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Abstract We consider a class of pointed convex polyhedra in RY whose edge
vectors have the support:of size at most 2. We call such a convex polyhedron
a polybasic polyhedron -and show that for a pointed polyhedron P C RV the
following three statements are equivalent:

(1) P is a polybasic polyhedron.

(2) Each face of P with a normal vector of the full support Vis ‘obtained from a
base polyhedron by a reflection and scalings along axes.

(3) The support function of P is a submodular function on each orthant of RV.
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1. Introduction the following three statements are equivalent:
(1) P is a polybasic polyhedron.

(2) Each face of P with a normal vector of
the full support V is obtained from :a base
polyhedron by a reflection and scalings along
axes. ) i

(3) The support function of P is a submodular

function on each orthant of RV.

We consider a class of pointed convex polyhe-
dra in RY whose edge vectors have the sup-
port of size at most 2.. We call such a convex
polyhedron a polybasic polyhedron. Polyba-
sic polyhedra are closely related to base poly-
hedra ‘associated with submodular set func-
“tions (see [7]).

"~ In Section 2 we give some definitions and

preliminaries together with some examples of 2+ Definitions and Preliminaries

polybasic polyhedra. In Sections 3 and 4 we
show that for a pointed polyhedron P C RY

Let V be a finite set and P be a peinted poly-
hedron in RY. For any extreme point = of P
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denote by T'(z) the tangent cone of P at z.
We call an extreme vector of the tangent cone
T(z) for some extreme point z of P an edge
vector of P. The support of a vector z in RV
is defined by supp(z) = {v |v € V, z(v) # 0}.
We also define supp™(z) = {v [v €V, z(v) >
0} and supp~(z) = {v | v €V, z(v) < 0}. If
each edge vector z of P satisfies |supp(z)| < 2,
then we call such a polyhedron P a polybasic
polyhedron. (The meaning of this term will
be made clear later.)

Let D C 2V be a distributive lattice, i.e.,
for any X,Y € D we have X UY, X NY € D.

Alsolet f : D — R be a submodular function,
ie.,

FX)+ ) > f(XUY)+f(XNY) (X,Y €D).

We assume @,V € D and f(0) = 0. The base
polyhedron B(f) associated with such a sub-
modular function f is defined by

B(f) ={z |z e RY, VX € D:z(X) < f(X),
z(V) = f(V)}, (2.1)

where for any X C V wedefine z(X) = Y cx
z(v) (see [7] for more details about submod-
ular functions). Note that B(f) is pointed
if and only if D is simple, i.e., the length
of a maximal chain of D is equal to V| ([7,
Th. 3.11]).

For each X C V denote by xx the char-
acteristic vector of X in RV, ie., xx(v) =1
(v € X) and xx(v) =0 (v € V\X). For each
u € V we also denote x(y} by Xu-

We have

Theorem 2.1 (see [7]): For the base polyhe-

dron B(f) given by (2.1) let f : RV - RU
{+00} be the support function of B(f), i.e.,

f(p) = sup{{p,z) | = € B()},
where (p,z) = Y ,cy p(v)z(v). Then,

D={X|XCV, fxx) < +oo},
flxx)=f(X) (XeD).
a

Base polyhedra are characterized by the
following.

Theorem 2.2 (Tomizawa[12]): For any point-
ed polyhedron Q@ C RY, Q is a base polyhedron
if and only if each edge vector of Q is a multi-
ple of one of the forms xu — Xv (u,v € V,u #
v). O

For any disjoint S, 7 C V with SUT =V
we call the ordered pair (S,T) an orthant of
RY. For any polyhedron Q and any 7' C V
the reflection of @ by T is defined by

Q:T={y|zeQ, yeRY YveT:ylv)=—-z(v),
Yo e VAT :y(v) = z(v)}.

A hyperplane H : (p,z) = d is called a
supporting hyperplane of a polyhedron P if P
is included in the half space (p,z) < d and
PN H is nonempty. We call F = PN H the
face of P with a normal vector p.

3. Polybasic Polyhedra

The face structure of polybasic polyhedra is
revealed by the following theorem.

Theorem 3.1: Suppose that P C RY is a
polybasic polyhedron. Let F' be a nonempty
face of P with a normal vector p having the
full support V. Then there uniquely exists a
base polyhedron B(f) associated with a sub-
modular function f : D — R such that

F={z|z € RY y € B(f),Yv € Viy(v)= p(v)z(v)}.
(Proof) Define
B={y|yeRY, z€F,
VYo € V :y(v) = p(v)z(v)}.

