7 N U X L 73-3
(2000. 5. 19)

Ay 1 P TOSREEERZ VT 77 NVT)X L

BHE X E — 1
TN =AM TRERZE RIRERFBIFRE 7R
T 815-8540 1R BXER 4-9-1 T 606-8501 AR M X & HAH
miyano@kyushu-id.ac.jp iwama@kuis.kyoto-u.ac.jp

HO5FL:

AFETIE, 2K, EBEHFAXF2—, nxn Ay vaitEBECcCORERL 7)Y
TIARATYFA YT TVNITY XL ERT., KTVITY XL, BED LT,
(2.5 + e)n BEFICEIES 5. EAMICIK, ¥y FREBHREZFIALTBY, Avva
v T =7 OEZED 1.25 BREEOHERBZER L Tnb.

#—7—F:2%ﬁﬂv>1,ﬂ%ﬁ9ﬁf4yﬁ,Evbﬁﬁﬁ%

Fast Oblivious Routing Algorithms on Meshes

Eiji MIYANO Kazuo IwAMA

School of Informatics
Kyoto University
Kyoto 606-8501, JAPAN
iwama@kuis.kyoto-u.ac.jp

Kyushu Institute of Design
Fukuoka 815-8540, JAPAN
miyano@kyushu-id.ac.jp

Abstract:

We present a deterministic, oblivious, permutation-routing algorithm on the n x n
mesh of constant queue-size which runs in (2.5 + ¢)n steps for any ¢ > 0. The
algorithm basically makes use of the bit-reversal permutation and its running time
is approximately 1.25 times as large as the network diameter of the mesh.

Key words: two-dimensional mesh, oblivious routing, bit-reversal permutation

1 Introduction

Mesh routing has received considerable attention

for the last decades [GHKS98, Lei92, MS96, Tom94].

However, there still remain several open questions:
For example, until recently, little had been known
whether one can achieve an optimal, linear-time
bound for oblivious permutation routing on two-
dimensional (2D for short), n x n meshes of con-
stant queue-size. Oblivious routing means that the
path of each packet is determined only by its source
and destination positions, not depending on other
packets. In [IKM98, IM99a}, Iwama and Miyano
made a significant progress on this open question
by giving an affirmativé answer; they proposed a
new algorithm, using derandomization based on the
bit-reversal permutation, which was the first opti-
mal (up to constant factor) algorithm for oblivious
routing on 2D meshes.

As for the queue-size of each processor, they
need only two in [IM99a), which is probably op-
timal. However, as for the time complexity, they
only proved that their algorithm runs in linear time
and it involves large constant factors partly due to
making their proof simpler. Actually, the leading
constant hidden in the big-O notation is at least
3000; it is obviously questionable if this algorithm
can claim much practical importance.

In this paper we focus mainly on the running
time and present a (2.5 + ¢)n oblivious algorithm
which can route any permutation on 2D meshes in-
cluding n x n processors for any positive constant
c. Its queue-size is a function of €, which is quite
moderate. The algorithm basically makes use of the
bit-reversal permutation as before and its running
time is approximately 1.25 times as large as the
network diameter (or distance bound) of the mesh.
Computation in each processor is not complicated
either. Thus, this result shows that the oblivious al-
gorithm based on the bit-reversal permutation does
have practical merits.

It should be noted that any oblivious algorithm
on n? processor networks needs Q(n?) steps if it is
pure [Kri91], i.e., if packets must move whenever
their next positions are empty. In order to obtain
linear-time algorithms, therefore, some mechanism
is needed which forces some packets “to wait” even
if they can advance. In other words, we must intrin-
sically suffer from a certain kind of a delay, which
makes oblivious routing laborious. The bit-reversal
permutation in [IM99a] can control the movement

of each packet almost perfectly to this goal. One
drawback of this approach, however, is that we need
a long path of processors for these operations. To
create such long paths, the algorithm in [IM99a] suf-
fers from serious detours and big constant factors.
Fortunately, there is a standard technique to reduce
this path length, i.e., simulating several processors
by a single processor with a sacrifice of the queue-
size (but still within some constant). This easily
allows us to design an algorithm which runs in, say,
8n steps. However, it is usually a challenging topic
to achieve a tighter bound on the distance bound
and several new techniques are indispensable. Our
present algorithm indeed needs a sequence of care-
ful improvements. They include a tighter analysis
and parallel construction of the bit-reversal permu-
tation.

