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abstract We consider two natural generalizations of the notion of transversal to a finite hypergraph,
arising in data-mining and machine learning, the so called multiple and partial transversals. We show
that the hypergraphs of all multiple and all partial transversals are dual- bounded in the sense that in
both cases, the size of the dual hypergraph is bounded by a polynomial in the cardinality and the length
of description of the input hypergraph. Our bounds are based on new inequalities of extremal set theory
and threshold Boolean logic, which may be of independent interest. We also show that the problems of
generating all multiple and all partial transversals for a given hypergraph are polynomial-time reducible
to the generation of all ordinary transversals for another hypergraph, i.e., to the well-known dualization
problem for hypergraphs. As a corollary, we obtain incremental quasi-polynomial-time algorithms for
both of the above problems, as well as for the generation of all the minimal Boolean solutions for an
arbitrary monotone system of linear inequalities.

Y key words: Transversals of hypergraphs, dualization of monotone Boolean functions, incremental
polynomial time algorithms, data mining ’



1 Introduction

In this paper we consider some problems in-
volving the generation of all subsets of a finite
set satisfying certain conditions. The most
well-known problem of this type, the gener-
ation of all minimal transversals, has applica-
tions in combinatorics, graph theory [15, 17],
artificial intelligence [10], game theory, relia-
bility theory, database theory [1] and learning
theory [2].

Given a finite set V of n = |V| points, and
a hypergraph (set family) A C 2Y, a subset
B C V is called a transversal of the fam-
ily Aif ANB # 0 for all sets 4 € A; it
is called a minimal transversal if no proper
subset of B is a transversal of 4. The hyper-
graph A? consisting of all minimal transversals
of A is called the dual (or transversal) hyper-
graph of A. Tt is easy to see that if A € A
is not minimal in A, ie. if A’ € A for some
A" C A, then (A\ {4})? = A% We can as-
sume therefore that all sets in A are minimal,
i.e. that the hypergraph A is Sperner. (The
dual hypergraph .A? is Sperner by definition.)
It is then easy to verify that (A%)¢ = A and
UscaAd =Upeae B

For a subset X C V let X¢ =V \ X denote
the complement of X, and let A¢ = {A‘|4 €
A} be the complementary hypergraph of A.
Then e.g. A% consists of all maximal subsets
containing no hyperedge of A, while the hy-
pergraph A consists of all minimal subsets
of V' which are not contained in any hyper-
edge of A.

1.1 Dualization

Given a Sperner hypergraph A, a frequently
arising task is the generation of the transver-
sal hypergraph A% This problem, known as
dualization, can be stated as follows:

Given a complete list of all hyperedges of
A and a set of minimal transversals B C A%,
either prove that B = A% or find a new
transversal X € A%\ B.

Clearly, we can generate all of the hyper-
edges of A? by initializing B = () and recur-
sively solving the above problem |A%| times.

Note also that in general, |A%| can be expo-
nentially large both in | 4| and |V]. For this
reason, the complexity of generating A¢ is cus-
tomarily measured in the input and output
sizes. In particular, we say that A% can be
generated in incremental polynomial time if
the dualization problem can be solved in time
polynomial in [V, |A] and |B].

The dualization problem can be efficiently
solved for many classes of hypergraphs. For
example, if the sizes of all the hyperedges of
A are limited by a constant 7, then dualization
can be executed in incremental polynomial
time, (see e.g. [6, 10]). In the quadratic case,
i.e. when r = 2, there are even more efficient
dualization algorithms that run with polyno-
mial delay, i.e. in poly(|V|, |A]) time, where B
is systematically enlarged from B = { during
the generation process of A¢ (see e.g. [15, 17]).
Efficient algorithms exist also for the dualiza-
tion of 2-monotonic, threshold, matroid, read-
bounded, acyclic and some other classes of hy-
pergraphs (see e.g. [4, 8, 9, 19, 20, 24]).

Even though no incremental polynomial
time algorithm for the dualization of arbitrary
hypergraphs is known, an incremental quasi-
polynomial time one exists (see [11]). This
algorithm solves the dualization problem in
O(nm) + m°U°e™) time, where n = |V| and
m = | A| + |B] (see also [13] for more detail).

