly, we need to find
the vertex v’ on the lower boundary of S, such that
v} also contains A. To be able to locate v’ quickly,
we assume that a preprocessing on the vertices of S
has already associated with v the list of all of its an-
tipodal vertices [17], in the counterclockwise order.
Actually, to represent the antipodal vertex list of v,
it is sufficient to store the starting and ending ver-
tices lapd(v) and rapd(v) of the list (called extreme
antipodal vertices). Given S, this preprocessing can



be easily done in O(N) time [17]. With the antipo-
dal vertex information already available for each v,
the algorithm below computes the root A* of fi(A)
in"O(log N) time. Let the vertices of S be ordered
counterclockwise along its boundary and next(v) and
pred(v) denote the successor and predecessor of a
vertex v in this order.

1. Let vpirst be Vupper and vjgse be Vjower (assume
Vypper ald Ujoyer have been identified in the pre-
processing).

2. Compute the slope sy of the line through both
Vgirst and next(vsyrs:) and the slope s; of the
line through both v, and pred(viest). Deter-
mine the values Ay and A; for sy and s;.

3. Compute f;(Af) and f;(N;). If they both have
the same sign, then evaluate 7;(x,y) at vupper
and vjower and take the maximum as the solu-
tion.

4. Otherwise, compute fi(Ani) and fi(Anr), where
Amy and Ay, are the two extreme A values asso-
ciated with the middle vertex v,,;4 of the list of
vertices from vgirg¢ tO Vigs¢. Determine which
half of the vertex list contains the root, and re-
cursively search on the appropriate half.

5. If only one vertex is left in the list, say v, then
evaluate r;(z,y) at v, and also perform a binary
search on the vertices from lapd(v) to rapd(v),
in order to determine the root.

Lemma 2.2 The above algorithm correctly com-
putes the root A\* of fi(A) in O(log N) time provided
that the operations of finding the median, succes-
sor, predecessor, and extreme antipodal vertices can
be performed in constant time each, where N is the
number of vertices of S.

2.2 Sequence of Off-Line Ratio

Queries.

We now show a sequence of M 2-D ratio queries
T1,72,...,7ar (73 on constraints in C — C;) can be
efficiently processed by means of a data structure.
Although the M queries are on different domains,
these domains differ from each other at only O(1)
constraints. Hence, it is possible to maintain an effi-
cient data structure for these changing domains (as
well as other useful iriformation such as the antipodal
vertex list of each vertex of every convex polygonal
domain) in an off-line fashion.

Our OLRQ algorithm is based on the structure of
layers of common intersections of half-planes in C,
which is defined as follows:

1. Let CL; be the common intersection of all half-
planes in C, and let it be the common inter-
section of layer 1. (Note that CL; # ¢ since
CLy=3S.)

2. Remove from C all the half-planes whose
boundaries contain a boundary edge of CL;.

3. Repeat steps 1 and 2 to define the common in-
tersections of layers 2, 3, ..., until C = ¢.

Figure 1 gives an example for the layers of common
intersections of C. Note that these layers of common
intersections of the half-planes are closely related,
through a geometric duality [17], to Chazelle’s con-
vex layers of a planar point set [2].

Let k = 1+ maxi<i<m{|Ci]}. It is easy to observe
that each of the M domains for the ratio queries
contains the common intersection S = CL; of all
half-planes of C; further, all these domains are con-
tained inside the k-th common intersection layer (if
it exists). Based on this observation, we only need to
make use of the first k£ (convex) common intersection
layers CL1,CLo,...,CLy of the N linear constraints
of C. These k convex layers can all be computed in
O(Nlog N) time by using Chazelle’s algorithm [2],
with each convex layer being stored in an array. Once
this k-layer structure is available, the M domains can
be constructed easily, by removing certain specified
constraints.

