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Abstract Kravtsev introduced 1-way quantum 1-counter automata (1Q1CAs), and showed
that several non-context-free languages can be recognized by bounded error 1Q1CAs. In
this paper, we first show that each of these languages can be also recognized by bounded
error 1-way probabilistic reversible 1-counter automata (1IPR1CAs) with probability greater
than that of corresponding Kravtsev’s original 1Q1CA. Second, we show that there exists
a bounded error 1IPRICA (and so 1Q1CA) which recognizes {a7a? - --a}}, for each k > 2.
We also show that, in a quantum case, we can improve the accepting probability in a strict
sense by using quantum interference. Third, we state a relation between 1-way deterministic
1-counter automata (1D1CAs) and 1Q1CAs. On one hand, all of above mentioned languages
cannot be recognized by 1D1CAs because they are non-context-free. On the other hand, we
show that a regular language {{a, b}*a} cannot be recognized by bounded error 1Q1CAs.

1 Introduction

It has been widely considered that quantum mechanism gives new great power for computation
after Shor [8] showed the existence of quantum polynomial time algorithm for integer factoring
problem. However, it has been still unclear why quantum computers are so powerful. In this
context, it is worth considering simpler models such as finite automata.

Quantum finite automata were introduced by Moore and Crutchfield [6] and Kondacs and
Watrous [3], independently. The latter showed that the class of languages recognizable by
bounded error 1-way quantum finite automata (1QFAs) is properly contained in the class of
regular languages. This means that 1QFAs are strictly less powerful than classical 1-way deter-
ministic finite automata. This weakness comes from the restriction of reversibility. Since any
quantum computation is performed by unitary operators and unitary operators are reversible,
any transition function of quantum computation must be reversible. Ambainis and Freivalds [2]
studied the characterizations of 1QFAs in more detail by comparing 1QFAs with 1-way proba-
bilistic reversible finite automata (1IPRFAs), since 1PRFAs are clearly special cases of 1QFAs.
They showed that there exist languages, such as {a*b*}, which can be recognized by bounded er-



ror 1QFAs but not by bounded error IPRFAs. However, as we show in this paper, this situation
seems different in case of automata with one counter.

. Kravtsev [4] introduced 1-way quantum 1-counter automata (1Q1CAs), and showed that sev-
eral non-context-free languages L1 = {a‘ba’ba* | i=j=k}, Ly = {a’balba | k=i#jVk=j#i},
and Ly = {aibaj ba* | exactly 2 of 4,7, k are equal}, can be recognized by bounded error 1Q1CAs.
No clear comparisons with other automata such as 1-way deterministic 1-counter automata
(1D1CAs) or 1-way probabilistic reversible 1-counter automata (IPR1CAs) were done in [4]. In
this paper, we investigate the power of 1Q1CAs in comparison with 1PR1CAs and 1D1CAs.

We first show that all of these non-context-free languages can be also recognized by bounded
error 1PR1CAs (and so 1Q1CAs). Moreover, the accepting probability of each of these 1PR1CAs
is strictly greater than, or at least equal to, that of corresponding Kravtsev’s original 1Q1CA.

Second, we show that there exists a bounded error IPR1CA (and so 1Q1CA) which recognizes
Ly 4 = {aja3---a;}, for each k > 2. This result is in contrast to the case of no counter shown
by Ambainis and Freivalds [2] and Ambainis et. al. [1]. We extend this result by showing that
there exists a bounded error IPRICA (and so 1Q1CA) which recognizes Ly s = {a}a} ---a}},
for each k > 2. We also show that, in a quantum case, we can improve the accepting probability
in a strict sense by using quantum interference.

Third, we state the relation between 1D1CAs and 1Q1CAs. On one hand, all of above
mentioned languages cannot be recognized by 1D1CAs because they are non-context-free. On
the other hand, we show that a regular language {{a,b}*a} cannot be recognized by bounded
error 1Q1CAs.

2 Definitions

Definition 1 A I-way deterministic I-counter automaton (1D1CA) is defined by a 6-tuple M =
(Q,%,6,90, Qace,Qrej), where Q is a finite set of states, T is a finite input alphabet, gy is the
initial state, Qscc C Q 15 a set of accepting states, Qrej C Q is a set of rejecting states, and
6:Q@xIx 8 —Qx{-1,0,+1} is a transition function, where I' = LU {¢,$}, symbol ¢ € & 4s
the left end-marker, symbol § € T is the right end-marker, and S = {0,1}.

