T b dY X H 775
(2001. 3. 12)

Grover DEFIRFTINT) X LOREEEREZICOWT

B 25— B 5
R LR fEHRE TEIF R

watanabe@is.titech.ac. jp

HB5FL Grover DEFRETNVITY XL, N HOBOBEHBIC ¢ BOMHED 2BEIC,
(n/)V/ N/t BDERAT v THTHERDT S, LaL, ZO@EHAD-HIE, BOEKt %5
L LM TBLRF T L%, ZIUH L, Boyer 513, 7> ¥~ 4 X FR@ET, &
DERZRS % TP O(/N/t) [(EFEICIE (9/4)/NTEE) ORKRF v TR THEE B>
FOHEEREL. KRLTIE, bo L MMARREABRET, T O(/NA) B (FHIZIE
(87/3)/NJt) OEARFERZERTLIENTEL I LERT.

Deterministic Application of
Grover’s Quantum Search Algorithm

Koichi Okamoto Osamu Watanabe

Tokyo Institute of Technology
watanabe@is.titech.ac. jp

Abstract. Grover’s search algorithm finds one of ¢ solutions in N candidates by using
(m/4)+/NJt basic steps. It is, however, necessary to know the number ¢ of solutions in advance
for using the Grover’s algorithm directly. On the other hand, Boyer etal proposed a random-
ized a randomized application of Grover’s algorithm, which runs, on average, in O(/N/t) basic
steps (more presicely, (9/4)/N/t steps) without knowing ¢ in advance. Here we show a simple
(almost trivial) deterministic application of Grover’s algorithm also works and finds a solution
in O(+/N/t) basic steps (more presicely, (87/ 3)v/N/t steps) on average.

1. Introduction

Grover [Gro96, Gro97] proposed a quantum algorithm — Grover’s search algorithm — that
solves the following general search problem much faster than any randomized/deterministic
algorithm designed on classical computers.

Search Problem

Given: For any n > 0, an oracle Boolean function f on the set {0,1}" of
binary sequences of length n.

Question: Find some sequence z € {0,1}" such that f(z) = 1.

(Remark. In general, a solution, i.e., a sequence = € {0,1}" satistying f(z) =1,

is not unique, in which case it is sufficient to output any one of such solutions.)

For any given n, since there are N = 2" binary strings in {0,1}", it is (almost obvious)
that any algorithm solving the above problem needs N steps to find the desired sequence.
Surprisingly, though, Grover’s search algorithm finds the desired sequence in O(v/N) quantum
compuation steps, where each quatum step (which we refer ' G-steps) can be implemented by
some poly(n) number of basic quantum gates. More precisely, when there are ¢t solutions, i.e., ¢
binary sequences satisfying f, Grover’s algorithm finds some of them in O(y/NJt) G-steps. Note,
however, that one needs to know the number ¢ in advance in order to achieve this better bound;
but ¢, the number of solutions, is usually unknown in advance. For solving this problem, Boyer
etal [BBHT96] proposed an algorithm that applies Grover’s algorithm with randomly chosen
parameters, that is, a randomized application of Grover’s algorithm, which runs, on average, in
O(/NJt) G-steps without knowing ¢ in advance. Here we show that a simple (almost trivial)
deterministic application of Grover’s algorithm also works and finds a sclution in O(\/N/t)
G-steps on average without knowing ¢ in advance.

Grover’s Algorithim and Its Randomized Application

Let us discuss more specifically. We start with recalling Grover’s algorithm and some basic facts
about the algorithm. Notions and notations for quantum computation we use here are standard;
see, e.g., [Nis97, Gru99, Hos99].

Consider any n > 0 and any oracle function f on {0,1}" for specifying the above general
search problem, and let us fix them in the following discussion. That is, our task is to find a
sequence z € {0,1}" that satisfies f(z) = 1. A sequence z € {0,1}" satisfying f(z) = 1 is
simply called a solution. Let N = 27, i.e., the total number of sequences in {0, 1}", and let ¢
denote the number of all solutions among N candidates.

