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Abstract In 1997, Kondacs and Watrous introduced the quantum counterpart of two-way finite
state automata (two-way quantum finite state automata, 2QFAs). In 1999, Kravtsev introduced the
quantum counterpart of one-way one-counter automata (one-way quantum one-counter automata,
1Q1CAs). To deal with these two models all together, we introduce two-way quantum one-counter
automata (2Q1CA). We give the definition of 2Q1CAs and investigate the languages recognized by
automata on this model. We prove that {a"b”2 | n > 1} and {a™b"c™" | m,n > 1} are recognizable.

'1 Introduction

In 1997, Kondacs and Watrous [1] introduced the
quantum counterpart of one-way and two-way fi-
nite state automata (one-way and two-way quan-
tum finite state automata, 1QFAs and 2QFAs).
In the classical case, it is well known that both of
the classes of languages recognized by one-way and
two-way deterministic finite state automata are
the class of regular languages. However, Kondacs
and Watrous [1] showed that the class of languages
recognized by 1QFAs is properly contained in the
class of regular languages, while that of 2QFAs
properly contains the class of regular languages.
In 1999, Kravtsev [2] introduced the quan-
tum counterpart of one-way one-counter au-
tomata (one-way quantum one-counter automata,
1Q1CAs). In the classical case, we can easily
see that the languages recognized by one-way de-
terministic one-counter automata (1ID1CAs) are
properly contained in the class of context-free
languages (CFL), because 1D1CAs are the spe-

cial case of one-way pushdown automata (1PDAs)
and the languages recognized by 1PDAs are CFL.
Kravtsev [2] showed that some non-regular lan-
guages and some non-context-free languages are
recognized by 1Q1CAs, that is, in some case,
1QICAs are more powerful than classical coun-
terparts. In 2000, Yamasaki et al. [4] showed that
these non-regular or non-context-free languages
are also recognized by one-way probabilistic re-
versible one-counter automata (1IPR1CAs), which
are the special case of 1Q1CAs. On the other
hand, [4] also showed that there exists a regular
language which cannot be recognized by 1Q1CAs.
This result means that, in some cases, 1Q1CAs
are less powerful than classical counterparts.

In one-way case, the automata can read each
symbol of inputs only once. This restriction is
quite strong for a quantum case, because each step
of evolution of quantum automata should be uni-
tary. If we remove this restriction of one-way, how
much power is added to quantum one-counter au-
tomata? In this paper, we define two-way quan-
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tum one-counter automata (2Q1CAs) and prove
that 2Q120As can recognize some languages such
as {a"™b" | n > 1} or {a™b"c™" | m,n > 1}.

2 Definition

Definition 1 A two-way quantum one-counter
automaton (2Q1CA) is defined as M =
(@,5,6,90, Qace, Qref), where Q is o finite set of
states, 3 is a finite input alphabet, qo is an ini-
tial state, Qace C @Q is the set of accepting states,
Qrej C Q is the set of rejecting states, and & :
QXTxS8xQx{-1,0,41} x{+,|,—>} is a tran-
sition function, where I’ = TU{¢, $}, symbol¢ € T
is the left end-marker, symbol $§ & ¥ is the right
end-marker, and S = {0,1}.

For any qi,¢2 € Q, o0,01,020 € T, ¢ €
{-1,0,+1}, d € {«,], >}, ¢ satisfies the follow-
ing conditions (well-formedness conditions):

Z 6*(q17‘7' 57q'acrd)6(q2v‘713aql,cad) =

q'c,d

1(q1 = Q2)
0 (g1 # g2)

ZJ'(qhal,s,q',c,%)é(q;,og,s,q',c,i)

q's¢

+Z6'(q1,0'1,s,q',c,i)é(qg,a'z,s,q',c,—)) =0,
q’c
25‘(‘11101,3741’,0, ‘—)6(q2702’5’qlvc: "’) =0
q'sc

ZJ‘(Ql)Uysl)qu"17d)5(q2aaxs2)ql)ou d)

q'.d

+Zé*(qlaaﬂsl)qlvoad)é(qhavs%q’:+11d) =0,
q'd

251(41,01,81,(111 ~1,4)6(g2, 02, 82,4, 0, )

9

()

(3)
(4)