We assume that each 1ID1CA has a counter which can contain an arbitrary integer and the
counter value is 0 at the start of computation. —1,0, 41 respectively, decreases by 1, retains the
same and increases by 1 the counter value. Let s = sign(k), where k is the counter value and
sign{k) = 0 if k = 0, otherwise 1. We also assume that all inputs are started by ¢ and terminated
by §.

The automaton starts in go and reads an input w from left to right. At the ith step, it reads
a symbol w; in the state ¢, checks whether the counter value is 0 or not (i.e. checks s) and finds
an appropriate transition 6(g,w;, s) = (¢, d). Then it updates its state to ¢’ and the counter
value according to d. The automaton accepts w if it enters the final state in Qacc and rejects if
it enters the final state in Qrej.

Definition 2 A I-way reversible I-counter automaton (1R1CA) is defined as a 1DICA such
that, for any ¢ € Q, 0 € T and s € {0,1}, there is at most one state ¢ € @Q such that

(g, 0,8) = (g,d).

Definition 3 A I-way probabilistic 1-counter automaton (1P1CA) is defined by a 6-tuple M =
(@,%,68,q0, Qace, Qrej), where Q, B, qo, Qace, and Qrej are the same as for 1D1CAs. A transition
function § is defined as Q@ xT'x § x Q@ x {~1,0,+1} = R, where I',¢,$, and S are the same
as for 1D1CAs. For any q,¢' € Q,0 € I',s € {0,1},d € {~1,0,+1}, § satisfies the following
condition:

Zl]’,d 5(q’ g, 8, q/, d) = 1.



The definition of a counter remains the same as for 1D1CAs.

A language L is said recognizable by a 1P1CA with probability p if there exists a 1IP1CA
which accepts any input z € L with probability at least p > 1/2 and rejects any input z ¢ L
with probability at least p. We may use the term “accepting probability” for denoting this
probability p.

Definition 4 A I-way probabilistic reversible 1-counter automaton (IPR1CA) is defined as a
1P1CA such that, for any ¢ € Q, o € I and s € {0,1}, there is at most one state ¢ € Q such
that 6(q', 0, ,q,d) is non-zero.

Definition 5 A I-way quantum I-counter automaton (1Q1CA) is defined by a 6-tuple M =
(Q,%,8, 90, Qace, Qrej), where Q, T, qo, Qace, and Qrej are the same as for 1D1CAs. A transition
function & is defined as @ X' x S x Q@ x {-1,0,+1} — C*, where I, ¢, 8, and S are the same
as for 1D1CAs. For any q,¢' € Q,0 € I';s € {0,1},d € {-1,0,+1}, 0 satisfies the following
conditions:

1 (n=g)
! 5T 30,81, I)d6 , 0,82, ,ad - 3
Ygad(a,0,81,d,d)0(az,0,52,¢,d) {0 (@ # 0)

qu'd Jt(ql’ 7551, q’7 +1)6(q2,0', 82, ql70) + 51((11,0, 317ql,0)6(QZ70’7 82, ql7 ‘1) =0,
Zq/’d(ﬁ(ql,cf,sl’ql’ +1)8(gz, 0, 82, ¢, —1) = 0.

The definition of a counter remains the same as for 1D1CAs. The definition of the recognizability
remains the same as for 1P1CAs.

The number of configurations of a 1Q1CA on any input z of length n is precisely (2n+1)|Q|,
since there are 2n + 1 possible counter value and |Q| internal states. For fixed M, let C,, denote
this set of configurations. ‘

A computation on an input z of length n corresponds to a unitary evolution in the Hilbert
space Hn = 12(Cy). For each (g,k) € Cn,q € Q,k € [-n,n], let |g,k) denote the basis vector in
[(Cp).

A unitary operator U? for a symbol o on Hy, is defined as follows:

Ulg, k) = X g 49(q, 0,sign(k), ', d)l¢', k + d),

To describe concrete automata easily, we use simple 1Q1CAs. A 1QI1CA is said simple if
for any o € T',s € {0,1}, there is a unitary operator V;; on [2(Q) and a counter function
D:QxI — {-1,0,+1} such that

'Volg) if D(¢',0) =d

6 I d —_ <q ‘ g ’

(¢:9,5,',d) {0 otherwise

where (¢'|Vys|q) is the coefficient of |¢) € V5 4|q). For convenience, we also use this representation
for 1D1CA, 1R1CA, and 1PR1CA. ‘

