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あらまし 本論文では, 単調線形システムのすべての極小な整数解を列挙する問題について考える．我々
は，まず，r個の線形不等式から成るどんな n変数単調線形システムにおいても，極大な実行不可能整数解
の数が極小な実行可能整数解の数の高々rn倍であることを示す．このことにより，単調線形システムにお
ける極小整数解列挙問題が有名なハイパーグラフ双対化問題の自然な拡張に多項式時間還元可能であるこ
とが導かれる．ここで，ハイパーグラフ双対化問題の拡張とは，ハイパーグラフの双対ペアを整数ベクトル
の双対族に置き換えるという意味での拡張である．我々はこの拡張された双対化問題に対する擬多項式時
間アルゴリズムを構成する．これらの結果は，特に，単調線形システムにおけるすべての極小な整数解が逐
次擬多項式時間で列挙可能であることを意味する．

和文キーワード: 整数計画，逐次列挙, ハイパーグラフの双対化, ヒルベルト基底，単調不等式，正則離散
関数
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abstract We consider the problem of enumerating all minimal integer solutions of a monotone system
of linear inequalities. We first show that for any monotone system of r linear inequalities in n variables,
the number of maximal infeasible integer vectors is at most rn times the number of minimal integer
solutions to the system. This bound leads to a polynomial-time reduction of the enumeration problem to
a natural generalization of the well-known dualization problem for hypergraphs, in which dual pairs of
hypergraphs are replaced by dual collections of integer vectors in a box. We provide a quasi-polynomial
algorithm for the latter dualization problem. These results imply, in particular, that the problem of
incrementally generating all minimal integer solutions to a monotone system of linear inequalities can be
done in quasi-polynomial time.

英文 key words: Integer programming, incremental generation, hypergraph dualization, Hilbert basis,
monotone inequalities, regular discrete functions.
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1 Introduction

Consider a system of r linear inequalities in n integer variables

Ax ≥ b, x ∈ C = {x ∈ Z
n | 0 ≤ x ≤ c}, (1)

where A is a rational r × n-matrix, b is a rational r-vector, and c is a non-negative integral
n-vector some or all of whose components may be infinite. We assume that (1) is a monotone
system of inequalities: if x ∈ C satisfies (1) then any vector y ∈ C such that y ≥ x is also feasible.
For instance, (1) is monotone if the matrix A is non-negative. Let us denote by F = FA,b,c the
set of all minimal feasible integral vectors for (1), i.e., y ∈ F if there is no solution x of (1) such
that x ≤ y, x 
= y. Then, we have

{x ∈ C | Ax ≥ b} =
⋃
y∈F

{ x ∈ C | x ≥ y}.

In this paper, we are concerned with the problem of incrementally generating F :

GEN(FA,b,c,X ): Given a monotone system (1) and a set X ⊆ FA,b,c of minimal feasible vectors
for (1), either find a new minimal integral vector satisfying (1), or show that X = FA,b,c.

The entire set F = FA,b,c can be constructed by initializing X = ∅ and iteratively solving the
above problem |F|+ 1 times.

If A is a binary matrix, and b, c are vectors of all ones, then F is the set of (characteristic
vectors of) all minimal transversals to the hypergraph defined by the rows of A. In this case,
problem GEN(FA,b,c,X ) turns into the well-known hypergraph dualization problem: incremen-
tally enumerate all the minimal transversals (equivalently, all the maximal independent sets) for
a given hypergraph The case where A is binary, c is the vector of all ones and b is arbitrary, is
equivalent with the generation of so-called multiple transversals [5]. If A is integral and c = +∞,
the generation of F can also be regarded as the computation of the Hilbert basis for the ideal
{x ∈ Zn | Ax ≥ b, x ≥ 0}. One more application of problem GEN(FA,b,c,X ) is related to
stochastic programming, more precisely to the generation of minimal p-efficient points for a
given probability distribution of a discrete random variable ξ ∈ Zn. An integer vector y ∈ Zn

is called p-efficient, if Prob(ξ ≤ y) ≥ p. It is known that for every probability distribution and
every p > 0 there are finitely many minimal p-efficient points and furthermore, for r-concave
probability distributions these points are exactly the minimal integral points of a corresponding
convex monotone system (see, e.g., [16]).