In Grover’s algorithm, each sequence z € {0,1}" corresponds to a quantum base state |z)
consisting of n qubits. (In the following, we identify an n qubit base state with the corresponding
n bit binary sequence.) The main ingredients of Grover’s algorithm are the following three
unitaly transformations on n quibit states.

Walsh-Hadmard transformation

LS
ye{0,1}"
(Here z -y denotes the bit-wise inner product.)

W: lz) —

Sign flipping on f:
St la) = (~1)/@))
Sign flipping on 0: ’
So: |0) = —[0) and [z) — |z) (if z #07)

By using these transformations, one G-step is defined as the following unitary transformation

U.
U = —WSWS;

That is, one G-step is to apply this U to a current state. Grover’s algorithm is to apply U for
some appropriate number of times to the following initial state ¢g.

1
o) = Y —=la).
ac{0,1}" \/N
Formally, by the j G-step ezecution of Grover’s algorithm (or more simply G(7)) we mean to
apply UUU --- U to ¢g and then observe the obtained state. (We assume that the observation

J
is made so that some n qubit base state (i.e., n bit sequence) is observed with the probability
that is the squre of its amplitude.)
For justifying this procedure, the following property of U plays a key role [Gro96, Gro97].

Lemma 1.1. Consider the quantum state obtained by applying U to.¢g for j times. Then each
solution state, i.e., a base state corresponding to a solution, has the same amplitude (which
we denote ;) while the other base state also has the same amplitude (which we denote ;).
Furthermore, by using 6 that satisfies sin § = //N, these amplitudes are stated as follows.

I}—Z sin((2j + 1)9),

!

ﬂ]’ = \/N——-t

The angle (2j+1)0 determines the amplitude a;. In the following we call this angle the angle

(of a solution) after applying U for j times (to the initial state) (or more simply, the angle after
executing G(j)). Note that after applying U for [(n/4)6], the angle gets close to 7/2; hence,
the amplitude of each solution is close to 1/+/%, which means that the total probability that
solution states are observed is close to 1. Note also that (m/4)8 is approximately (7/4)/N/t by
using the approximation 6 ~ sin§ (= 1/t/N). This argument leads us to the following theorem

of Grover [Gro96, Gro97].
- H ~ TN
o= ae) \TaVE)

Then a state observed by the execution of G(myg) is one of the solutions with probability ap-
proximately 1 — 1/N (= 1).

@

cos((27 + 1)8).

Theorem 1.2. Define mg by

Therefore, if we can compute mgp, we would simply execute G(mp) to get some solution. It
is, however, not so easy to compute it because ¢ is usually unknown in advance. Note that we
cannot simply execute G(m) with some m > my; in this case, the probability that some solution
is observed could become much smaller. In order to solve this problem, Boyer etal [BBHT96]
proposed the following randomized algorithm.

Algorithm Randomized-Grover

A —6/5; i —0;

for i « 1 to co do
m — A
select 7, 0 < 7 < m — 1, uniformly at random;
execute G(j) and let z be the observed state;
if f(z) = 1 then output = and halt;

end-for;

Figure 1: A randomized application of Grover’s algorithm

It is clear that this algorithm finds a solution. On the other hand, we can also show the
following time bound.

Theorem 1.3. The average number of G-steps executed in the above algorithm is at most

(9/4)/N/t.
Remark. Precisely speaking, this bound holds when ¢t < 3N/4. On the other hand, if ¢t > 3N /4,
then we can simply search for a solution by picking any n bit sequence randomly.

2. Deterministic Application of Grover’s Algorithm

Here we show that a simple and deterministic execution of Grover’s algorithm still yields a
similar result. More specifically, we consider the algorithm given in Figure 2.