3 Recognizability of some non-context-free languages

Kravtsev [4] showed that several non-context-free languages such as L; = {aibaj bak |i=j =k},
Ly = {aibajbak | k=i#jvk=j;éi}, and L3 = {aibajbak | exactly 2 of 4, j, k are equal}, can be
recognized by bounded error 1Q1CAs. In this section, we show that all of these languages can
be also recognized by bounded error IPR1CAs. Moreover, the accepting probability of each of
these 1IPR1CAs is strictly greater than, or at least equal to, that of corresponding Kravtsev’s
original 1Q1CAs. This also indicates the existence of a 1QICA for each of these languages
whose accepting probability is strictly greater than, or at least equal to, that of corresponding
Kravtsev’s original one, since a IPR1CA is regarded as a special case of a 1Q1CA.



Let Li—; = {a‘ba/ba* | i=j} and Li~(j+k)/2 = {a'bafba¥ | i=(j+k)/2}. The existence of a
1R1CA for each of these can be shown easily.

Lemma 1 There exist 1R1CAs Mr(Li=;), Mr(Lj=t), MRr(Lg=:) for Li—j, Lj=g, Ly=;, respec-
tively.

Lemma 2 There ezist 1R1 CAs Mr(Li—(j1x)/2)) MR(Lj=(k+i)/2)s Mr(Ly=(i1j)/2) for Li(jin) 2,
Lj—(kvi)s2> Li=(itj)/2, Tespectively.

Proof: We show the case of L= x)2. Other cases of L;_(x1i)/2, Lr=(i+j)/2 can be shown in
similar ways.

Let the state set Q = {qo,91, 92,93, %4, G5, Gacc, Yrej1, Grej2, Grej3, Grejds Grejs |, Where gp is an initial
state, qacc is an accepting state, and grej1, grej2, Grej3, Grej4, Grej5 are rejecting states. Define the
transition matrices Vy,s and the counter function D of Mr(L;—(j;)/2) as follows:

Violgo) = la1), Vsolar) = larej1),  Vaolqr) = |@1), Voolar) = la2),
Vsolaz) = lareiz)s  Vaplae) = lareiz),  Vaolaz) = laa),
VS,OIq4> = ’qacc>y Va,O‘q4> = rCIrej4>> Vb,[)lq4> = JQrej4>;

D(qi,a) =+1, Vgila1) = laej1),  Vaila) = la1), Voilar) = laa),
D(g2,0) = =1,  Vi1lq2) = |grej2),  Vanilae) = laz), Woilg) = |aa),
D(qq,a) = —1,  Vgilas) = |gez)s  Varles) = |g2), Walas) = lgs),
D(q,0) =0, Vs1lga) = greja),  Vanlas) = [gs), Vb,1|9a) = [greja),
otherwise,  Vs1la5) = |arejs),  Va1lgs) = [q4), Vo1gs) = |grejs)-
Reversibility of this automaton can be checked easily. O

3.1 Recognizability of L;, L,, and Ly

Kravtsev [4] showed the recognizability of Ly = {aibajbak | i=j=k} with probability 1 — 1/c
for arbitrary chosen ¢ > 3 by a IP1CA and a 1Q1CA. This 1P1CA for L, is clearly reversible,
and so, L is recognized by 1PR1CA with probability 1 — 1/c.

Here we show the recognizability of Ly, = {aibajbak | k:'i;éj\/k:j#i}.

Theorem 1 There exists a 1PR1CA Mpr(La) which recognizes Ly with probability 3/5.

Proof: After reading the left end-marker ¢, Mpgr(L2) enters one of the following three paths,
path-1, path-2, path-3, with probability 1/4,1/4,1/2, respectively.

In path-1(path-2), Mpgr(L;) checks whether j = k(k = ¢) or not, by behaving in the same
way as My (Lj=r)(Mr(Lr=i)) except for the treatment of acceptance and rejection. The input
is accepted with probability 4/5 if j = k(k = 1) is satisfied, while it is always rejected if
§# k(k #i).

In path-3, Mpr(L2) checks whether ¢ # (j + &)/2 or not, by behaving in the same way as
Mg (Li—(j1x)/2) except for the treatment of acceptance and rejection. The input is accepted
with probability 4/5 if i # (j + k)/2 is satisfied, while it is always rejected if ¢ = (j + k) /2.