+Za‘(ql,UhShq',—1,i)5(q2,02,82,q’,0, "’)
v
+ZJ‘(Q1,01,31»4’70, «)d(g2,02, 82,9, +1,1)
ql
+ 36 (@1,01,51,0,0,1)8(q2,02, 2,0, +1,) = 0, (5)
q' .
25'(91,01,31,4'»—1,*)5(412702, 52,Q', 0:~L)
q’
+Z‘S*(qhalaslvq’)"17~1«)6(q2102)32,qlaO»"")
&
+ZJ‘(ql,al,sl,q';O,—->)5(qz,crz,52,q',+1,,L)
7'
+Z5'(‘11,‘71,511‘1'70&)5((12;02,82711’:+1v“‘) =0, (6)
pr

» (D

Z‘S‘(qlvalsslyqla“17%)6(‘]21627327‘1,707_})
p
+25‘(‘11701»31&’,0:*—)5(42102)32»11’»*"17—’) =0, (7)
g
Z‘s,(quolvslvq’y“114)6(‘]2:‘72732)‘]’,07 ('")
Y
+Z‘S'(ql:017slvqlvo»-})(s(q27027327q'1+l7<_) =0, (8)
e
Zé'(qlvaasl,q,>—1yd)6(q2’ga 32:ql7+17d) =0, (9)
q'.d
Zat(ql,dl,Sl,ql,41,(—‘)5(112,0'2732,q’,+1,J,)
o
= ' ’
+ Zé (41701,51,4 ,-1,i)5(q2,02,s;:,q r+11'_>) = 0,(10)
P

Z 5*(q17a’17 3114'7 “17—))6(‘]2)‘72»327‘],1 +13~L)

q

+Y 8" (q1,01,51,¢,-1,1)8(g2, 02, 52,4, +1, ) = 0,(11)

q
ZJ*(QI,UI:SI)Q';—1a<—)‘5(QZa02:52,¢1’,+17'*) = 07(12)
q'

ZJ‘(Q],Ul,Sth,—1,%)5((]2,0‘2,52,(}’,4»1,(—) = 0'(13)

q

We assume that 2Q1CAs have a counter which
can hold an arbitrary integer and the counter value
is 0 at the start of computation. According to
the fourth element of §, —1,0,+1 respectively,
corresponds to decrease of the counter value by
1, retainment the same, and increase by 1. Let
s = signk, where k is the counter value and
signk = 0 if £ = 0, otherwise 1.

We also assume that all inputs written on the
tape are started by ¢ and terminated by $, and
that such a tape, of length ||+ 2, is circular. Ac-
cording to the fifth element of §, <, ], — respec-
tively, corresponds to left move of the tape head by
one square, retainment the same, and right move

by one square.

A computation on an input z of length n corre-
sponds to a unitary evolution in the Hilbert space
Hy, = I2(Cp). For each (g,a,b) € Cp,q € Q,a €
Z,b € [0,n+1], let |g,a,b) denote the basis vector
in l2(Cp). An cperator Ug for an input z on #H,
is defined as follows:

Ullg, a,b)

= ) 8(g, w=(b),signa,q’s¢,d)lg’sa + ¢, b+ p(d)),
q',c,d
where w;(b) is the bth symbol of w; = ¢z$ and
w(d) = —1(0)[+1] if d =+ (})[—]. We assume
that this operator is unitary, that is, (U,‘f)* Ué =
1.
After each transition, a state of 2Q1CAs is
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observed. A computational observable O corre-
sponds to the orthogonal decomposition I5(C,,) =
E,cc ® Erej ® Epon- The outcome of any observa-
tion will be either “accept”(Facc), “reject”(Erej)
or “non-halting” (Eyey ). The probability of accep-
tance, rejection, and non-halting at each step is
equal to the sum of the squared amplitude of each
basis state in the new state corresponding sub-
space. After the measurement, the state collapses
to the pro;ectlon to Em, E:e;, Enon-

Lemma 1 A 2Q1CA ~ satisfies the well-
formedness conditions if and only if Ug s a
unitary operator:

Proof. By the definition, operating Ug transforms
such two quantum states as g1, a3, b1), g2, a2, b2)
into the following states: :

Ug |q110'11b1)
Z 6((]1,0’1,31,q;,81,d1) ]q:’laal +61,b1 + ﬂ(d1)> )

q1,c1,d1
U: Iq2va2ab2>
D 0(g2,02,85,42,¢2,d2) |gh, az + c2,b2 + p(da)) .