Then, since F lies on a hyperplane Y_,cy p(v)
z{v) = d(= const.), the polyhedron B lies on
the hyperplane

(3.1)

y(V) = d. (3.2)

Moreover, since P is a polybasic polyhedron,
its face F is also a polybasic polyhedron. It
follows from (3.1) that B is also a polybasic
polyhedron. This, together with (3.2), implies
that each edge vector of B is a multiple of one
of the forms x, — X» (u,v € V,u # v). Hence

B is a base polyhedron, due to Theorem 2.2.
0

From this theorem we have
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Theorem 3.2: For a pointed polyhedron P C
RY, P is a polybasic polyhedron if and only if
each face of P with a normal vector having the
full support V' is obtained from a base polyhe-
dron by a reflection and scalings along azes.

(Proof) The “if part” easily follows from The-
orem 2.2. So, we show the “only if” part. It
follows from the proof of Theorem 3.1 that for
each face F of a polybasic polyhedron P C
RY with a normal vector p having the full
support V there uniquely exists a base polyhe-
dron B(f) associated with a submodular func-
tion f: D — R such that

F={z|z€eR", yeB()
Yo eV :y(v) = pv)z(v)}.

This means that F is obtained from the base
polyhedron B(f) by means of the reflection
by T = {v | v € V, p(v) < 0} and of scalings
along axes by 1/|p(v)| (v € V). T o

Remark 3.1: It should be noted that if a vec-
tor z € RY satisfies (p,z) # 0 foreach p € RV
of full support V, then we have |supp(z)| = 1.
Hence each edge of a (not necessarily polyba-
sic) polyhedron that does not have any nor-
mal vector of the full support V has the edge
vector of the form +yx, (v € V). a

Examples of polybasic polyhedra are given
as follows. ’

Example 1: Base polyhedra
See Theorem 2.2. a

Example 2: Generalized polymatroids [6]

Each edge vector is a multiple of one of
the forms x, — x» (v,v € V,u # v) and £x,
(veV). o

Example 3: Bisubmodular polyhedra [2], [3],
], [5], [7, Sec. 3.5(b)]

Each edge vector is a multiple of one of
the forms +x, +x, (u,v € V,u # v) and £x,
(veV). O

Example 4: Extended submodular polyhe-
dra [8]

An extended submodular polyhedron P is
considered by Kashiwabara and Takabatake

[8]. A pointed extended submodular polyhe-
dron is a polybasic polyhedron that is lower-
hereditary, i.e., z < y € P implies z € P.
For each edge vector z with |supp(z)| = 2, we
have |supp*(z)| = |supp~(z)] = 1. =

Example 5: Polybasic zonotopes

Let D: V xA — R be a |V]| x |A] real
matrix such that each column vector D(-,a)
(a € A) satisfies |supp(D(-,a))| < 2. For a
positive vector u € R4 consider the polyhe-
dron P(D,u) defined by

PD,u)={y|y=Dz, 0<z<u}. (33)

Here, P(D,u) is a zonotope and is a poly-
basic polyhedron, as can be seen from (3.3).
Note that edge vectors of P(D,u) are given
by +£D(-,a) for column vectors D(-;a) (a € A)
of D. P(D,u) can be regarded as the set of
boundaries of flows in a bidirected network
determined by D and w.

If each column vector D(-,a) of D has ex-
actly two nonzero components, one being equal
to 1 and the other to —v(a) with vy(a) > 0,
then D can be regarded as the incidence ma-
trix of a generalized network N with the ver-
tex set V, the arc set A, and a gain y(a) and
a capacity u(a) for each arc a € A (see, e.g.,
[1, Chapt. 15]). The corresponding P(D,u) is
the set of the boundaries Dz of all flows z in

N such that 0 < z < u.
For a polybasic zonotope P(D,u) we can
easily compute

h(p) = max{(p,y) | y € P(D,u)}

for each coefficient vector p € RY. We can
also easily show that the support function A
is submodular on each orthant of R, m

4. Submodular Functions Assdciated
with Polybasic Polyhedra

Let P C RV be a polybasic polyhedron and
let h : RV — R U {400} be the support func-
tion of P, i.e., : ~

h(p) = sup{(p,z} | = € P}.