In this paper, we consider two natural gen-
eralizations of minimal transversals, so called
multiple transversals, and partial transversals.
See Section 3 for related hypergraphs in the
data-mining and machine learning literature.

1.2 Multiple transversals

Given a hypergraph A4 C 2Y and a non-
negative weight b4 associated with every hy-
peredge A € A, a subset X is called a multiple
transversal (or b-transversal), if | X N A|] > by
holds for all A € A. The family of all mini-
mal b-transversals then can also be viewed as
the family of support sets of minimal feasible
binary solutions to the system of inequalities

Az > b, (1)



where the rows of A = A4 are exactly the
characteristic vectors of the hyperedges A €
A, and the corresponding component of b is
equal to bs. Clearly, b = (1,1,....,1) corre-
sponds to the case of (ordinary) transversals,
in which case (1) is also known as a set cover-
ing problem.

Generalizing further and giving up the bi-
nary nature of A as well, we shall consider the
family F = Fa of (support sets of) all min-
imal feasible binary vectors to (1) for a given
m X n-matrix A and a given m-vector b. We
assume that (1) is a monotone system of in-
equalities: if z € {0, 1}" satisfies (1) then any
vector y € {0,1}" such that y > = is also feasi-
ble. For instance, (1) is monotone if A is non-
negative. Note that for a monotone system (1)
the dual hypergraph F¢ = F4 , is (the com-
plementarity hypergraph of) the collection of
(supports of) all maximal infeasible vectors for
(1). Note also that we assume that the hyper-
graph F4 is represented by the system (1)
and not given explicitly, i.e., by a list of all its
hyperedges. In particular, this means that the
generation of F4 5 and its dual fg,b are both
non-trivial.

Let us consider in general a Sperner hyper-
graph F C 2" on a finite set V represented
in some implicit way, and let GEN(F) denote
the problem of generating all the hyperedges
of F:

Given F and a list of hyperedges H C F, either
prove that H = F or find a new hyperedge in F\H.

It is known that problem GEN(}'I‘X’,}) is NP-
hard even for binary matrices A (see [18]). In
contrast to that, we show that the tasks of
generating multiple and ordinary transversals
are polynomially related.

Theorem 1 Problem GEN(Fayp) is polytime
reductble to dualization.

In particular, for any monotone system
of linear inequalities (1), all minimal binary
solutions of (1) can be generated in quasi-
polynomial incremental time.

Remark 1 Even though generating all maz-
imal infeasible binary points for (1) is hard,

there is a polynomial randomized scheme for
nearly uniform sampling from the set of all bi-
nary infeasible points for (1). Such a scheme
can be obtained by combining the algorithm
[16] for approzimating the size of set-unions
with the rapidly mizing random walk [23] on
the binary cube truncated by a single linear in-
equality. On the other hand, a similar ran-
domized scheme for nearly uniform sampling
from within the set of all binary (or all min-
imal binary) solutions to a given monotone
system (1) would imply that any NP-complete
problem can be solved in polynomial time by
a randomized algorithm with arbitrarily small
one-sided failure probability. By using the am-
plification technigue of [14], this can be shown
already for systems (1) with two non-zero co-
efficients per inequality, see e.g. [12] for more
detail.

1.3 Partial transversals

Civen a hypergraph A C 2 and a non-
negative threshold k < |4}, a subset X C V' is
said to be a partial transversal, or more pre-
cisely, a k-transversal, to the family A if it
intersects all but at most & of the subsets of
A ie if [{A€ AJANX =0} < k.

Denote by A% the family of all minimal
k-transversals of A. Clearly, 0-transversals
are exactly the standard transversals, defined
above, i.e. A% = A4 In what follows we as-
sume that the hypergraph A% is represented
by a list of all the edges of A along with the
value of k € {0,1,--- ,|A| — 1}.

Define a k-union from A as the union of
some k subsets of A, and let A% denote the
family of all minimal k-unions of A. In other
words, A" is the family of all the minimal
subsets of A which contain at least k& hyper-
edges of A. By the above definitions, k-union
and k-transversal families both are Sperner
(even if the input hypergraph A is not). It
is also easy to see that the families of all min-
imal k-transversals and (k + 1)-unions are in
fact dual, i.e. ,

Adk — (A1), | =01, ..., |.Af -1

The tasks of generating partial and ordinary



transversals also turn out to be polynomially
equivalent.