Let J∗ = {j | cj = ∞} and J∗ = {1, . . . , n} \ J ∗ be, respectively, the sets of unbounded and
bounded integer variables in (1). Consider an arbitrary vector x = (x1, . . . , xn) ∈ FA,b,c such
that xj > 0 for some j ∈ J∗. Then it is easy to see that

xj ≤ max
i:aij>0

⌈
bi −

∑
k∈J∗ min{0, aik}ck

aij

⌉
< +∞. (2)

[Indeed, let x′ be the vector obtained by decreasing the jth component of x by 1, then x′ ∈ C is infeasible
for (1) and hence bi − aij ≤ aix − aij = aix

′ < bi for some i ∈ {1, . . . , r}, implying a ij > 0. Thus
aix < bi+aij . Since aijxj+

∑
k∈J∗ min{0, aik}ck ≤ aijxj+

∑
k∈J∗ min{0, aik}xk ≤ aijxj+

∑
k∈J∗ aikxk ≤

aix, where the last inequality follows from the non-negativity of the restriction of A on J ∗, we have
aijxj +

∑
k∈J∗ min{0, aik}ck < bi + aij . This implies (2).]

Since the bounds of (2) are easy to compute, and since appending these bounds to (1) does
not change the set FA,b,c, we shall assume in the sequel that all components of the non-negative
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vector c are finite, even though this may not be the case for the original system. This assumption
does not entail any loss of generality and allows us to consider FA,b,c as a system of integral
vectors in a finite box. We shall also assume that the input monotone system (1) is feasible, i.e.,
FA,b,c 
= ∅. For a finite and non-negative c this is equivalent to Ac ≥ b. In addition, we say that
system (1) is non-trivial if FA,b,c 
= C, i.e., 0 
∈ FA,b,c.

Let A be a collection of integral vectors in C and let A+ = {x ∈ C | x ≥ a for some a ∈ A}
and A− = {x ∈ C | x ≤ a for some a ∈ A} denote the ideal and filter generated by A. Any
element in C \ A+ is called independent of A. Let I(A) be the set of all maximal independent
elements for A, then for any finite box C we have the decomposition:

A+ ∩ I(A)− = ∅, A+ ∪ I(A)− = C. (3)

In particular, if A is the set F = FA,b,c of all minimal feasible integral vectors for (1), then the
ideal F+ is the solution set of (1), while the filter C \ F + is generated by the set I(F) of all
maximal infeasible integral vectors for (1):

{x ∈ C | Ax 
≥ b} =
⋃

y∈I(F)

{y}−.

It is known that the problem of incrementally generating all maximal infeasible vectors for (1)
is NP-hard even if c is the vector of all ones and the matrix A is binary:

Proposition 1 (c.f. [11]) Given a binary matrix A and a set X ⊆ I(FA,b,1) of maximal in-
feasible Boolean vectors for Ax ≥ b, x ∈ {0, 1}n, it is NP-complete to decide if the set X can be
extended, that is if I(FA,b,1) \ X 
= ∅.

It was conjectured in [10] that problem GEN(FA,b,c,X ) cannot be solved in polynomial time
either, unless P=NP. In this paper we show, however, that the latter problem can be solved in
quasi-polynomial time.

Theorem 1 Problem GEN(FA,b,c,X ) can be solved in time poly(|input|) + to(log t), where t =
max{n, r, |X |}.

To prove this result, we first bound the number of maximal infeasible vectors for (1) in terms
of the dimension of the system and the number of minimal feasible vectors.

Theorem 2 Suppose that the monotone system (1) is feasible, i.e., Ac ≥ b. Then for any
non-empty set X ⊆ FA,b,c we have

|I(X )∩ I(FA,b,c)| ≤ r
∑
x∈X

p(x), (4)

where p(x) is the number of positive components of x. In particular, |I(X ) ∩ I(FA,b,c)| ≤ rn|X |,
which for X = FA,b,c implies the inequality |I(FA,b,c)| ≤ rn|FA,b,c|.