As is well known, the support function A is
positively homogeneous and convex, and hence
h is subadditive, i.e., A(p) + h{q) > h(p + q).



When p is a normal vector of P that deter-
mines a face F', we simply say that p is a nor-
mal vector of F, in the following.

Based on Theorem 3.1, we have

Lemma 4.1: Let F be a face of a polybasic
polyhedron P in RY with a positive normal
vector p € RY. Then, for a sufficiently small
a with 0 < a < 1, there um((uely exists a
simple distributive lattzce D C2¥V with 0,V €
D such that F is the set of vectors = satisfying

(ap® + (1 - a)p,z)
< h(ap® +(1-0a)p) (X €D),
(p, ) = h(p),

where p~ is a vector in RY such that p* (v) =
p(v) (v € X) and pX(v) = 0 (v € V \ X).
Moreover, h(ap® + (1 —a)p) as a set function
in X € D is submodular on D.

(Proof) It follows from Theorem 3.1 that for a
uniquely determined submodular set function
f : D — R on a simple distributive lattice D
with 0,V € D the face F is the set of vectors

z € RY satisfying
@*,2) < f(X) (X eD), (4.1)
(p,z) = f(V). (4.2)

For any o with 0 < & <1, (4.1) and (4.2) are
equivalently written as

(ap® + (1 - a)p, )
<af(X)+ (1A -a)f(V)
(p,z) = (V).
Recall that P is a polyhedron. Because of the
finiteness characteristic of P, for a sufficiently
small & > 0 the equation obtained from (4.3)

for each X € D is a supporting hyperplane of
P and we have from Theorem 2.1

+(1-a)p) =af(X)+ (1 -a)f(V).

This completes the proof. _ O

(X € D), (4.3)

h(ap®

We also have

Lemma 4.2: Let « be a positive real such that
Lemma 4.1 holds. Also let C(F,p,a) be the
cone generated by {apX + (1 —a)p | X € D}.
Then for any g € C(F,p, o) there uniquely ez-
1st a chain C of D:

C:(@#)S()CSlC"'CSk (4.4)

and positive reals A; >0 (1 =0,1,---,k) such

that .
g=Y Nlap® + (1 —a)p), (4.5)
i=0
and we have
Z/\ h(ap® + (1 = a)p). (4.6)

=0
Moreover, for any q1,q2 € C(F,p,a) we have
R(gi) +h(g2) > h(q1 V @2) + h(qa A g2),  (4.7)

where (q1 V q2)(v) = max{q1(v),q2(v)} and

(g1 A g2)(v) = min{q1(v),q2(v)} for each v €
V.

(Proof) We can easily show (4.4)~(4.6) by the
greedy algorithm for base polyhedra (see [7];
this is essentially the same as the Lovész ex-

tension of a submodular set function [9]).
We show (4.7). Suppose that g; and gp are
expressed as

k1

a =Y Nilap® +(1-a)p),
=0
k2

g = Z,ui(apTi +(1-a)p)
=0
for some chains of D
C Sy, TocThc (4.8)

SoC S C--- "_CTM.

Also suppose without loss of generality that

k1 ko
STa<d m Z/\ >Zuzl—
=0 i=0

=0
Note that if the latter inequality in (4.9) does
not hold, we have q; < go and hence (4.7)
trivially holds.

). (4.9)

Now, put
k1 k2
Li=Y A(l-a), L= wm(-a)
i=0 =0
and let
Mo > 11 > "< > Nka+1

be the distinct values of

k1
Ly, Ly, Y Me+Li (r=01,-,

1=

k2
Z i + Lo
i=r

kl)7

(r=0,1,---, k).



Suppose that n+1 = Lo and n; Efi.o A+

Ly, where s < t from (4.9). Define .

vi= (=) /e (3 0) (6=0,1,-+,ks),(4.10)

S; = supp(q1 — (g1 Amit1p))
(i=s,8+1,---,ks), (4.11)

T; = supp(g2 = (g2 A ni+1P))