Theorem 2 Problem GEN(A% ) is polytime
reducible to dualization.

It should be mentioned that the dual prob-
lem GEN(A"+1) is NP-hard (see [21]).

1.4 Bounding dual hypergraphs

Our proofs of Theorems 1 and 2 make use of
the fact that the Sperner hypergraphs F4,
and A% are dual-bounded in the sense that
in both cases, the size of the dual hypergraph
can be bounded by a polynomial in the size
and the length of description of the primal hy-
pergraph.

Theorem 3 For any monotone system (1) of
m linear inequalities in n binary variables,

|F& ol < mn|Fapl.
Moreover,

]Hd N }'ﬁ’bl <mnl|H| for any H C Fay.
(2)

Theorem 4 For any hypergraph A C 2V of
m = |A| hyperedges and any threshold k =
0,...,m—1, we have

| A+ < 2| A% 2 4 (m — &k — 2)] A%,
Moreover, for any hypergraph H C A%,
[HEN A% < 2AH|P + (m —k = 2)|H]|. (3)

We derive Theorem 3 from the following
lemma.

Lemma 1 Let h : {0,1}" — {0,1} be a
monotone Boolean function such that

n
h(z) =1 = wz déwai:vi > t,

=1

where w = (ws,... ,wy,) 15 a given weight vec-
tor and t is a threshold. If h # 0, then

|max F(h) N{z |wz <t}] < > ex,
z€minT(h)

where max F(h) C {0,1}" is the set of all
mazimal false points of h, minT(h) C {0,1}"
is the set of all minimal true points of h, and
e is the vector of all ones. In particular,

|max F(h) N {z | we < t}| < n|minT(h)|.

If the function h is threshold (h(z)
1 & wz > t), then |maxF(h)
n|minT'(h)| and, by symmetry, | minT'(h)|
n|max F(h)|, well-known inequalities (see [4,
9, 24]). Lemma 1 thus extends the above
threshold inequalities to arbitrary monotone
functions h.

As we shall see, Theorem 4 can be derived
from the following combinatorial inequality.

INIA

Lemma 2 Let A C 2V be a hypergraph on
[V| = n vertices with |A| > 2 hyperedges such
that

Al > k+1
|B| < &

forall A€ A, and

for all B e A", (T)

where k is a given threshold and A" is the fam-
ily of all the mazimal subsets of V which can
be obtained as the intersection of two distinct
hyperedges of A. Then

A < (n — k)|A". (4)

Note that A" is a Sperner family by its
definition, and that condition (T) implies the
same for 4. Note also that the threshold-
ness condition (T) is essential for the valid-
ity of the lemma — without (T) the size of A
can be exponentially larger than that of A4".
There are examples of Sperner hypergraphs 4
for which [A"] = n/5 and |A] = 3"/5 + 2n/5
or |[A"| = (n —2)%/9 and |A| = 3(r-2/3 4
2(n — 2)/3. (Several other inequalities on hy-
pergraphs with restricted intersections can be
found in Chapter 4 of [3].)

The remainder of the paper is organized as
follows. In Section 2 we discuss the complex-
ity of jointly generating a pair of dual hy-
pergraphs defined via a superset oracle. For
a polynomial-time superset oracle the above
problem reduces to dualization. This reduec-
tion along with the bounds stated in Theo-
rems 3 and 4 yield Theorems 1 and 2. Fi-
nally, Section 3 discusses some of the related



set families and results, and Section 4 contains
our concluding remarks.