95,62,d2

First, we assume that Ug is a unitary operator,
that is, (US)"US = I. Then we have the inner
product of the previous twec vectors as follows:

{g1,01,b1| g2,02,b2)
=<411,¢11,b1I(Ug)‘U;s az,b2>
=y X (5'(91701,317111,Cz,d1)5(qzyvz,8219'2,62,(12)

q},¢1,d1 95,¢2,d2

(g1,01 + c1,b1 + p(di) | gz,02 + 2, b2 + ﬂ(d'z)))

Note that two quantum states are the same if
and only if all of the states, the counter values,
and the head positions coincide with each other.
Then we have

{(g1,01 + c1,b1 + p(dr) | g2, 82 + c2, b2 + p(dz))

1(q1 = 2,61 +c1=az+cz, by + p(d1) = bs + u(dz))
0 (otherwise)

(14)

It follows that the inner product is

(g1,a1,b1] g2, a2,b2)

o
a1+cy=aztep
byt+u(dy)= bz+#(d2)

8" (q1,01,81,4 1 ¢1,d1)8(q2, 02, 52,4, c2, d2).

1. In case a; = a2 and by = bs, left hand side of
(14) = 1 if 1 = g2 and 0 otherwise. Thus §
satisfies (1).

2. In case a3 = ap and by = by 1, left hand side
of (14) = 0. Thus 4 satisfies (2).

3. In case a; = ag and by = by +2, left hand side
of (14) = 0. Thus ¢ satisfies (3).

4. In case a1 = ag £ 1 and by = by, left hand side
of (14) = 0. Thus J satisfies (4).

5. Incase ay =ap+1and b = by £ 1, left hand
side of (14) = 0. Thus § satisfies (5).

6. In case a; =ay+ 1 and by = by F 1, left hand
side of (14) = 0. Thus ¢ satisfies (6).

7. In case a; = az £ 1 and by = by + 2, left hand
side of (14) = 0. Thus J satisfies (7).

8. In case ay = ap'+ 1 and by = by F 2, left hand
side of (14) = 0. Thus ¢ satisfies (8).

9. In case a; = ap+2 and by = by, left hand side
of (14) = 0. Thus § satisfies (9).

10. In case a1 = ag £2 and by = by + 1, left hand
side of (14) = 0. Thus ¢ satisfies (10).

11. In case a; = az =2 and by = by F 1, left hand
side of (14) = 0. Thus ¢ satisfies (11).

12. In case a; = a2 =2 and by = by + 2, left hand
side of (14) = 0. Thus ¢ satisfies (12).

13. In case a1 = az £ 2 and b1 = by F 2, left hand
side of (14) = 0. Thus ¢ satisfies (13).

14. In case |a; — az| > 2 or |by — by| > 2, left

hand side of (14) = 0. And right hand side of
(14) = 0 since two quantum states are always
different from each other. Thus, in this case,
we need condition for 4.

From these, we conclude that, if U¢ is a unitary
operator 4 satisfies the well-formedness conditions.
On the other hand, we assume that ¢ satisfies
the well-formedness conditions. Then we can eas-
ily check (US)*US = I, that is, U? is a unitary
operator. ’ O

Definition 2 A language L is said to be recogniz-
able by a 2Q1CA with probability p, if there exists
a 2Q1CA M which accepts any input © € L with
probability at least p > 1/2 and rejects any input
z & L with probability at least p.
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We may use the term “accepting probability”
for denoting this probability p.

2.1 Simple 2Q1CAs
2.1.1 Counter-simple 2Q1CAs

Definition 3 4 2Q1CA (Q, %, 6,90, Qaccy Qrej) 15
said to be counter-simple, if there are unitary op-
erators {Vys} on 1o(Cr) and a counter function
C:Q@xT — {-1,0,+1} such that for any
q,ql € Q} o€ P: s € {0’1}; c € {_170a+1};
de {«,|,—},

(q,‘Va,sl‘n (C(q,’ o) =c)

4 3Oy 3, ’a ,d) =
(@,0,5,4,¢,d) {0 (otherwise)

where (¢'\V 5|q) is the coefficient of |q') in Vs s|q).

In this case, increase or decrease of the counter
value is determined by the new state and the sym-
bol it read. Thus the 2Q1CA satisfies the condi-
tions (4), (5), (9) automatically.