Then the input z € L always satisfles the condition of path-3 and exactly one of the
conditions of first two paths. Hence, Mpg(L2) accepts it with probability 3/5. On the other
hand, Mpr (L) rejects any input z & L, with probability at least 3/5. Indeed, when the input
satisfies i = j = k, the conditions of path-1 and path-2 are satisfied while the condition of path-3
is not satisfied, hence, Mpgr(Lz) rejects it with probability 3/5. Next, when i, j, k differ from
one another, none of the conditions of path-1 and path-2 are satisfied, hence Mpr(L2) rejects it
with probability at least 3/5. Finally, when the input is not in the form of a’ba’ba*, it is always
rejected, obviously.

Reversibility of this automaton is clear by its construction. O



Corollary. 1 There exists a 1Q1CA Mq(L2) which recognizes Ly with probability 3/5.

Note that the accepting probability 3/5 of this 1Q1CA Mq(Ls) for L is greater than the briginal
Kravtsev’s 4/7. o
Next we show the recognizability of Lz = {a’baJ ba* | exactly 2 of 7,7,k are equal}.

Theorem 2 There ezists a 1PR1CA Mpr(Ls) which recognizes Ly with probability 4/7.
Proof: Omitted. Similar to the proof of Theorem 1. ]

Corollary 2 There exists a 1Q1CA Mq(Ls) which recognizes L3 with probability 4/7.

Note that the accepting probability 4/7 of this 1Q1CA Mq(L3) for L3 is greater than the original
Kravtsev’s 1/2 +e.

3.2 Recognizability of Lys = {ala}---a}}

Here we show that another family of non-context-free languages Ly 5 = {afa} ---a}} for each
fixed k > 2, is also recognizable by bounded error IPR1CAs.

First we show that Lg4 = {a}a}---a}}, for each fixed k > 2, is recognizable by a IPR1ICA
with bounded error. v

For each k > 2, let Ly j;41 = {{a1,.-.,@i}*{ai41,...,ap}*} for each i,1 <i <k~ 1.

Lemma 3 For each k > 2, there exists a 1R1CA Mg(Ly ;1) for each Ly j41,1 <i<k—1.

Proof: Let the state set Q = {qo, g1, Jacc, Grej }, Where gp is an initial state, gacc is an accepting
state, and grej is a rejecting state. Define the transition matrices Vs and the counter function

D of MR(Lk,i|i+1) as follows:
Violao) = la1), Vo;0lar) = l@1), 1< D(q,aj) =+1, i+1<j<k
%j,l]Q1> = |qrej)9 1<
V$,0|q1> = l‘Iacc)y D(Qa J) =0, otherwise.
V$,1!‘]1> = IQa.cc)a V;lj,OIql) =lq), 1+1<j<
Vajila) = lq1), i+1<5<

Reversibility of this automaton can be checked easily. ]

Theorem 3 For each k > 2, there exists ¢ 1IPR1CA Mpgr(Ly4) for Ly 4 with probability 1/2 +
1/(4k — 6).

Proof: After reading the left end-marker ¢, one of the following k — 1 paths is chosen with the
same probability 1/(k — 1).

In the ith path, Mpgr(Lk4) checks whether the input is in L 4 or not, utilizing Mg(Ly, j1i41),
for 1 < i < k— 1. If the input is in Ly j;4.1, Mpr(Lg,4a) accepts it with probability p, while if
the input is not in Ly 441, Mpr(Lg4) always rejects it.

Since the input z € L4 satisfies the condition in any path, Mpgr(Lg4) accepts it with
probability p. On the other hand, for any input z € Ly 4, there exists at least one path whose
condition is not satisfied. Thus, the probability Mpr(Ly.4) is at most p- (k —2)/(k —1). Hence,
if we take p such that p- (k — 2)/(k — 1) < 1/2 < p, Mpr(Ly,4) recognizes Ly 4 with bounded
error. To maximize the accepting probability, we solve 1 —p - (k — 2)/(k — 1) = p, which gives
p=1/2+41/(4k - 6).

Reversibility of this automaton is clear by its construction. )

Corollary 3 For each k > 2, there ezists a 1Q1CA Mq(Ly4) for L with probability 1/2 +
1/(4k — 6).



It has been known that, while there exists a 1QFA which recognizes L 4 with bounded error,
any 1PRFA cannot recognize Ly 4 with bounded error [2, 1]. In this point, Theorem 3 gives a
contrastive result between no-counter and one-counter cases.

Before showing the recognizability of Ly 5, we prove one more lemma. Let each L 4q;=#a, o=
{z | (#of a; in z)=(#of aj11 in z)} for 1 <i<k-l

Lemma 4 For each k > 2, there exists a IRICA MR(Ly po;=#a;4,) for each Ly sa,—pa;,,,,1 <
i<k-—1.