2 Joint and separate genera-
tion of dual hypergraphs

2.1 Superset oracles

Let G C 2V be a Sperner hypergraph on n ver-
tices. In many applications, G is represented
by a superset oracle and not given explicitly.
Such an oracle can be viewed as an algorithm
which, given an input description O of G and a
vertex set X C V, can decide whether or not
X contains a hyperedge of G. Equivalently,
the oracle can be used to evaluate the mono-
tone Boolean function fg(z) def Vaeg Nie Ti
at any point z € {0,1}". Note that the dual
function fg(Z) = fga(z) = Vgegd Niea i can
also be evaluated via a single call to the or-
acle. We assume that the length |O] of the
input description of G is at least n and denote
by Ts = Ts(|9O]) the worst-case running time
of the oracle on any superset query “Does X
contains a hyperedge of G?”. In particular,
9 is polynomial-time if 75 < poly(|O|). In
what follows, we do not distinguish the super-
set oracle and the input description O of G. As
mentioned above, O also specifies (a superset
oracle for) the dual hypergraph Gt We list
below several simple examples.

1) Multiple transversals. Let (1) be a monotone
system of linear inequalities, and let G = Fa, be
the hypergraph introduced in Section 1.2. Then
the input description £ is (4,b). Clearly, for any
input set X C V, we can decide whether X con-
tains a hyperedge of Fa,; by checking the feasibil-
ity of (the characteristic vector of) X for (1).

2) Partial transversals. Let G = A% be the hy-
pergraph of the minimal k-transversals of a family
A (see Section 1.2). Then G is given by the thresh-
old value k and a complete list of all hyperedges
of A, ie., O~ (k, A). For a subset X CV, deter-
mining whether X contains a hyperedge in A% is
equivalent to checking if X is intersecting at least
| Al — k hyperedges of A.

8) Monotone Boolean formulae. Let f be a (V,A)-
formula with n variables and let G = Ay be the
supporting sets of all the minimal true vectors for
f. Then © ~ f and the superset oracle checks

if (the characteristic vector of) X C V satisfies
f. The dual hypergraph G? is the set of all the
(complements to the support sets of) maximal false
vectors of f.

4) Relay circuits. Consider a digraph I' with a
source s and a sink ¢, each arc of which is assigned
a relay r € V (two or more distinct edges may
be assigned identical relays). Let G be the set of
relay s-t paths, i.e., minimal subsets of relays that
connect s and ¢. Then O ~ T, and for a given relay
set X C V, the superset oracle can use breadth-
first search to check the reachability of t from s
via a path consisting of relays in X. Note that
the dual hypergraph G? is the set of all relay s-t
cuts, i.e., minimal subsets of relays that disconnect
sand t.

5) Helly’s systems of polyhedra. Consider a fam-
ily of n convex polyhedra P; CR", ¢ € V, and let
G denote the minimal subfamilies with no point
in common. Then G% is the family of all maxi-
mal subfamilies with a nonempty intersection. (In
particular, if Py,..., P, are the facets of a con-
vex polytope @, then G% corresponds to the set
of vertices of Q.) We have O ~ (Py,...,P,) and,
given subsets of polytopes X C V, the superset or-
acle can use linear programming to check whether
NiexP; # 0.

2.2 Joint generation of dual pairs of
hypergraphs

In all of the above examples, we have
pairs of dual Sperner hypergraphs given by
polynomial-time superset oracles. Let G,G% C
2V be a pair of dual Sperner hypergraphs given
by a superset oracle . Consider the problem
GEN(G,G%) of generating jointly all the hy-
peredges of G and G%:

Given two explicitly listed set families A C G
and B C G, either prove that these families are
complete, (A,B) = (G,G%), or find a new set in
G\ AU (G*\B).

For the special case when A = G and O is
a list of all the sets in G, we obtain the du-
alization problem as stated in Section 1.1. In
fact, as observed in [5, 12], for any polynomial-
time superset oracle £ problem GEN(G,G?%)
can be reduced in polynomial time to dual-
ization. This can be done via the following
Algorithm J:



Step 1. Check whether each element of B is a
minimal transversal to A, ie, B C A% (Recall
that A and B are given explicitly.) Note that each
set X € B is a transversal to A because A C G and
B C G4 If some transversal X € B is not minimal
for A then we can easily find a proper subset ¥
of X such that Y is also a transversal to A. Since
Y is a proper subset of X, and X is a minimal
transversal to G, Y must miss some hyperedges of
G. Hence Y¢, the complement of ¥, contains a
hyperedge of G. By querying the superset oracle
0 at most |Y¢| times we can find such a hyperedge
Z € G. Notethat ZNY = 0 whereas ANY # 0§
for all hyperedges A € A. This means that Z is a
new hyperedge of G. Thus, if the inclusion B C A¢
is not satisfied, we can obtain an element in G\ A
and halt.