Algorithm Deterministic-Grover
k — 2;
for i «— 1 to oo do

m — 2

execute G(m) for k times and let z1, ...,) be the observed states;

if f(z,) =1 for some u, 1 < u < k then output z, and halt;
end-for;

Figure 2: A determinisitic application of Grover’s algorithm

Again for this algorithm, we can show that its average running time is O(v/N/t). In the
following we will prove this fact after preparing some tools.

First let us see that at some point of the for-iteration, the angle after executing G(m) (where
m = 2%) gets reasonably close to 7/2.

Claim 1. There exists some i such that

T . 2w
- < (2-204+1)8 < —.
3"(2+)—3

Furthermore, since f ~ \/N/t, we have 2% < (m/3)\/N/t.

Below we will keep using ip to denote the one satisfying this claim; also let W denote the
above range of angles, i.e., the set of angles between 7/3 and 27/3. In general, for any i, let us
simply call the angle (2 - 2! 4 1)8 the angle at the ith for-iteration. The above claim states that
the angle at the igth iteration gets into W. Note that if the angle is in W at some for-iteration,
then the probability that a solution is found at the iteration is more than 1 — (1/4)¥. More
specifically, we have the following fact.

Claim 2. Let w be the angle at some for-iteration. Let a = |r/2 — w| and § = sin? . Then the
probability that no solution is found at the iteration is 6*. (Note that if w € W, then we have
0 <1/4)

It would be nice if we could argue that the angle belongs to W reasonably often. Unfortu-
nately, however, if the angle (at some for-iteration) gets very close to 7/2, then it takes rather
long time to have an angle in W again. Note, on the other hand, that if the angle is close to
7/2, then the probability of finding a solution at this iteration is close to 1. The crucial point
of our analysis is to estimate this trade-off.

For simplifying our discussion, instead of an angle w, we will argue by using a = |7/2 — w|,
which we call a co-angle. For example, the above claim shows that if the co-angle (at some
for-iteration) gets less than 7/6, then the error probability 6* at the iteration becomes less than
(1/4)%. Let A denote this good c-angle range; that is, A = {a: 0 < o < w/6}.

Now for our analysis, we first estimate the number of for-iterations until having a co-angle
in A again.

Claim 3. Consider any ith for-iteration, and let o be the co-angle at this for-iteration. Define
h = [7/(3a)]. Then there exists some h’ < h for which we have (2 - 2+% + 1)9 in W. That is,
the co-angle at the (i + h')the for-iteration gets into A again.

Next we divide the co-angle range A. Below let j be any nonnegative integer. Let d;
27U+, and let @; be the co-angle < 7/2 such that 6; = sin? &;. (For example, we have dy = 1 / 4
and & = 7/6.) Then define A; = {a: &1 < o < &;}. Also we define h; as follows.

T

hy = {log 3a@~+1} '
Since @; gets very small, we may assume that sin@; ~ &;. In particular, we may assume that
@11 > @;/2. (In fact, we would have &1 > aj/\/é for large j.) Hence, we have hjy; < h;+1.

Here let us summarize our discussion. Consider any sth for-iteration, and suppose that the
co-angle at this iteration belongs to A;. Then it follows from the above claims that (i) the
probability that the algorithm does not halt at this for-iteration is < 6¥ (= 2-U+2*), and (ii)
the co-angle gets into A again at least before the (i -+ h;)th for-iteration.

Now we are ready to prove our theorem.

Theorem 2.1. The average number of G-steps executed in Deterministic Grover (the algorithm

of Figure 2) is (87/3)/N/t.

Proof. Recall that the co-angle belongs to A at the igth for-iteration. We may assume that it
is indeed the first for-iteration having a co-angle in A. In general, we use i1, 49, ..., to denote
the first, the second, ... for-iteration (after the igth for-iteration) where the co-angle belongs to
A. Also let g, a1, ... denote the co-angles at the ipth, i1th, ... iterations.