(i=0,1,---,8).  (4.12)
Then ¢; and q2 are rewritten as

k3

g =Y vlep +(1-a)p), (413)
i=s

t S

=Y vilepT +(1-a)p),  (414)

i=0

where note that the two monotone nondecreas-
ing sequences of subsets of V

(S0 =)S; C 84y -+ C Sp (= Sky)s

are obtained from ‘those in (4.8) by possibly
repeating some elements in (4.8).. It follows
from (4.10)~(4.14) that

h(g:) + h(g2)

k3 t
=Y " wh(S) + D _uih(T))
i=s i=C
ka . §—1 ~
= Y wh(S) + Y vk(T))
i=t41 =0
t -~ -~
+Y_w{h(S)) + (T))}
kr: - s—1 5
> > wik(S) + > wil(T))
i=t+1 =0

t
+3 v A(S;UTY) + R(SiNT))}

i=5

s—1 t
=S wh(T)) + > wih(S{UT))

=0 i=s

t k3
+3 wh(SinT)) + Y wh(S)
i=s i=t+1
=h(q V @) + a1 A g2),

where A(X) denotes h(ap* +(1—a)p) for X C
V. This completes the proof of the lemma. O

For any orthant (S,T) define

RS = {q|q e RY supp*(q)C S, supp~(q)C T}

Also, for any q1,¢2 € R(5T) define

max{q: (v),q2(v)} (v €S)

(Q1V(5.T)q§)(”) = { min{g (v),¢2(v)} (v €T),

min{q(v),2(v)} (v €5)

(s = | max{q:(v), :(v)} (v € 7).

Lemma 4.3: For any orthant (S, T) and any
g1,92 € RST), if h(q1),h(g2) < +oo, then
h(q1 V(s,ry @2); M(q1 Asry g2) < +o0.

(Proof) We consider the positive orthant (V,0).
Suppose to the contrary that h(q), h(g2) <

400 and k(g1 V g2) = +oo. Then there exists
a facet F' of P such that

sup{{q: V g2,2) | T € F} = +c0. (4.15)

On the other hand, from the assumption

sup{{(g1,) | z € F} < +o0,

sup{(gz, ) | z € F} < +o0. (4.16)

Since F is obtained from a base polyhedron by
scalings and the present lemma for (5,7) =
(V,0) holds for a base polyhedron (see [9],
[11]), (4.15) contradicts (4.16). Hence, h(q: V
q2) ‘< +o00. Similarly, we have h{q: A q2) <
+00. ]

From Lemmas 4.2 and 4.3 we can show the
following. Denote by F, the face of P having
a normal vector p.

Theorem 4.4: For any orthant (S,T) and any
q1,q2 € RET) there holds

h(q1) + h(ge)
> h(q1 Vs, ©2) + B(ar As,ry @2)- (4.17)

(Proof) It suffices to consider the positive or-
thant (V,0). We can suppose that h(p) < +o0
for some positive vector p € RY. Consider

. any positive vector g € RV®, any positive

reals B1, 02 > 0, and any distinct uj,ug € V
such that h(g + Bixu,), (g + BaXu,) < +00.
Then, there exist (sufficiently small) positive
numbers 1,82 > 0 such that 8; = N;6; (i =
1,2) for some positive integers N; (i = 1,2)
and that for each j; with 0 < j; < N; (4 =
1,2), putting

do=4¢q +j161Xu1 + j252Xy2; (418)
g1 =g+ (.71 + 1)51Xu1 +j252Xu21 (4'19)
g2 = g+ j1b1xu, + (G2 + Dd2Xuas. (4.20)

g3 =g+ (.71 + 1)61Xu1 +(j2 + 1)(52Xu21 (421)
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either (i) we have Fy, = Fy, = Fy, = Fy, or
(ii) for a unique minimal face F™* that contains
Fy (4 =0,1,2,8), we have ¢; € C(F*,pp~,
0p..) (2 =0,1,2,3) for an appropriate posi-
tive normal vector pr+ of F* belonging to the
convex hull of {¢g; | 7 = 0,1,2,3} and for a
positive real oy, > 0. Here, note that due to
Lemma 4.3 and the convexity of h the values
of i for all the vectors given by (4.18)~(4.21)
are finite. In Case (i),

h(q1) + h(g2) = h(gs) + h(q) (4.22)
and in Case (ii),
h(q1) + h(gz) > h(gs) + h(qo) (4.23)

due to Lemma 4.2, where note that ¢;Vgs = g3
and g1 A g2 = qo. From (4.22) and (4.23) for
0<ji<N; (i=1,2) we get

h(q + EIXul) + h(q+ ﬂ'ZXug)
> h(g + BiXu; + BaXu,) + A(q).