In what follows, we present three important lem-
mas for faster algorithms in Sections 2 and 3. In
Section 4, we show a basic algorithm which runs in
(3.0 4 £)n steps. Its improvement to the (2.5 +¢)n
algorithm, given in Section 5, is moderate but in-
volves several technical details.

2 Models

Our mode} is the standard, two-dimensional, n x n
mesh. Each processor has four input and four out-
put queues. Each queue can hold up to K packets
at the same time. The one-step computation con-
sists of the following two stages: (i) Suppose that
there remain £ (0 < ¢ < K) packets, or there are
K — ¢ spaces, In an output queue Q of processor P;.
Then P; selects at most K —£ packets from its input
queues, and moves them to Q. (i) Let P; and Py,
be neighboring processors, for instance, P;’s right
output queue @; be connected to Piyi’s left input
queue Q1. Then if the input queue @;4q has a
space, then P; sends at most one packet (at most
one packet can flow on each link in each time-step)
from Q; to Qiy1.

We first define the following two notations on
sequences of packets on linear arrays:

Definition 1 (see e.g., [Lei92]). Let i345---17;
denote the binary representation of an integer i.
Then % denotes the integer whose binary repre-
sentation is igig—y - --21. The bit-reversal permu-
tation (BRP) 7 is a permutation from [0,2° — 1]
onto [0,2¢ — 1] such that =(i) = if. Let =z =
To&y - Loe_y be a sequence of packets. Then the

bit-reversal perrmutation of z, denoted by BRP(z),
is defined as BRP(z) = @x(0)%r(1) """ Tx(2t—1)-

Definition 2. For a sequence z of n packets,
SORT(x) = s,%s, -~ s, , denotes a sorted se-
quence according to the destination column. Namely,
SORT(z) is the sequence such that the destination
column of z;, is farther than or the same as the
destination column of z,; if i > j.

The following lemma will be often used in the
rest of the paper:

Lemma 1. For any positive constant ¢, a linear
array of n processors, Py through P,_;, of queue-
size K, can be simulated by a shorter linear array
of [en] processors, Qo through Qenj-1, of queue-
size [1] - K. (This is a standard technique. See,

e.g., [MS96].)

3 Parallel brp Construction

We first give an easy (but slow) algorithm to get a
rough idea of our final algorithm: (i) each packet
first moves to the right, (ii) changes its direction
at the right-end of each row, then (iii) moves back
to its column position, (iv) turns there, and goes
vertically to its final position (see Figure 1).

In each row we provide a special portion of length
cn for some fixed constant ¢ < 1, called a cn-tube,
at the right-end (see Figure 1). All packets in each
row are once packed into this tube: The cn packets
originally placed in the right-side en-tube are once
squeezed out of the ¢n-tube since the sorting oper-
ation for all the n packets are executed in the first
array of length n — cn. The brp operation is simu-
lated in the second array of length cn, where each
processor of the second array finally holds 1/c pack-
ets, i.e., the rightmost processor holds the head 1/¢
packets of the brp sequence, the second rightmost
processor holds the second head 1/c¢ packets, and
so on. These ideas can be implemented as follows:
(i) At the first step, the cn packets in the cn-tube
start to move leftward and then they are shifted
exactly cn positions to the left in cn steps. At the
same time, we start to execute the sorting opera-
tion by moving other packets sequentially from the
leftmost packet. Then the cn packets of the en-tube
(currently placed outside the tube) meet the sort-
ing operation progressing from the left and come
back again into the tube. Since the farthest packet
among all the n packets has the highest priority and

never delay, it enter into the ¢n-tube exactly at the
(n — cn)th step. Also, at the next step, the sec-
ond farthest packet enter into the cn-tube, and so
on. Finally, the last (nearest) packet arrives there
at the (n — cn + n)th step. The brp can be imple-
mented in cn steps since the length of the second
array is now shorten to cn. Thus the brp sequence
can be formed from any sequence in 2n steps as a
whole by using the queues of size 2/¢ by Lemma 1
since K = 2. (ii) This brp sequence resumes moving
rightward at the (2n + 1)st step, then changes its
direction 180 degrees at the right-end of the row,
and returns to its correct column position. Here
three spaces are inserted between neighboring two
packets$ as described in Section 2, and hence the last
packet leaves the right-end at time 2n+4n since the
total length of the sequence grows up to 4n. (iii) It
may furthermore move (at most) n positions to the
left and (iv) at most n positions upward or down-
ward before the packet arrives at its final position,
so the total time complexity is at most 8n.