2.1.2 Head-simple 2Q1CAs

Definition 4 A 2Q1CA (Q, X%, 4, g0, Qacc, Qrej) 15
said to be head-simple, if there are unitary oper-
ators {V, 5} on 2(Crn) and a head function D :
Q — {+,},—} such that for any q,¢' € Q, o €T,
s€{0,1}, c€ {-1,0,+1}, d € {«,], =},

(@ Voslg) (D(g)=d)
0 (otherwise) '

8(g,0,8,q,¢,d) = {

where (q'|V, s|g) is the coefficient of |q') in V; s|q).

In this case, the tape head move is determined
by the new state. Thus the 2Q1CA satisfies the
conditions (2), (3), (5), (6), (7), (8), (10), (11),
(12), (13) automatically.

2.1.3 Simple 2Q1CAs

Definition 5 4 2Q1CA (Q,X,6,q0, Qaccs Qrej) 5
said to be simple, if there are unitary operators
{Vs.s} on 12(Cy), a counter function C: @ x ' —
{~1,0,+1} and a head function D : Q@ — {+,|
,—} such that for any q,q' € Q, 0 €T, s € {0,1},
ce{-1,0,+1}, d € {«, ], =},

8(g,0,8,¢,¢,d)

_ J{dWVesle) (Cld,0) =¢,D(¢) =d)
0 (otherwise)

?

where {¢'|V; 5|q) is the coefficient of |q') in V, 5|g).

In this case, increase or decrease of the counter
value is determined by the new state and the sym-
bol it read, and the head move is determined by
the new state. Thus the 2Q1CA satisfies the con-
ditions (2)-(13) automatically.

Lemma 2 A simple 2Q1CA satisfies the well-
formedness conditions if there are unitary opera-
tors {Vy s} such that for any o € T and s € {0, 1},

1

' . _J1 (a=g)
;(q IVa,s|q1> <Q|Va,s|‘h> {0 (q;%q2)1 (15)

Proof. By the definition of simple 2Q1CAs, the
well-formedness conditions except for (1) are sat-
isfied automatically.

Now, we let

5(‘]1)‘7,3:‘1’)6) d)

_ J{dVesla) ¢=C(ds0),d=D(d)
0 (otherwise)

kl

5(‘12, a, s, qls G, d)

_ J{dVesla) c=C(d;0),d=D(d)

0 (otherwise) ’
then it is trivial that a simple 2Q1CA satisfies (1)
if it satisfies (15). a

3 Recognizability
3.1 2QICA for {a"b" |n > 1}

Proposition 1 Let Lsguare be {a"b"2 | n > 1}
For an arbitrary fized positive integer N > 2, there
exists a 2Q1CA Msquarewhich accepts T € Lsquare
with probability 1 and rejects © & Lsquare with prob-
ability L —1/N. In either case, Msquare halts after
O(N|z|) steps with certainty.

Proof. Let the state set @ =
{90,q1,92, 93,94, 68 j,, 965,97 | 1 £ 2 < N, 1 <
1 <41 £ ]2 < N‘i+1}v Qace = {qy}
and Qrej = {¢§ | 1 < j < N —1}. For each
g€ Q,0el,se{0,1}, we define the transition
matrices {V, s}, the counter function C and the
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head function D as follows:

1

i

£

=

oy "

(= o
R i N

I

Va,ﬂ‘lé,iﬂ) =
Va,1|fJ§,1)
Va,0|4fs,j+1>
Va,0|<1é,1>
Violgo) =
Voolgz) =
Voolgs) =

Veolas) =

Vb,ﬂqg,i) =

Vb,1|‘1§,0)
Vb,0|‘1é,j+1)

VZ,O‘Q@,D =
Vsolaz)

Vool voiv1) =

C(qg,u‘, a)
C(qg,ia a)

C(gk 5:,)
C(Qé,l)a a)

Clg,0)

D(g§ n-is1

)

)

D(q 21)
)

)

D(q)

o),
iQE,N-m),
90),
lg2),
lga),
!qg,j>
|‘1§,z'),
|qg,2i>,
qu,i),
Iin,j)
qui,N~i+1),
IQI>?

l‘b)a

lga),

1 X
"‘—ZMé,O)y
VN &

[qg,oﬁ
|‘1§,2z'>,
]qg,j)’
qu,N—i+1>7
lgs), .

N
1|"Lk
\/—_Z VIghy,
k

(7 #0,4),

0 (otherwise),

= = (5=0,2,4),
= + (=13),
= ¢,

>
= -,
= | (otherwise).

(1<j<N-9),

phase rejects any input not of the form atbt.
This phase is straightforward, similar to 2-way re-
versible finite automata (with no-counter) which
recognizes the input of the form a*b*. If the in-
put is not of the indicated form, the computation
terminates. Otherwise, the second phase begins
with the state g4 with the tape head reading the
left-most b.