More precisely, for a query r;, if there is no half-
plane hp (i.e., constraint) in C; whose boundary line
{(hp) contains an edge of the boundary bd(CL;) of
CLy, then the domain of r; is CLy. Otherwise, as-
sume the boundary line I(Ap) of a half-plane hp € C;
contains an edge of bd{CL;). To obtain the domain
of r; defined by C — C;, we need to “expand” CIL,
onto CLy by removing I(hp) from bd(CL;). The
removal of [(hp) causes C'L; to expand along the
two neighboring lines, lies: and lyigns, of {(hp) on
bd(CLy). That is, a convex polygon @ which is
bounded by I(hp), lieft, lright, and possibly bd(CLy)
and which is to the right of [(hp) N bd(CL;) (as we
walk along bd(CL) counterclockwise) is attached to
CL;. Let lieps and lrign; intersect bd(CLy) at two -
points p; and p,, respectively. The expanded con-
vex polygon @ is called the cap of hp, denoted by
cap(hp). Note that l;c¢; and g5, may intersect each
other at a point p before they touch bd(CLs), and if
this is the case, cap(hp) is the triangle ppie ftDright,
where prese (resp., Pright) Is the intersection of [(hp)
and liege (resp., lrignt). If a boundary edge of D; =
cap(hp) U CLy lies on l(hp') of another half-plane
hp' € C; (e.g., the half-plane bounded by 7g in Fig-
ure 1), then we similarly expand D; onto C'Ly or
CL3, and so on.

It is not hard to see that each expansion (caused
by the removal of a half-plane in C;) can be done in
O(log N) time, since it performs O(1) binary searches
on one of the k convex layers (for computing its in-
tersections with two lines). Thus for each query 7,
its O(k) caps can all be obtained in O(log N) time.
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Figure 1: The expansion of a cap bdfhi. The
dashed lines represent the removed constraints.

After all the caps of r; are found, we need to com-
pute the antipodal vertices for the vertices on the
boundary of the union of these caps and CL;. The
information on such antipodal vertices is needed for
handling the query r;, as shown in Subsection 2.1.
We can show that it is possible to compute the an-
tipodal vertices for all the M ratio queries in alto-
gether O(M + N) time.

Theorem 2.3 The OLRQ problem can be solved in
O((M + N)log N) time and O(M + N) space.

3 Robustness Theorem for
Optimizing Fractional Func-
tions.

In this section, we first prove a robustness theorem
for optimizing a fractional function in any fixed di-
mension d, and then use this theorem to ensure the
robustness of our OLRQ algorithm.

Let P be the primal problem of optimizing a frac-
tional function:

Problem 2 Mazimize r(z) = a’%zjl—g, subject to x €

S C R?, where b € R and S is the feasible domain of
z.

We also assume that g(z) > 0 for all z € S and
b > 0. The essence of these conditions on g(z) + b is
to ensure that g(z) does not get arbitrarily close to
zero in S, i.e., b is a non-zero constant lower bound on
how close the denominator can get to zero. Hence,
it will be fine if we have g(z) < 0 for all z € S
and b < 0 (in this case, the conditions of problem P
are satisfied since we can simply change the signs for
both h(z) and g(z)+b). Associated with problem P,
we consider its parametric version Q(\) with a linear
parameter A:

Problem 3 Mazimize h(x) — Ag(z), subject to x €
S C R4, where A € R.

Let z(A) and v()A) be the optimal solution and the
objective value of problem Q(\), respectively. Let A*

satisfy v(A*) = A*b, i.e., A\* is the optimal objective
value of P. WLOG, assume that A* > 0. Notice that
v(A) is nonincreasing in A due to g(z) > 0. We shall
show the following theorem.

Theorem 3.1 Let z’ be a feasible solution of P such
that

v(X) =6 < h(z’) - Ng(2') So(M)+45, (1)

=6 < h(z') = N(g(a') +b) < 6. (2
Then z' is an e-approzimate solution of problem P,
where § = 4’5‘—.

Intuitively, the theorem says that if we have an
approximate solution z’ of Q()') such that the ob-
jective value of Q()') is almost zero, then 2’ is an
approximate solution of P. This implies a useful ro-
bustness property of the linear fractional problem we
consider.

Note that, in order to apply Theorem 3.1, we need
to know a positive lower bound of the value of A\*
because € is related to the value of \*.

Lemma 3.2 Let r(2) = Z(;), where x € § C R4,
be a linear fractional function such that d(z) # 0
for any z € S. Then r(z) can be represented as a
function of the form g—(’%%)_—b, such that b‘> 0 and
g(z) >0 foranyz € S.