Recall that it takes 2n steps to construct a brp
sequence in (i) of the previous algorithm. This time
complexity can be reduced to (1+€)n for some small
constant ¢ as shown below. However, the resulting
sequence is no longer a brp sequence but, what we
call, a quasi-brp sequence, which will be shown to
be enough for our purpose in the next section. The
idea is to employ more parallelism.

Let A = ayaz---a, and B = b1by---b, be se-
quences of packets. The MRG(A, B) is a sequence
of 2n packets defined by MRG(A, B) = aibiazbs - -
anb,. MRG(A, B,C) is defined similarly and is ex-
tended to any number of sequences. For some pos-
itive constant ¢ < 1, let X = XoX;---X1_; be a
sequence of n packets where each X; has lecngth cn.
Then QBRP (X) is defined as

MRG(BRP(SORT(Xo)), .., BRP(SORT(X} _,)).

Lemma 2. QBRP (X) can be constructed on
the right-end cn-tube in time n 4+ 2¢n and with
queue-size % for any positive constant ¢ < 1.

Proof. Now our new operation, PARALLEL, has %
subarrays in each row, where each subarray consists
of ¢n processors (see Figure 2) and the ith subarray
initially holds X;. Again, in each row, we provide
a special portion of length ¢%n (¢ < 1), called ¢*n-
tube, at the right-end of each subarray. PARALLEL
consists of the following two stages:

Operation PARALLEL

(Stage 1) Within the sth subarray, X; is changed
to its brp sequence by simulating the algorithm in
Section 3 by replacing previous n with cn: For every
7 in parallel, (1) X; is first changed in sorted order
within the leftmost cn — ¢?n processors and then
(i1) its brp sequence of the cn packets is eventually
placed in the right-end c¢®n-tube of the subarray,
l.e., the rightmost processor holds the head % pack-
ets of the short brp of the ¢n packets, the second
processor holds the next % packets, and so on.

(Stage 2) cn packets of X; now placed on the
ith ¢?n-tube are squeezed out to the right to be X;’s
brp sequence of cn packets. There are 1/c¢ short brp
sequences, each of which derives from each X;. The
1/c sequences are all shifted to the right in parallel
until all the sequences fit the rightmost subarray of
cn processors (1.e., the right-end cn-tube). Finally,
each processor in the right-end subarray receives
one packet from each subarray or it holds % packets
of the quasi-brp sequence.

Since the length of the subarray is c¢n, Stage 1
requires at most 2cn steps with queue-size 2/c¢ by
Lemma 1. Stage 2 takes n steps since the neighbor-
ing sequences do not overlap in this process, i.e., no
delays occur in this stage. Also, the queue-size is at

O

Lemma 3. Let ¢ = 2921 --- 2,1 be a sequence

most % again by Lemma 1.

of length n where n = 2¢ for some integer £ and
z = zpzy - Zr—1 be its any subsequence of length
k. Also let d = 224 for some integer ¢; and suppose
that k > d+8v/d+8. Then if w is any subsequence
in BRP(z) of length [£2], w includes at most d +
8v/d + 8 packets in z.

This lemma says that it is enough to extend a
brp sequence

d+8Vd+8

=140
d +0(

)

Vd
times in order that the distance of d packets from
z is to be as much as the average.

4 (3.0+¢)n Algorithm

Now we have two major developments, parallel brp

construction and the tighter analysis of brp sequences.

The latter allows us to remove wasteful spaces among

the brp sequences; Lemma 3 implies that it is enough
i —d

to insert one space per [8ﬁ+8J packets of the blrp

sequence in order not to cause severe path-congestion

in the critical positions (details will be furnished in
the proof of Theorem 1). Thus the time complex-
ity of the primitive algorithm can be now reduced
to (4 + €)n for some small constant e, namely, it
takes (1 + 2c)n steps (for the constant ¢ described
in Lemma 2) for constructing quasi-brp sequences
by using PARALLEL as shown in Section 3.2, (1 +
0(713—))71 steps for the last packet to get out of the
cn-tube from Lemma 3, at most n steps for its mov-
ing leftward to its correct column, and at most n
steps for its moving upward or downward to the
final position. ' :

(4+¢)n is still larger than the optimal 2n by (2+
e)n. First, enis used for constructing brp sequences
and the related spacing. Among the other 2n, n
comes from the path length: If a packet is placed
at the left-upper corner and its destination is the
left-down corner, then it moves along the path of
length 3n (see Figure 1), which is longer by n than
the optimal 2n. The final n is again related to the
brp construction: This delay is obviously due to the
amount of time needed to pack n packets into the
cn-tube for merging. Let us call the first n overhead
the path-overhead, and the second n overhead the
pack-overhead.