This implies the submodularity inequality
(4.17) with (S,T) = (V,0) for any positive
vectors q1,q2 € R, Hence, (4.17) with
(S,T) = (V, ) holds for any nonnegative vec-
tors q1,q2 € R since h is a closed convex
function. O

For a function g : RV — RU{+o0} define
dom(g) = {z | z € RY, g(z) < 400}, which
is called the effective domain of g. Also; for
any orthant (S,T), if g satisfies the following
condition:

(*) For any qi,qz € R(SYT)a

9(qr) + 9(g2) > 9{ar V(s,m) @) + 9(q1 As,7) @2)s

then we say that g is submodular on the or-
thant (S,T) of RY.

Lemma 4.5: Let P C RY be a pointed poly-
hedron and h: RY — R U {+o0} be the sup-
port function of P. Suppose that h is submod-
ular on the positive orthant (V,0) of RV . Also
let F be a face of P with a positive normal
vector p and define

D={X|XCV,
h(apx + (1= a)p) < +oo},

where a is a sufficiently small positive real so
that apX +(1—a)p for any X € D is a normal
vector of a face of F' (of P). Then, D is a
simple distributive lattice with 0,V € D.

(Proof) It easily follows from the submodular-
ity of h on orthant (V,0) that X.Y € D im-
plies XUY, XNY € D. Hence D is a distribu-
tive lattice and we easily see that 0,V € D.
So, let us show that D is simple.

Suppose to the contrary that D is not sim-
ple. Let u,v € V be a pair of distinct ele-
ments of V such that for any X € D we have
|X N {u,v}| 5 1. Then, we claim that for any
z € Fandany >0

z + B((1/p(u))xu — (1/p(v))xv) € F.

For, otherwise there exists 8* = max{f >
0| z+B((1/p(u))xu — (1/p(v))xy) € F} for
some z € F and let ¢ be a positive normal
vector of the unique minimal face of P that

contains z + 8*((1/p(u))xu — (1/p(v))xv). We
can choose such a ¢ satisfying

q(w)/p(u) > q(v)/p(v),

Let v90 < 71 < --- < 7y be the distinct val-

ues of g(w)/p(w) (w € V) and suppose that

Y& = g(u)/p(u) and ;1 = q(z)/p(z) for some

z € V. Note that from (4.25) ¢(z)/p(z) >
a(0) p(v). Defining Z = {w | w € V, w <

g(w)/l)(w)}, since ¢, Vp, Ye-1p € dom(h), we
ave

(4.24)

h{g) < +o0. (4.25)

(g AYkp) V Yo-1pP
= (Y& — Yk-1)p? + Ye—1p € dom(h). (4.26)

Since we can choose g close enough to p so that
(1 = @)% < k-1 and hence (yx — —1)p? +
Ye—1p = Map? + (1 —a)p) +8p for some A > 0
and ¢ > 0, it follows from (4.26) that Z € D.
From the definition of Z we have u € Z and
v ¢ Z, which contradicts the assumption on
u,v. Hence this completes the proof of the
claim (4.24).

Now, because of the symmetry in u,v in
the claim of (4.24) we see that I contains an
affine space of dimension greater than or equal
to one. Hence F' is not pointed. This contra-
dicts the pointedness of P. |

Lemma 4.6: Under the same assumption as
in Lemma 4.5, for any nonempty face F' of
F there exists a normal vector q of F' that is
close enough to p so that q € C(F,p, ).

(Proof) By the same argument as in the proof
of Lemma 4.5 from (4.24)~(4.26) ¢ can be ex-



pressed as
!
g=> (%= v-1)p% + 700, - (4.27)
=1
where Z; € D for i = 1,2,---,I. We can

choose ¢ close enough to p so that (1 —a)y, <
~0- Then it follows from (4.27) that ¢ € C(F,

D, ). m}

Lemma 4.7: Under the same assumption as
in Lemma 4.5, let F be a face of P with a
positive normal vector p. Then, for a suffi-
ciently small positive real o > 0. the face F is
ezpressed by

(ap™ + (1 - a)p, z)

< hlop® + (1~ a)p)
h(p)

where D ={X | X CV, h{apX + (1 —0a)p) <

+00} is a simple distributive lattice with 0,V €
D, due to Lemma 4.5.