Theorem 3.1 and Lemma 3.2 can be used to im-
prove the robustness of our 2-D OLRQ algorithm in
Section 2. Note that for each ratio r;(x,y) = %%z'—))
in our OLRQ problem, ¢ = 1,2,..., M, di(z,y) #
0 for any point (z,y) in the feasible domain S.
WLOG, suppose di(z,y) > 0 and A} > 0 over
S. Then the minimum value b; of d;(z,y) and a
positive lower bound A of Af over S for the ratio
query 7i(z,y) can be easily obtained in O(log|S|)
time once the feasible domain S for r;(z,y) is avail-
able (Al = r;(z!,y') such that at the point (z!,3!),
ni(z!,y") = max(yy)esni(z,y)). Our OLRQ algo-
rithm uses a binary search on the boundary of a
convex polygonal domain to determine the root of
fi(2). However, when the search examines a \ value
such that f;(A) is very close to 0, numerical errors
could change the sign of f;(A) and thus misguide the
course of binary search. By Theorem 3.1, we know
that when f;(\) is close to 0, X is close to A*. Thus,
we can terminate the binary search process and sim-
ply use the corresponding boundary vertex as an e-
approximate optimal solution.



4 Speeding up the FP Algo-
rithm for the 2-D SOLF
Problem.

In this section, we show how the time bound of each
iteration of the FP iterative algorithm for the 2-D
SOLF problem [8] can be sped up from O(m(m-+n))
to O((m + n) log(m + n)).

We begin with an outline of the general FP itera-
tive algorithm [8]. Let T = (z1,22,...,24)T € S C
R?. The FP iterative algorithm first transforms the
original SOLF problem in d-D (called the X-space)
to another problem in m-D (called the R-space), by
Zg)) in the objective
function f(Z) to a corresponding dimension r; in the
new m-D space (i.e., 7; = 7;(Z) is a variable in the
R-space). The SOLF problem thus becomes one of
optimizing F(F) = >/, ; in the R-space. It then
computes an upper bound u; for each dimension r;
and a feasible lower bound f; for F(F). These u;,
i=1,2,...,m, and f; together define a simplex in
the R-space containing at least one optimal point.
The algorithm iteratively cuts the simplex by reduc-
ing the upper bounds u;, and an optimal solution is
obtained when the upper bounds match f;. When
the algorithm cannot. lower the upper bounds any
further (this is called a stall state), it either increases
the lower bound f; to change the domain, or splits
the simplex into two and searches on each of them.

mapping each ratio 7;(Z) =

The key step in each iteration of the FP algorithm
is to compute the upper bound u; for each ratio 7,
by transforming it to solving a (d+1)-D LP problem.
Using Megiddo’s LP algorithm for any fixed dimen-
sion d (7], all m upper bounds can be obtained in
O(mn) time. Other steps of the iteration (for updat-
ing and representing the new simplex resulted from
cutting) take O(m?) time.

To speed up the FP algorithm, we formulate the
operations for computing the m upper-bounds in
each iteration as a sequence of m ratio queries, and
reduce it to an OLRQ problem with parameters
k=2, M =m,and N = |C| = m+n. The total time
for computing the m upper bounds in each iteration
is thus reduced from O(mn) to O((m+n) log(m+n)).
By using an implicit representation for storing the
simplex (instead of an explicit one as in [8]), we are
able to carry out the rest of the computation in each
iteration in O(m) time. Therefore, the time bound of
each iteration of the FP algorithm in 2-D is reduced
from O(m(m + n)) to O((m + n)log(m + n)).

5 Solving Geometric Opti-
mization Problems as SOLF
Problems.

In this section, we discuss two geometric optimiza-
tion problems which can be reduced to 2-D SOLF
problems (and thus are solvable by our improved
SOLF algorithm).

The reductions for these problems are all hinged
on a traversal of a 2-D arrangement of O(n) lines [7]
that defines the domains and objective functions of
various instances of the SOLF problem. The arrange-
ment traversal is based on a new technique called
topological peeling [4].

5.1 Minimum Area Star Cover and
Monotone Cover Problems.

Let P be an n-vertex simple polygon. The star-cover

or monotone-cover problem on P is that of comput-
ing a star-shaped or monotone polygon P’ such that
P’ contains P and the area of P’ is minimized [1],
[6], [14], [16]. This problem finds applications in ma-
terial layout (e.g., cloth manufacturing) and manu-
facturing. Arkin et al. [1] showed that the star-cover
(resp., monotone-cover) problem is reducible to solv-
ing O(n?) (resp., O(n)) problems of optimizing the
sum of O{n) fractional polynomials of degrees 3 and
2 under O(n) linear constraints in 2-D. We are able to
reduce the star-cover (resp., monotone-cover) prob-
lem to O(n?) (resp., O(n)) instances of the SOLF
problem in 2-D. Qur star-cover algorithm also im-
proves the space bound of [1]. The details are left to
the full paper.