To prevent the path-overhead, it is a natural
idea to split the whole mesh into two sub-meshes,
the left mesh and the right mesh. An LR packet
which moves from the left half to the right half and
an LL packet which moves inside the left half travel
along the paths illustrated in Figure 3, respectively.
(Similarly for RR and RL packets.) In each row
of the left half, we provide two cn-tubes, one for
LL packets and the other for LR packets. Pack-
ing those packets into the c¢n-tubes can be done in
parallel (but we require only minor modifications as
described below). Thus the path-overhead is com-
pletely eliminated since every packet moves along
its path whose length is at most 2n, and the pack-
overhead will be one half since we only have to pack
at most % packets. Unfortunately, however, a new
0.5n overhead is created since if the whole length
of the brp sequence of packets is reduced from n to
2, then the distance of any two neighboring pack-
ets which have the same destination column is also
reduced to a half length from Lemma 3. Hence
one has to extend the length of the brp sequence to
be 1.0n again by inserting one space between any
two packets, which imposes another 0.5n overhead,
called space-overhead. Thus the total time complex-
ity becomes (4+¢)n—1.0n—0.5040.5n = (34 ¢)n.

Algorithm ROUT-B ,
The algorithm has the following four phases:
Phase 1 ((0.5 + 2c)n steps). The following is

executed on every row in parallel: Each row is di-
vided into % subarrays for some constant ¢ where
each subarray consists of ¢n processors. Note that
each half mesh has only 51; subarrays. Then LR
packets are once packed into cn-tubes located at
the right-end of the left mesh, and in parallel LL
packets are once packed into the left-end cn-tubes
by performing PARALLEL in every direction (every-
thing is the same for RL and RR packets, but exe-
cuted within the right half mesh): As an example,
consider the left mesh and LR packets. (i) The
original sequence of LR packets in each subarray is
changed to its brp sequence of length cn and placed
in the right-end c?n-tube of the subarray (see Fig-
ure 2 again). (i) 5 brp sequences of LR packets are
shifted rightward in parallel and merged into their
quasi-brp sequence of length 0.5n in the right-end
en-tube of the left mesh.

Since the farthest LR packet of each subarray
among LR packets never delay, it enter into the
right ¢?n-tube at the (cn—c?n)th step. Also, at the
next step, the second farthest packet enter into the
c¢*n-tube, and so on. Finally, at the (2cn — ¢?n)th
step, the nearest packet arrives at the c?n-tube.
The brp can be implemented in ¢?n steps. Then,
all the %
right-end in parallel and are placed at the right-end
cn-tube of the left mesh. As a result, this phase can
be executed in 0.5n + 2¢n steps and the queue-size
is at most 2—2)(2:%.

Phase 2 (1.0n(1 + 0(71—5)) steps). Packets start
to get out of en-tubes. Here one space is inserted

short brp sequences are shifted to the

between any neighboring two packets and we fur-
ther need to insert one space per 2 l_é'\’/%:gJ pack-
ets for the constant d described in Lemma 3 (ie.,
one space per lg\/-%—HJ packets since one space has
been already inserted between any two packets).
Thus, the last packet of each cn-tube leaves at time
L0n x (|| + 1/ | ss] = 1001+ 0(3))

The packets move as shown in Figure 3, namely,
LL packets change the direction at the left-end of
the left-half mesh and LR packets just continue to
move rightward up to their correct columns.