Proof: Let the state set Q@ = {qo, ¢1, Gacc, Grej }» Where gy is an initial state, gaec is an accepting
state, and gre; is a rejecting state. Define the transition matrices V, ; and the counter function
D of MR(Lk #0;=4a;.,) as follows:

Violao) = la1), Va0lqr) = |g ) 1<i<k  D(q,a)=+1,
Vailg1) = lgrepy, 1<1<k  D(q,qj) = —1,
V$,0|QI> = Iqacc), .
V$,1'q1> = IQacc)’ D(q,0) = 0, otherwise.
Reversibility of this automaton can be checked easily. O

Now we show the recognizability of Ly s = {ala} ---a} }.
Theorem 4 For each k > 2, there exists a IPR1ICA Mpgr(Lyys) for Ly s with probability 1/2 +
1/(8k — 10).

Proof: After reading the left end-marker ¢, one of the following 2(k — 1) paths, path-1-1, ...,
path-1-(k — 1), path-2-1, ..., path-2-(k — 1), is chosen with the same probability 1/2(k — 1).

In each path-1-i, Mpr(Lks) checks whether the input string is in Lg ;41 or not, utilizing
MR (Ly 4)i41), for 1 <4 <k —1. If the input is in Ly ;;11, Mpr(Lks) accepts it with probability
p, while if the input is not in Ly j,,.1, Mpr(Lx5) always rejects it.

In each path-2-i, Mpr(Lys) checks whether the input is in Ly jq,—#a,,, Or not, utilizing
MR (Li ga;=#aip, )> for 1 < i <k —1. If the input is in Lg ge,=44,.,, Mpr(Lk,s5) accepts it with
probability p, while if the input is not in Ly #a,—%0,.,, Mpr{Lks) always rejects it.

Since the input z € Ljjs satisfies the condition in any path, Mpr(Lks) accepts it with
probability p. On the other hand, for any input ¢ ¢ Ly 5, there exists at least one path whose
condition is not satisfied. Thus, the probability Mpg (L 5) accepts it is at most p-(2k—3)/(2k —
2). Hence, if we take p such that p-(2k —3)/(2k —2) < 1/2 < p, Mpg(Lgs) recognizes Ly 5 with
bounded error. To maximize the accepting probability, we solve 1 —p - (2k —3)/(2k - 2) = p,
which gives p =1/2 + 1/(8k — 10).

Reversibility of this automaton is clear by its construction. ]

Corollary 4 For each k > 2, there exists a 1Q1CA Mq(Lys) for Lis with probability 1/2 +
1/(8k — 10).

4 Improving the Accepting Probability of 1Q1CA for Ly

In the previous subsection, we showed that Ly s = {ala} ---a}} is recognizable by a bounded
error 1PR1CA. In this section, we also show that, in a quantum case, we can improve the
accepting probability in a strict sense by using quantum interference. We utilize the following
result.

Theorem 5 (Ambainis et. al. [1]) There exists « 1QFA Miqpa(Li4) for L s = {ala}-- -at}
with probability p, where p is the root of p*+TV/(E=1) L — 1 in the interval of (1/2,1).

By using Miqra(Lg4), we prove the existence of a 1Q1CA which recognizes Ly 4. The
following two lemmas can be shown easily.



Lemma 5 For each k > 3, if p*+D/E=1) 4 p =1, then 1/2 < p < 2/3.

Lemma 6 For arbitrary m x m unitary matrices Uy, Us, there ezists an 2 X 2 block unitary
matriz N(Uy,Uz) such that

Uy *
N(Uy,Us) = \}— (U; *) )
N e’
_ 2blocks
where the blocks indicated by * are determined to hold unitary of N.

Now, we prove the main theorem.

Theorem 6 For each k > 2, Ly 5 can be recognized by a 1Q1CA with probability p, where p is
the root of p*+1/(k=1) 4 p = 1 in the interval of (1/2,1).