Theorem 5.1 In O(n?) (resp., O(nlogn)) time
and O(n) space, it is possible to reduce the minimum-
area star-cover (resp., monotone-cover) problem to
O(n?) (resp., O(n)) problem instances of optimizing
the sum of O(n) linear fractional functions subject to
O(n) linear constraints in 2-D. '

5.2 Optimal Penetration Problem.

The optimal penetration problem [3] is defined as
follows. Given a subdivision R with a total of
n vertices in 2-D, divided in m regions E;, ¢ =
1,2,...,m, find a ray L such that L originates from
outside R and intersects a specified target region
T € {Ry,Ra,...,Rn}, and such that the weighted
sum S(L) = 3 ;1 g,z wi* fi(L) is minimized, where
Fi(L) is a function associated with the pair (R, L)
and w; is a weight factor associated with R;. Such a
ray L is called a penetration. The regions R; are all



simple polygons, and the weights of T" and the com-
plement R of R are zero (R is the free space outside
R). This problem arises in several applied areas such
as radiation therapy, geological exploration, and en-
vironmental engineering (see [3] for a discussion of
the applications).

Let Ry be the set of regions of R intersected by a
ray L and d; be the length of L within R; € Ry. As
shown in [3], if the length d; is computed in the L
metric, then this problem can be reduced to solving
O(n?) instances of an optimization problem in 2-D,
each such problemn with an objective function of the
form v/1 + 22 37, 2¥HY where (z,y) is any point

i=1 x-—-x;
in a convex domain defined by linear constraints. If
the L1 and L metrics are used, then we can prove
the following theorem (the details are left to the full

paper).

Theorem 5.2 In O(n?) time and O(n) space, it is
possible to reduce the optimal penetration problem
under the L1 and Lo, metrics to O(n?) problem in-
stances of optimizing the sum of O(m) linear frac-
tional functions subject to O(n) linear constraints in
2-D.

6 Implementations.

We have implemented the 1-D FP algorithm and the
improved 2-D FP algorithm. Our implementations
are based on LEDA, and all experiments ran on a
SUN ULTRA 30 computer. Because of the space
limit, we only give the results for 2-D case.

For our improved 2-D FP algorithm, we tested it
using a set of randomly generated problem instances
with different numbers of ratios (up to 1000) and dif-
ferent numbers of linear constraints (from 3 to 1000),
and compared it with several optimization softwares,
such as Maple, CFSQP [5], and GENOCOP III. So
far, much of our efforts is on large-ratio problems.
This is motivated by the observations that Maple has
difficulties with handling problems with ratio num-
bers > 24, and the local optimization package CF-
SQP fails to obtain good quality solutions for large-
ratio problems.

Our experimental results are summarized in Fig-
ure 2, where all problems are of ratio numbers larger
than 100, and the average execution time is taken
over 15 runs on problems with the same numbers of
ratios and linear constraints. Only one comparison
is made, with GENOCOP III, for the 2-D algorithm
(a good software package for solving systems of high

degree polynomial equations is not yet available to -

us). Figure 3 shows that our algorithm is roughly
10 times faster than GENOCOP III for large-ratio
problems.

The experiments seem to suggest that the average
execution time of our algorithm is a slowly growing
function of the number of ratios. It is also interesting
to note that the execution time does not increase too
much when more constraints are used. One of our ex-
planations is that since our algorithm improves the
time complexity of each iteration from O(m(m + n))
to O((m+n)log(m+mn)), the influence of an increas-
ing n is not significantly amplified by m. The experi-
ments also show that for most problem instances, the
number of iterations is much bigger than the number
of R-space simplex splitting, implying that it makes
sense to reduce the time complexity of each iteration.

We think the experiments on our 2-D cases are
not quite thorough and the result given in Figure 2
is only a preliminary version. More data and a full
analysis will be given in the full paper.
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and the improved 2-D FP algorithmn for problem
instances with numbers of ratios > 100.