(X € D), (4.28)

{p,z) = (4.29)

(Proof) It follows from Lemma 4.6 that for
any nonempty face F' of F there exists a nor-
mal vector ¢ of F' that is close enough to p so
that ¢ € C(F,p,a). For such a normal vector
g there uniquely exist a chain C of D:

C: SgCcSC---CS (4.30)
and positive reals A\; >0 (i =0,1,---, k) such
that

k

g=>_ Xilap% +(1-a)p). (4.31)

=0

Note that the support function h of P is pos-
itively homogeneous and convex, and hence
subadditive. It follows from (4.30), (4.31),
and the submodularity assumption on A that

h(Z)\(ap +(1-a)p)+ ZA

i=0
k—1
A3~ Ailep® + (1 - a)p) + Aep)
i=0
+h(M(ap™ + (1 - a)p)
k-1 .
+(1=-a)(3_ M)p) + o Z,\ )h(p)
i=0 =0
k-1
=R AiapS + (1 - a)p)) + (Z Ai)h(p)
i=0 =0

+h(Ak(ap® + (1 - a)p))

k-2 k
> (Y Ailap® + (1= a)p)) + (3 A)h(p)
=0 i=0
k

+ Y h(Ai(ep® + (1 - a)p))
i=k—1 .
>
. k
> h(Xo(ap™ + (1 - a)p)) + (3_ M)h(p)
. i=0

k
+> h(i(ap™ + (1 - a)p))

i=1

k k :
=Y hiler® + (1= a)p)) + (3 M)hlp),

i=0 =0

where note that h(¢' + Ap) = h(q') + Ah(p) for
any ¢' € C(F,p,a) due to (4.29) (recall that
we choose o sufficiently small). From this we
have

k
h(g) 2 Y \ib(ap® + (1= a)p).

i=0

(In fact, this holds with equality, due to the
homogeneity and convexity of h.) It follows
that (4.28) and (4.29) imply the following in-
equality.

(g.x) < h(q).

Hence F' is expressed by (4.28) and (4.29). O

The following theorem gives another char-
acterization of polybasic polyhedra.

Theorem 4.8: Let P C RY be a pointed poly-
hedron and h : RV — R U {+00} be the sup-
port function of P. Then, P is a polybasic
polyhedron if and only if h is submodular on
each orthant of RV .

(Proof) The “only if” part: This follows from
Theorem 4.4.

The “if” part: We show that each edge vector
of P has the support of size at most 2. Let F
be an edge of P and z € R" be an associated
edge vector of F'. Suppose |supp ) > 2 and
let p be a normal vector of F in P. Then we
can perturb p to get a new normal vector p'
of F with supp™(p) C supp* (p'), supp~(p) C
supp~(p'), and supp(p’) = V. So, we assume
that F' has a normal vector p with supp(p) =
V. Suppose without loss of generality that p is



a positive vector. Then we see from Lemma
4.7 that for a sufficiently small positive real
a > 0 the edge F is expressed by

(ap™ + (1 - a)p,z)
< hlop® + (1 —a)p) (X €D), (4.32)
{p,z) = h(p) (4.33)

where D = {X | X CV, h(ap® +(1—a)p) <
+o0} is a simple distributive lattice with ,V €
D. Hence F' is obtained from a base polyhe-
dron by scalings along axes, and we thus have
|supp(z)| = 2. o

Remark 4.1: It should be noted that the
class of polybasic polyhedra in RV is closed
with respect to the following operations:

(1) taking the Minkowski sum (or the vector
sum) of two polybasic polyhedra,

(2) taking the intersection of a polybasic poly-
hedron Pandabox B = {z |z € RV, a<z<
b} with PN B # 0, where a € (RU {—oco})V
and b€ (RU {+o0})V.

Note that the nonempty intersection of a
base polyhedron and a box is again a base
polyhedron and that of a submodular polyhe-
dron and a bounded box is a translation of a
polymatroid polytope (see [7]). O

Remark 4.2: There is some similarity be-
tween the class of polybasic polyhedra and
that of M-convex functions considered by
Murota ([10], [11]). For each face F, which
is not parallel to the axis of the function val-
ues, of the epigraph of an M-convex function
from RY to R, F is a projection, along the
axis of the function values, of a base polyhe-
dron in RY. Here each such face is related to
a base polyhedron by a projection while each
face of a polybasic polyhedron is related to a
base polyhedron by scalings and a reflection.
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