It should be mentioned that the bounds of Theorem 2 are sharp for r = 1, e.g., for the inequality
x1 + . . . + xn ≥ n in binary variables. For large r, these bounds are accurate up to a factor
poly-logarithmic in r. To see this, let n = 2k and consider the monotone system of r = 2 k

inequalities of the form

xi1 + xi2 + · · ·+ xik ≥ 1, i1 ∈ {1, 2}, i2 ∈ {3, 4}, . . . , ik ∈ {2k− 1, 2k},
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where x = (x1, . . . , xn) ∈ C = {x ∈ Zn | 0 ≤ x ≤ c}. For any positive integral vector c, this
system has 2k maximal infeasible integral vectors and only k minimal feasible integral vectors,
i.e.,

|I(FA,b,c)| = rn

2(log r)2
|FA,b,c|.

Needless to say that in general, |FA,b,c| cannot be bounded by a polynomial in r, n, and
|I(FA,b,c)|. For instance, for n = 2k the system of k inequalities x1 + x2 ≥ 1, x3 + x4 ≥
1,. . . , x2k−1 + x2k ≥ 1 has 2k minimal feasible binary vectors and only k maximal infeasible
binary vectors.

We prove Theorem 2 in Section 2, and then use this theorem in the next section to reduce
problem GEN(FA,b,c,X ) to a natural generalization of the hypergraph dualization problem.
Our generalized dualization problem replaces hypergraphs by collections of integer vectors in a
box.

Theorem 3 GEN(FA,b,c,X ) is polynomial-time reducible to the following problem:

DUAL(C,A,B): Given an integral box C, a family of vectors A ⊆ C, and a collection of maximal
independent elements B ⊆ I(A), either find a new maximal independent element x ∈
I(A) \ B, or prove that B = I(A).

Note that for C = {0, 1}n, problem DUAL(C,A,B) turns into the hypergraph dualization prob-
lem. Other applications of the dualization problem on boxes can be found in [1, 8, 13]. We can
extend the hypergraph dualization algorithms of [9] to problem DUAL(C,A,B) and show that
the latter problem can be solved in quasi-polynomial time:

Theorem 4 Given two sets A, and B ⊆ I(A) in an integral box C = {x ∈ Zn | 0 ≤ x ≤ c},
problem DUAL(C,A,B) can be solved in poly(n,m) + mo(logm) time, where m = |A|+ |B|.

Clearly, Theorem 1 follows from Theorems 3 and 4. The special cases of Theorems 2 and
3 for Boolean systems c = (1, . . . , 1) can be found in [5]. If c is bounded and the number of
non-zero coefficients per inequality in (1) is fixed, the results of [3] also imply that problem
GEN(FA,b,c,X ) can be efficiently solved in parallel.

Let us add finally that even though by Proposition 1 generating all maximal infeasible vectors
for (1) is NP-hard, this problem can be solved efficiently if the number of inequalities in (1) is
fixed. Specifically, for r = const the size of FA,b,c can be bounded by a polynomial in n and
|I(FA,b,c)| and consequently, all elements of I(FA,b,c) can be generated in quasi-polynomial time.
In fact, for r = const the problem of generating I(FA,b,c) as well as the problem of generating
FA,b,c can be solved separately in incremental polynomial time.

Theorem 5 Suppose that the monotone system (1) is nontrivial, i.e., 0 
∈ FA,b,c. Then for any
non-empty subset Y ⊆ I(FA,b,c) we have

∣∣I−1(Y)∩ FA,b,c

∣∣ ≤ (∑
y∈Y

q(y)
)r

, (5)

where I−1(Y) is the set of all minimal integral vectors of the ideal C \ Y− and q(y) is the
number of components yl such that yl < cl. In particular,

∣∣I−1(Y) ∩ FA,b,c

∣∣ ≤ (
n|Y|

)r
, which

for Y = I(FA,b,c) implies |FA,b,c| ≤
(
n|I(FA,b,c)|

)r
.
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Theorem 6 If the number of rows in (1) is bounded, problems GEN(FA,b,c,X ) and GEN

(I(FA,b,c),Y) can be solved in polynomial time.

Due to the space limitation, we only give the proofs of Theorems 2 and 5 in the next sections.
The other proofs can be found in [4].

2 Bounding the number of maximal infeasible vectors

In this section we prove Theorem 2. We first need some notations and definitions.
Let C = {x ∈ Zn | 0 ≤ x ≤ c} be a box and let f : C → {0, 1} be a discrete binary function.