Proof: By using Miqra(Lk4), we construct a 1Q1CA M = (Q,%,8,q}, Qace, Qrej) as follows.
LetQ'-{qm|1<z<3km——12},2—{a1|1<z<k} Qacc—{qzklm—12} and
Qrej ={g/" |k+1<i<2k—1,2k+1<3k,m=1,2}. Foreach o €T, we define the transition
matrices {W, s} and the counter function D as follows:

_ v, 0\ (Vi © v, 0 ) B
W¢,O_N((O¢ Ik>’<0 Ik>>,fork23, Wio (0 Ik)@(O I),fork_Z,
_ (Vas, O Vozer O (O Iy Vasiia O
Waz.’-1,0 - ( ab Ik) &b ( 0 I;c> 3 Wuzs—1,1 - (Ik O) @ ( ab ! Ik) )
(Ve O Vo, O (Ve O 0 Iy
a2:,0 = ( 02 Ik> ® ( 62 Ik)" Waze1 = ( O2 Ik) ® (Ik 0)’

W,
Vs O Vs O _ (O Iy O Iy
wo= (5 2)o(6 2)0 we-(2 )= B)

D(gj,a2i-1) = +1,for1<j<k1<i<(k/2],
D(gj, az:) -1, for 1<j <k 1<i<[k/2],
D(gj,ar) = 0, for1 <j<k;kisodd,
D(¢f,m) = 0, for1<j<k,
D(qg,as) = +1,for1<j<k1<i<|(k-1)/2),
D(¢?, azi+1) —1, for 1<j <k 1<i<[(k-1)/2],
(qJ,ak) = 0, for 1 <j<k,k is even,
where each V,, is the transition matrix of Mjqra(Lk,4) and the columns of the transition matrices
correspond to the states in order of g},¢3,...,q},4%,43,...,q% (i.e. the order of the basis states
is ql,q3,...,95, 9%, 43, .,q2). Let & be defined in the manner described in Section 2.

If the input string is of the form afaj ...a}, for each of two paths, the input is accepted.
Thus, the probability of accepting is (p/2) -2 = p.

If k = 2 and the input string is of the form a’lnla'zn2 and my # mg, for the first path, the
input string is rejected and the state is never entered in the second path. Thus, the probability
of rejecting is 1 > p.

If k > 3 and the input string is of the form a7"ag" ... a;"* and there exists at least one pair
of (i,7) such that m; # m;, for at least one of two paths, the counter value is not 0 upon reading
the right end-marker. Thus, the probability of accepting is at most (p/2) -1 = p/2. By Lemma,
5, the probability of rejecting is at least 1 —p/2 > 1~ (2/3)-(1/2) > 2/3 > p.

Finally, if the input string is not of the form ajaj...a}, for each of two paths, the input
string is rejected with at least probability p since each path is equivalent to Miqra(Lg4) when
the counter is left out of consideration. Therefore, the probability of rejecting is at least p. O

Mk



Proposition 1 The accepting probability p of M is greater than 1/24+1/(8k—10). the accepting
probability of Mq(Lgs).

Proof: Omitted. 0

5 Relation between 1D1CAs and 1Q1CAs

As we have seen in Section 3 and 4, some non-context-free languages can be recognized by
bounded error 1Q1CAs. It is clear that 1D1CAs cannot recognize any non-context-free lan-
guages, since 1D1CAs are special cases of 1-way pushdown automata. This indicates the strength
of 1Q1CAs. Conversely, we present the weakness of 1Q1CAs by showing that there is a regular
language which can be recognized by a 1D1CA but not by a 1Q1CA with bounded error.

Theorem 7 The language {{a,b}*a} cannot be recognized by a 1Q1CA with bounded error.

Proof: Nayak [7] showed that, for each fixed n > 0, any general I-way QFA recognizing
{wa | w € {a,b}*, |w| < n} must have 2™ basis states. Thus a 1Q1CA for {{a,b}*a} should
have at least 2°(") quantum basis states if the input length is n. However, the number of basis
states of a 1Q1CA for a language of length n has precisely (2n+1)|Q|. Since (2n+1)|Q| < 2%
for sufficiently large n, it proves the theorem. g

6 Conclusions and Open Problems

In this paper, we proved that there are non-context-free languages which can be recognized by
1PR1CAs and 1Q1CAs, but cannot be recognized by 1D1CAs. We also showed that there is a
regular language which can be recognized by a 1D1CA, but cannot be recognized by a 1Q1CA.

One interesting question is what languages are recognizable by 1Q1CAs but not by 1PRICAs.
Similarly, what are the languages recognizable by 1Q1CAs but not by 1P1CAs?

Another question is concerning to a 2-counter case. It is known that a 2-way deterministic
2-counter automaton can simulate a deterministic Turing machine [5]. How about the power of
2-way quantum 2-counter automata, or 2-way quantum l-counter automata?
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