There are two important observations: (i) After
getting out of its own cn-tube, the sequence of LL
packets may enter the other en-tube if their desti-
nation columns are there (see Figure 4). Some LR

packets may remain in the latter cn-tube and are
now being squeezed. It may seem that this collision
of LL and LR packets may cause some problem, but
actually not. The reason is that both LL and LR
streams include a space between two packets. In-
side the cn-tube, one flow can be combined with
the other using these spaces and we do not loose
any speed of their movement. (ii) Since original %
packets in a single row are divided into LL and LR
streams, at least one stream must include less than
2 packets or must include spaces originally. This is
not harmful either. We can regard these spaces as
“null packets” whose destination column is the clos-
est one when applying the sorting operation. Then
these null packets are scattered in the brp sequence,
which again does nothing harmful.

Phase 3 (0.5n steps). All packets are shifted
horizontally and eventually enter into their criti-
cal positions (some of packets have already entered
into their critical positions in Phase 2). As the con-
tention resolution rule, turning packets are always
given a higher priority than straight-moving pack-
ets.

Phase 4 (1.0n steps). All packets move vertically
to their final positions.

Theorem 1. ROUT-B correctly routes all pack-
ets within (3.0 + §l§—t§- + 2c)n steps using queues
of size d + 8/d + 8 + % for some constants ¢ and d
such that ¢ < } and d = 2% for some integer £.

Proof. We shall only prove that (i) there is no
congestion at critical positions, and (ii) the queue-
size is at most d + 8v/d + 8 + %

(1) The basic idea is similar to [IM99a], but a bit
more complicated. Consider an arbitrary column j
and denote a packet whose column destination is
j by @j. In each row, these ¢;’s come from both
directions. However, it turns out that the number
of directions is not important. Hence we can as-
sume that all ¢;’s come from the left by increasing
the number of rows, and can also assume that they
move upward in the column. Let k; be the num-
ber of a;’s in row i. Then k; can be written as
ki =kiy+kia+-- 4k 12, where k; ¢ is the num-
ber of «;’s which exist in the £th cn-tube before
merged.

Take a look at the first en-tube. There are &;
a;’s, denoted by «; 1, in that tube. Since they be-
come a subsequence of length k; 1 after sorted, there
are at most d+8v/d+8 @;,1’s in any brp subsequence
of length %ﬁ’f by applying Lemma 3. Recall that

the small brp sequences are merged into the quasi-

brp sequence. Since 51;
1

3 — 1 packets are inserted between any two o;1’s.
Furthermore, brp sequences are extended by insert-

brp sequences are merged,

ing one space between any two packets and one
space per 2 LS\/%WJ packets. Therefore, in the final

quasi-brp sequence, there are at most d + 8v/d + 8
aj1’s in any subsequence of length

vl ({Everwt RO vl
5 (_d+\k/3+ 8)n.

Similar results are also obtained for other o; ,’s.

Now consider a processor F; ; at the cross-point
of the ith row and jth column. Let N = d+8vd+8.
Then, the number of a; ¢’s which P ; receives from
the fth cn-tube during an arbitrary time-window
A; of Hk—"- steps is at most

N-n N-n ki e
(k'i /ki,z)XN_N_].C—-

i

Thus the total number of a;’s which P;; receives
from all en-tubes during A; is at most

kiv+kia+--+ k‘;yl/zc
k;

N =N

since k; = k; 1 + ki 2+ -+ k; 1/2.- If none of those
N packets o;’s can move upward through the jth
column at some step, then there must be a packet
which is now ready to enter the jth column by mak-
ing a turn at some upper position than P;;, and
which can enter the column in the next time-step.
Let us call such a packet a blocking packet against
a;’s. In the following, we shall show that the to-
tal number of an,’s (1 < m < i~ 1) which P
through P;_;; can receive during the window A; is
at most % ~ N. In other words, there must be at
least N time-slots such that no packets flow on the
jth column within % — N steps. Since there are
no blocking packets at those time-slots, the N «;’s
currently held in P;; can enter the column during
the window A;.

Since the similar argument implies that Py, ; can
receive at most NV «;’s in —Iz;lﬂ steps for each m < 1,
the number of a;’s which P, ; receives during A;
of %—"—’- steps is at most

N-n N-n Nk,
(————-ki /km>XN——k,~ .

Hence, the total number of o;’s which P; ; through
P;_1,; can receive is at most

N(ky+ky+ -+ ki) < N-n

k; =Tk -

since ky + ko + -+ + ki-y < n — k;. The same
argument can apply for any column j (1 < j < n)
and for any window A; (1 < ¢ < n). As a result,
any delay does not happen in the column routing
phase.