To bound the expected number of executed G-steps, we may assume that the execution of
the algorithm reaches to the igth for-iteration. Thus, we first estimate the number of G-steps
executed by the end of the igth for-iteration, which is bounded as follows.

k-(1+2+22+~.+2"°):21«2@‘0—1<g§ﬂ 5;];. (1)

Next we analyze the expected number Fj of G-steps executed after the ipth for-iteration.
(Precisely speaking, Fy that we will analyze below is the expected number £y of G-steps executed
after the igth for-iteration under the condition that the igth for-iteration is executed.) Although
we know that the co-angle ag at the igth for-iteration is in A, we do not know which A; it
belongs to. But for each j > 0, by assuming that o € A;, we can estimate the failure probability
and the length to the i;th for-iteration. Thus, we can bound Ejy in the following way. (Here we
use Ej to denote the amount corresponding to Ey; that is, Fy is the expected number of G-steps
executed after the i1th for-iteration under the condition that the 4;th for-iteration is executed.)

Ey < ZPr{ no solution is found at the igth for-iteration | ag € 4; }
720
x (# of G-steps executed between the (ig + 1)th and i;th for-iteration + E)
< gk (20 4ot g it 4)
j=0
= Y &k (2i°+ha'+1 - 1) +> 6k By = k2P (Z sk - 2hj+1> +> 5% By
720 j=20 Jj=0 j=20

Here by using the fact that h; < ho + j and hg < 2, and our choice of §; and & (i.e., §; = 2-J+2
and k = 2), we can bound the last expression as follows.

Ey < k2t Z 9=(+2)k ghoti+1 | 4 Z 5;? B
j>0 320
= k20N 2 4 N sk By = k204 6 By (2)
720 j=20 720

At this point, let us see how Fj is estimated. Notice that E; depends on the value of 7;.

B < ZPr{ no solution is found at the i;th for-iteration | oy € A; }
j=0

X (# of G-steps executed between the (i; + 1)th and isth for-iteration + Ej)

< Z(S;C k- (Qiﬁrl 4202 Ly glthy +.E1>
720
< 2k20 (Za;?.th) +3 .05 By < k2t 4+ > ok By, (3)
Jj=0 j=>0 >0

We substitute Ej of (2) by (3). Here notice that i; depends on the choice of ag; in fact, it is
bounded by ip + h;j (< ig+ ho+ j < ig + j + 2). Thus, we have the following bound.

Ey

IA

k2 + 3" 5% - (w’l +y 6 Ez)

Jj=0 j=0

INA

k270 4+ 27202) fgiotit2 | N gk (Z ok - Ez)

j20 Jjz0 J=0

ST LS o (Z 5 E>

720 Jj20 j=0

= k2i°+%‘k2i°+25j’?- (Za;?-Ez).

j=0 Jj=0
We can similarly expand Ej, Es, ..., and thereby, deriving the following bound.

, . . . 2%r [N
Ey < k2 4271 . 200 4272 k2o ... = 2k2i0 < —’2—” -)

Now the bound of the theorem is immediate from (??) and (4), and our choice of k. O

References

BV9T] E. Bernstein and U. Vazirani, Quantum complexity theory, SIAM Journal on Com-
puting 26, 1411-1473 (1997).

[BBHT96] M. Boyer, G. Brassard, P. Hoyer, and A. Tapp, Tight bounds on quantum searching,
quant-ph/9605034.

[For00] L. Fortnow, One complexity theorist’s view of quantum computing, quant-
: ph/0003035.

[Gro96] L.K. Grover, A fastquantum mechanical algorithm for database search, in Proc. 28th
Annual ACM Symposium on Theory of Computing, ACM, 212-219 (1996).

[Gro97] LK. Grover, Quantum mechanics helps in searching for a needle in a haystack,
Phys.Rev. Lett 79, 325-328 (1997).

[Gru99] J. Gruska, Quantum Computing, McGrow-Hill, 1999.

[Hos99] A. Hosoya, Lectures on Quantum Computation (in Japanese), Science Pub. Co., 1999.

[Nis97] T. Nishino, Introduction to Quantum Computing (in Japanese), Tokyo Denki
Daigaku Pub., 1997.