Step 2 is similar to Step I. Check whether 4 C
B4, If A contains a non-minimal transversal to B,
find a new element in G¢\ B and halt.

Step 8. Suppose that B C A% and A C B%. Then
B=A% = (A,B) = (G,G%. (This is because any
hyperedge X € G\ A would be a transversal for B,
which would then imply that X contains some hy-
peredge of A = B¢, contradiction. By symmetry,
the duality of A and B also implies the emptiness of
G4\ B.) Hence (A4,B) = (G,G%) « B =A% The
condition B = A% can be checked by solving the
dualization problem for 4 and B. If B # A%, we
obtain a new minimal transversal X € A%\ B, see
Section 1.1. By definition, X contains no hyper-
edge in B and X ¢ contains no hyperedge in A. Due
to the duality of G and G, either (i) X contains a
hyperedge of G, or (ii) X contains a hyperedge of
G¢ | but not both. We can call the superset oracle
to decide which of the two cases holds. In case (i)
we obtain a new hyperedge in G \ A by querying
the superset oracle at most | X°| times. Similarly,
in case (ii) we get a new hyperedge in G¢\ B in at
most |X| calls to the oracle. 0

Algorithm 7 readily implies the following re-
sult.

Proposition 1 ([5, 12]) Problem GEN(G,

G4 can be solved in n(poly(|Al,|B|)
+T5(19])) + Tyua time, where Tyue de-
notes the time required for solving the

dualization problem with A and B.

In particular, for any (quasi-)polynomial-
time oracle O, problem GEN(G,G?) can be

solved in quasi-polynomial time. Thus, for
each of the 5 examples above we can jointly
generate all the hyperedges of (G,G%) in in-
cremental quasi-polynomial time. Note, how-
ever, that separately generating all the hyper-
edges of G or all the hyperedges of G¢ may be
substantially harder. For instance, as shown
in [12], both problems GEN(G) and GEN(G?)
are NP-hard for examples 3-5 above. In fact,
in example 3 these problems are NP-hard al-
ready for V, A-formulae of depth 3; if the depth
is 2 then the formula is either CNF or DNF
and we get exactly dualization.

2.3 Dual-bounded hypergraphs

Algorithm 7 may not be efficient for solving
either of the problems GEN(G) or GEN(G?)
separately for the simple reason that we do not
control which of the families G \ A and G¢\
B contains each new hyperedge produced by
the algorithm. Suppose, we want to generate
G, and the family G¢ is exponentially larger
than G. Then, if we are unlucky, we can get
hyperedges of G with exponential delay, while
getting large subfamilies of G¢ (which are not
needed at all) in between.

Such a problem will not arise and simulta-
neous generation of (G, G%) can be used to pro-
duce G efficiently, in some sense, if the size of
G4 is polynomially limited in the size of G and
in the input size ||, i.e. when there exists a
polynomial p such that

G < p(IV1, 191, 161). (5)

We call such Sperner hypergraphs G dual-
bounded.

If G is dual-bounded, we can generate both
G and G¢ in |G%] + |G| < poly(IV], 1D}, |G])
rounds of Algorithm 7, and hence obtain all
the hyperedges of G in total quasi-polynomial
time.

This approach, however, may still be ineffi-
cient incrementally, i.e., for obtaining a sin-
gle hyperedge of § as required in problem
GEN(G). It is easy to see that the decision
problem: “Given a family A4 C G, determine
whether A = G7” is polynomially reducible to
dualization for any dual-bounded hypergraphs



represented by a polynomial-time superset or-
acle. If A is much smaller than G, however,
getting a new hyperedge in G \ A may require
exponentially many (in |A}) rounds of J.

2.4 Uniformly dual-bounded hyper-
graphs

Let us call a Sperner hypergraph G uniformly
dual-bounded if

1H? N G4 < p(IV],IO1IH]) for any HCG.