(i) Since each queue at any column edge be-
comes empty at least once every]—VEﬂ steps as shown
above, the queue-size does not exceed size N. Also,
each queue at any row edge is bounded from above
by % Thus each processor holds at most N + %

packets at the same time in its queue. O

5 (2.54¢)n Algorithm

In the previous section, we have improved the time
complexity down to (3 + ¢)n by reducing the path-
overhead from 3n of the primitive algorithm to 2n,
and by removing the pack-overhead, from the pre-
vious 1.0n to 0.5n. However, in compensation for
those improvements, we had to pay the 0.5n space-
overhead in the second phase of ROUT-B. In this
section, it is shown that our main algorithm, de-
noted by ROUT-Q, can eliminate almost all the space-
overhead. In the following, for simplicity, we may
omit the description of the delay caused by con-
structing short brp sequences (denoted by cn pre-
viously).

Recall that ROUT~B has to insert 0.5n spaces into
every brp sequence constructed in Phase 1 since its
length is 0.5n while 1.0n packets move through each
column in Phase 4, 1.e., ROUT-B has to extend the
length of the brp sequence to be 1.0n by spacing in
order to avoid heavy path-congestion at the criti-
cal positions. However, alternatively, it is also true
that if the number of packets flowing on each col-
umn can be decreased, then we only need to insert
fewer spaces. Here is our basic idea: The whole nxn
mesh is divided into four % x % sub-meshes, the top-
left TL, the top-right TR, the bottom-left BL, and
the bottom-right BR sub-meshes as illustrated in
Figure 5. (i) All packets whose sources and des-
tinations are both within the upper half mesh (the
lower lower half mesh), called A-packets, move along
the same paths as the paths of ROUT-B. For example,
by using the first 0.5n steps, all LR h-packets which

move from TL to TR are once packed into their en-
tubes located at the right-end of the left mesh, and
then the packets go out of the en-tubes in the brp
order without inserting spaces by using the second
0.5n steps. Finally, those packets move horizontally
and then vertically towards their correct positions
in TR in the.next n steps as before. On the other
hand, (ii) all packets which move from the upper
half mesh to the lower half mesh (from the lower
half to the upper half), called w-packets, once move
vertically into the lower (upper) half mesh, then
move horizontally to their correct columns, and fi-
nally move vertically again to their final goal posi-
tions (see Figure 5). For example, all LR w-packets
which move from TL to BR first move downward
into the submesh BL by using the first 0.5n steps
and then move to the final goals in BR along the
same paths as (i) in the next 2.0n steps. Note that
the first horizontal action of (i) and the first vertical
action of (ii) can be initiated at the same time and
can be performed completely in parallel. Also, note
that the final column movements within the upper
half mesh and ones within the lower half mesh are
independently executed, i.e., the number of packets
flowing on each column can be regarded as 0.5n.
Thus, it would be possible for the four sub-mesh
strategy to provide us an algorithm which runs in
(2.5 +€)n steps for small positive e. Unfortunately,
however, a simple implementation of the strategy
does not work efficiently.

Take a look at a cn-tube, for example, at the.

right-end of TR in more detail. If we follow the
stages as described above, then RR w-packets orig-
inally placed in BR start to enter into the en-tube at
the 0.5nth step (i.e., right after their vertical move-
ments), and the last packet of their brp sequence
stays in the c¢n-tube until the 1.5nth step in the
worst case. Recall that, in parallel, LR h-packets
originally placed in TL are coming from the left.
As a worst example, if almost all the destinations
of the LR h-packets are positions in the same cn-
tube, then they arrive at the cn-tube roughly at the
nth step, which causes heavy path-congestion there
since the some RR w-packets are still moving within
the en-tube. Thus, the following special treatment
is required only for the h-packets whose destina-
tions are in the cn-tubes, called tube-packets: All
the tube-packets are once moved to their interme-
diate positions which are placed on the same rows
as their final destination rows but outside the en-
tubes, and then move horizontally to their final po-

sitions. Those intermediate positions are scattered
evenly in the whole mesh except for the en-tubes.
Here is the rule (see Figure 6): The intermediate
positions for ¢n tube-packets in the right-end on
the top row are placed in the (%11 + 1)th column,
the (3 + %22=¢ 4 1)th column, (2 +2825=¢ 4 1)th
column, and so on. The intermediate positions for
cn tube-packets on the second top row are shifted
(cyclically) one position to the right. Similarly for
the other intermediate positions.