At the start of the second phase, the compu-
tation branches into N paths, indicated by the
states g3,.--,4ag, €ach with amplitude 1/vN.
For each of these paths, Mquare moves the tape
head to left.and right deterministically in the fol-
lowing way: :

Along the ith path the automaton decreases
the counter value by 1 and moves the tape head
to left. If the tape head reads the symbol a then
it remains stationary for 7 steps. After that, if
the counter value is not 0 then the automaton de-
creases the counter value by 1 and moves the tape
head to left again, else it increases the counter
value by 1 and moves the tape head to right until
the tape head reads the left-most b.

If the tape head reads the symbol ¢, the third
phase begins with the state gi,. Thus, while
Miquare is scanning a’s in the input, the tape head
requires precisely

m—1 V
(i+1):<2(2c+1)+m> = (i +1) (m? + m)

c=0

steps along the ith path, where m is the length of
a’s.

Along the ith path on the thn‘d phase, if the
tape head reads the symbol a,b then it remains
stationary for N —i+1 steps and after that moves
to right. Upon reading the symbol $, each compu-
tation path again splits according to the Discrete-
Fourier Transformation, yielding the single ac-
cepting state g and the other rejecting states
¢t(1 € i < N —1). Thus, while the automaton
is scanning a’s and b’s in the input, the tape head
requires precisely (IV — i+ 1) (m + n) steps along
the ith path, where n is the length of b’s. There-
fore, it is easy to see that, under the assumption
i #d, G+ 1) (m*+m)+ (N—i+1)(m+n)=
(@ +1) (m? +m)+(N—4'+1) (m +n) if and only
if m* =n. o

Consider first the case that m? = n. Since each

By the construction of Msquare, we see that the of the N.computation paths reaches the symbol

computation consists of three phases.

The first § at the same time, we have the superposition

o



Figure 1: Transition image of Msquare

immediately after performing the Discrete-Fourier
‘Transformation is

1 N X 2mik
F o2 e ™ Vg = |fY).
i=1 k=1

Hence, the accepting state gl is entered with
probability 1.

Next suppose that m? # n. In this case, each
of N computation paths do not reach the symbol
$ at the same time. Thus, there is no cancellation
among the rejection states. For each of N paths,
the conditional probability that an observation re-
sults in ¢f¥ at the time is 1/N. It follows that the
total probability that an observation results in q%v
is also 1/N. Consequently the input is rejected
with probability 1 — 1/N.

We clearly see that each possible computation
path has length O(N|z|), since each path termi-
nates in a halting states with certainty. O

3.2 2QI1CA for {a™b"c™ | m,n > 1}

Proposition 2 Let Lyoa be {a™b"c¢™ | m,n >
1}. For an arbitrary fized positive integer N > 2,
there exists a 2Q1CA Mproq which accepts T €
Lproq with probability 1 and rejects * € Lprog with
probability 1 — 1/N.. In either case, Mproq halts
after O(N|z|) steps with certainty.

Proof. Let » the ~ state set _Q =
{qu;éhaQZn(13,44#15,%»(12(, qé’jlaqé)qiojhaqil !
1<i<N1<jp,<i1< gy <N=—i+1},
Qacc = {(Iﬁ} and Qrej =, {‘Ih [1<j< N~ 1}~
For each g € @, 0 € T, s € {0,1}, we define the
transition matrices {V;}, the counter function
C and the head function D as follows:

Veolao) = lqo)s
Vil = —=3"lab)
¢,0 \/ﬁizl 6/
Vetlgs) = lg),
Vaolgo) = lgo),
Vaolg1) = lg2),
Vaolgs) = lgs),
Va,S“]é) = iqé),
Vaslas) = lg),
Vailet) = lga1),
Violge) = @),
Veolgz) = lg2),
Vbolgs) lga),
Voolas) = las),
Voolgd) = lgion),
Veilgg) = lgt)s
Voalgs;) = lghjn) (1<ji<i-1),
Varlghs) = laia)
Vailgs) = lgb)s
Veolgz) = laa),
Veolgs) = lga),
Veolas) = las),
Veoldio ) = ldloje1) (1S5 <N—4),
Vc,O'QiO,N~i+1) = |Qio,1>,
Vealgs) = lg8),
Vsolaa) = lgs),
Vsoldior) = Liez?v""\/*—qu)
$,01910,1 \/Nk:1 11/»
Clg,e) = +1,
Clgse) = -1,
C(qg,c) = -1,
C(g,0) = 0 (otherwise),