Note that for H = G the above condition gives
(5)-

Proposition 2 Problem GEN(G) is poly-
time reducible to dualization for any uni-
formly dual-bounded hypergraph G defined by
a polynomial-time superset oracle.

Theorems 3 and 4 state that the hyper-
graphs Fa and A% are both uniformly dual-
bounded. In view of Proposition 2, this means
that Theorems 3 and 4 imply Theorems 1 and
2, respectively.

3 Related set-families

The notion of frequent sets appears in the
data-mining literature, see [1, 22], and can
be related naturally to the families considered
above. More precisely, following a definition
of [25], given a (0, 1)-matrix and a threshold
k, a subset of the columns is called frequent
if there are at least k rows having a 1 entry
in each of the corresponding positions. The
problems of generating all mazimal frequent
sets and their duals, the so called minimal in-
frequent sets (for a given binary matrix) were
proposed, and the complexity of the corre-
sponding decision problems were asked in [25].
Results of [21] imply that it is NP-hard to de-
termine whether a family of maximal frequent
sets is incomplete, while our results prove that
generating all minimal infrequent sets polyno-
mially reduces to dualization.

Since the family A% consists of all the min-
imal k-transversals to A, i.e. subsets of V

which are disjoint from at most k hyperedges
of A, the family A°%* consists of all the min-
imal subsets of V' which are contained in at
most k hyperedges of A. It is easy to recog-
nize that these are the minimal infrequent sets
in a matrix, the rows of which are the charac-
teristic vectors of the hyperedges of A. Fur-
thermore, the family A% consists of all the
maximal subsets of V| which are supersets of
at most k hyperedges of A.

Due to our results above, all these families
can be generated e.g. in incremental quasi-
polynomial time.

In the special case, if A is a quadratic set-
family, i.e. if all hyperedges of A are of size
2, the family A can also be interpreted as the
edge set of a graph G on vertex set V. Then,
A% is also known as the family of the so
called fairly independent sets of the graph G,
i.e. all the vertex subsets which induce at most
k edges (see [25].)

As it was defined above, the family A“* con-
sists of all the minimal k-unions of A, i.e. all
minimal subsets of V' which contain at least k&
hyperedges of A, and hence the family A%
consists of all the minimal subsets which con-
tain at least k hyperedges of A°. Thus, the
family A°“k¢ consists of all the maximal k-
intersections, i.e. maximal subsets of V' which
are subsets of at least k& hyperedges of A.
These sets can be recognized as the mazimal
frequent sets in a matrix, the rows of which are
the characteristic vectors of the hyperedges of
A. Finally, the family A% consists of all the
maximal subsets of V' which are disjoint from
at least k& hyperedges of A.

As it follows from the mentioned results (see
e.g. [21]), generating all hyperedges for each of
these families is NP-hard , unless & (or |A|—k)
is bounded by a constant.

4 General closing remarks

In this paper we considered the problems
of generating all partial and all multiple
transversals. Both problems are formally more
general than dualization, but in fact both are
polynomially equivalent to it because the cor-



responding pairs of hypergraphs are uniformly
dual-bounded.

It might be tempting to look for a com-
mon generalization of these notions, and of
these results. However, the attempt to com-
bine partial and multiple transversals fails.
For instance, generating all the minimal par-
tial binary solutions to a system of inequali-
ties Az > b is NP-hard, even if A is binary
and b = (2,2,...,2). To show this we can use
arguments analogous to those of [18, 21]. Con-
sider the well-known NP-hard problem of de-
termining whether a given graph G = (V, E)
contains an independent vertex set of size t,
where ¢t > 2 is a given threshold. Introduce
|V| + 1 binary variables z¢ and z,, v € V,
and write ¢ inequalities z, + z, > 2 for each
edge e = (u,v) € E, followed by the inequali-
ties zg + zy > 2, v € V. It is easily seen that
the characteristic vector of any edge e = (u,v)
is a minimal binary solution satisfying at least
t inequalities of the resulting system. Deciding
whether there are other minimal binary solu-
tions satisfying > ¢ inequalities of the system
is equivalent to determining whether G has an
independent set of size ¢.

For further generalizations of Lemma 2 we
refer the interested reader to the technical re-
port [7].
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