Note that the number of packets flowing on each

column increases from the previous 0.5n to 0.5n +

2cen
1-4c
sert a small number of spaces between the brp se-

. Thus, our main algorithm ROUT-Q has to in-

quences again.

Algorithm ROUT-Q

The algorithm has the following five phases, in
each of which two tasks are performed at the same
time. (i) One task is to move the h-packets which
move within the upper half mesh (within the lower
half mesh). (ii) The other is to move the w-packets
which move from the upper (lower) half mesh to the
lower (upper) half mesh:

Phase 1 ((0.5+2¢)n steps). (i) Everything is the
same as Phase 1 in ROUT-B for h-packets. (ii) All the
w-packets moving from the upper (lower) half mesh
to the lower (upper) half mesh are shifted downward
(upward) exactly 0.5n positions by using exactly
0.5n — 1 steps.

Phase 2 (max{O.Sn(l +0(F)(2g), (05+20)n}
steps). (i) h-packets start to get out of en-tubes.

1;:“ packets and fur-

Here one space is inserted per
thermore, one space per [?3\/%—+SJ packets. (i) As
for the w-packets, the same operation as Phase 1-(i)
is performed.

Phase 3 (0.5n(1 + O(&—E))(ﬁ) steps). (1) The
same operation as Phase 3 in ROUT-B is performed
for the h-packets but tube-packets are shifted hori-
zontally and temporally enter into their intermedi-
ate columns defined by the above rule. (ii) Every-
thing is the same as Phase 2-(i) for the w-packets.

Phase 4 (0.5n steps). (i) All h-packets except for
tube-packets move vertically to their final positions,
and tube-packets move vertically to their interme-
diate positions. (ii) All w-packets are moved into
their critical positions.

Phase 5 (0.5n steps). (i) All tube-packets cur-
rently placed on their intermediate positions move
horizontally to their final positions. (ii) All w-packets
move vertically to their final positions.

Theorem 2. ROUT-Q correctly routes all pack-

ets within (2.5+max {6c, %ﬂ})n steps using

queues of size d + 8vVd+ 8+ % for some constants ¢
and d such that ¢ < } and d = 2% for some £.

Proof. Although we shall omit to prove why
ROUT-Q works in those time-steps, making just a
change of parameters in the proof of Theorem 1
leads us to this theorem. 0

References

[GHKS98] M.D. Grammatikakis, D.F. Hsu, M.
Kraetzl, J.F. Sibeyn, “Packet routing in fixed-
connection networks: A survey,” JPDC 54 (1998)
77-132.

IKM98] K.Iwama, Y. Kambayashiand E. Miyano,
“New bounds for oblivious mesh routing,” In
Proc. ESA98 (1998) 295-306.

[IM99a] K. Iwama and E. Miyano, “An O(V/N)
oblivious routing algorithms for 2-D meshes of
constant queue-size,” In Proc. SODAYY (1999)
466-475.

[Kri91] D. Krizanc, “Oblivious routing with limited
buffer capacity,” JCSS 43 (1991) 317-327.

[Lei92) F.T. Leighton, Introduction to Parallel Al-
gorithms and Architectures: Arrays, Trees, Hy-
percubes, Morgan Kaufmann (1992).

[MS96] R. Miller and Q.F. Stout, Parallel algo-

rithms for regular architectures: meshes and
pyramids, The MIT Press (1996).

[Tom94] M. Tompa, Lecture notes on message rout-
ing in parallel machines, U of Washington (1994).

cn-tube

Figure 1: Paths and en-tubes

cn cn cn
I iy ooy 25 I
i o | RS | o8
c2n-tube X
Figure 2: * subarrays

Figure 3: LL, LR, RL, and RR packets

tube tube

Figure 4: Observation-(i) in Phase 2 of ROUT-B

TL TR N
h-packet
I v
!
w-packet
BL BR
Figure 5: % x % sub-meshes, TL, TR, BL, and BR

"o o0 oo o o o o '
co0o0o0|0oo0O0OO0
0O 0 00l 00 0 O
0O 0 0 0
0O 0 0 O
TR 0 0 O O
o 0 00
0 0 0 O
0O 0 0 O
n/2 .
A
n/4 n/4

Figure 6: Intermediate positions for tube-packets