1

(7 =0,2,4),
(7 =1,3,5),

D(g;)

D(g;) =
D(g) =
D(g}) =
D(Qfm) =
D(g) =
D(Qi'o) =
D(g) =

By the construction of the automaton, we see
that the computation consists of four phases. The
first phase rejects any input not of the form
atbtct. This phase is straightforward, similar to
2-way reversible finite automata (with no-counter)
which recognizes the input of the form atbtc™. If
the input is not of the indicated form, the com-
putation terminates. Otherwise, the second phase
begins with the state g5 with the tape head read-
ing the symbol ¢.

At the start of the second phase, the computa-
tion branches into IV paths, indicated by the states
@,-.-,q¥, each with amplitude 1/v/N.

For each of these paths, the automaton moves
the tape head to right and increases the counter
value by 1 while reading the symbol a. Upon read-
ing the symbol b, the third phase begins with the
state q8

Along the ith path on the third phase, if the
tape head reads the symbol b then it remains sta-
tionary for ¢ steps and after that moves to right.
After reading the symbol ¢, if the counter value is
not 0 then the automaton moves the tape head to
left, with decreasing the counter value by 1 while
reading the symbol a, until the tape head reaches
the symbol ¢, and repeat the second phase. Oth-
erwise, the fourth phase begins with the state gi,.
Thus, the tape head requires precisely m steps on
the second phase and in steps along the ith path
on the third phase. It is easy to see that the au-
tomaton repeats the second and the third phase
m times.

Along the ith path on the fourth phase, if the
tape head reads the symbol ¢ then it remains sta-
tionary for N —i+1 steps and after that moves to
right. Upon reading the symbol $, each computa-
tion path again splits according to the Discrete-
Fourier Transformation, yielding the single ac-
cepting state gfY and the other rejecting states
¢1(1 €i < N —1). Thus, the tape head requires
precisely (N — i + 1)! steps along the 7 th path,

T

.
-
5
-
5
i

(otherwise).

Figure 2: Transition imdge of Mﬁmd

where [ is the length of ¢’s.

Therefore, it is easy to see- that, under as-
sumption ¢ # i, m? + imn + (N — i+ 1)l =
m? + i'mn + (N — ¢ + 1)I if and only if I = mn.

Consider first the case that [ = mn. Since each
of the N computation paths reaches the symbol
$ at the same time, we have the superposition
immediately after performing the Discrete-Fourier
Transformation is

N Z Z 2"1k\/_|911

z—l k=1

=|gy).

Hence, the accepting state gij is entered with
probability 1.

Next suppose that ! # mn. In this case, each of
N computation paths do not reach the symbol $
at the same time. Thus, there is no cancellation
among the rejection states. For each of NV paths,
the conditional probability that an observation re-
sults in ¢fY at the time is 1/N. It follows that the
total probability that an observation results in qﬁ
is also 1/N. Consequently the input is rejected
with probability 1 — 1/N.

We clearly see that each possible computation
path has length O(N|z]), since each path termi-
nates in a halting states with certainty. 0O

3.3 2QI1CA for {a?'a?’ ...a™ | n>1}

Proposition 3 For each fized k > 1, thgre erists
a 2Q1CA which recognizes {a? a}" ... a} |n>1}.

Proof. (Sketch.)

1. k=1
Trivial.
2. k=2

-In this case, we proved at the Section 3.1.
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3. k>3
First, the automaton checks whether the in-
put is of the form afa] ... a,':' Next, the au-
~tomaton checks whether m% = mg or not,
where m;(1 < j < k) is the length of a;’s.
Then, it checks whether mym; = m;;11(2 <
Jj <k —1) or not.

4 Conclusion

In this paper, we gave the definition of 2Q1CAs
and proved that 2Q1CAs can recognize some lan-
guages such as {a"b" | n > 1} or {a™b"c™" |
m,n > 1}. '

One interesting question is what kind of lan-
guages are recognizable by 2Q1CAs? We expect
that some non-context-sensitive languages are rec-
ognizable but some context-sensitive languages
are not.

Another question is concerning to a two-counter
case. It is known that two-way deterministic two-
counter automata (2D2CAs) can simulate deter-
ministic Turing machines (DTMs) {3]. How about
the power of 2Q2CAs?
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