The function f is called monotone if f(x) ≥ f(y) whenever x ≥ y and x, y ∈ C. We denote by
T (f) and F (f) the sets of all true and all false vectors of f , i.e.,

T (f) = {x ∈ C|f(x) = 1} = (min[f ])+, F (f) = {x ∈ C|f(x) = 0} = (max[f ])−,

where min[f ] and max[f ] are the sets of all minimal true and all maximal false vectors of f ,
respectively.

Let σ ∈ Sn be a permutation of the coordinates and let x, y be two n-vectors. We say that
y is a left-shift of x and write y �σ x if the inequalities

k∑
j=1

yσj ≥
k∑

j=1

xσj

hold for all k = 1, . . . , n. A discrete binary function f : C → {0, 1} is called 2-monotonic with
respect to σ if f(y) ≥ f(x) whenever y �σ x and x, y ∈ C. Clearly, y ≥ x implies y �σ x for any
σ ∈ Sn, so that any 2-monotonic function is monotone.

The function f will be called regular if it is 2-monotonic with respect to the identity per-
mutation σ = (1, 2, ..., n). Any 2-monotonic function can be transformed into a regular one by
appropriately re-indexing its variables. To simplify notations, we shall state Lemma 1 below for
regular functions, i.e., we fix σ = (1, 2, ..., n) in this lemma.

For a given subset A ⊆ C let us denote by A∗ all the vectors which are left-shifts of some
vectors of A, i.e., A∗ = {y ∈ C | y � x for some x ∈ A}. Clearly, T (f) = (min[f ])∗ for a regular
function f (in fact, the subfamily of right-most vectors of min[f ] would be enough to use here.)

Given monotone discrete functions f and g, we call g a regular majorant of f , if g(x) ≥ f(x)
for all x ∈ C, and g is regular. Clearly, T (g) ⊇ (min[f ]) ∗ must hold in this case, and the discrete
function h defined by T (h) = (min[f ])∗ is the unique minimal regular majorant of f .

For a vector x ∈ C, and for an index 1 ≤ k ≤ n, let the vectors x(k] and x[k) be defined by

x
(k]
j =

{
xj for j ≤ k,

0 otherwise,

and

x
[k)
j =

{
xj for j ≥ k,

0 otherwise.

Let us denote by e the n-vector of all 1’s, let ej denote the jth unit vector, j = 1, ..., n, and let
p(x) denote the number of positive components of the vector x ∈ C.
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Lemma 1 Given a monotone discrete binary function f : C → {0, 1} such that f 
≡ 0, and a
regular majorant g ≥ f , we have the inequality

|F (g)∩max[f ]| ≤
∑

x∈min[f ]

p(x). (6)

Proof. Let us denote by h the unique minimal regular majorant of f . Then we have F (g) ∩
max[f ] ⊆ F (h) ∩ max[f ], and hence it is enough to show the statement for g = h, i.e. when
T (g) = (min[f ])∗.

For a vector y ∈ C \ {c} let us denote by l = ly the index of the last component which is
less than cl, i.e., l = max{j | yj < cj} ∈ {1, . . . , n}. We claim that for every y ∈ F (h) ∩max[f ]
there exists an x ∈ min[f ] such that

y = x(l−1] + (xl − 1)el + c[l+1), (7)

where l = ly. To see this claim, first observe that y 
= c because y ∈ F (f) and f 
≡ 0. Second,
for any j with yj < cj we have y + ej ∈ T (f), by the definition of a maximal false point. Hence
there exists a minimal true-vector x ∈ min[f ] such that x ≤ y + el for l = ly. We must have
x(l−1] = y(l−1], since if xi < yi for some i < l, then y ≥ x + ei − el � x would hold, i.e. y � x

would follow, implying y ∈ (min[f ])∗ and yielding a contradiction with y ∈ F (h) = C\(min[f ])∗.
Finally, the definition of l = ly implies that y [l+1) = c[l+1). Hence, our claim and the equality
(7) follow.

The above claim implies that

F (h) ∩max[f ] ⊆ {x(l−1] + (xl − 1)el + c[l+1) | x ∈ min[f ], xl > 0},

and hence (6) and thus the lemma follow. �

Lemma 2 Let f : C → {0, 1} be a monotone discrete binary function such that f 
≡ 0 and

x ∈ T (f) ⇒ αx
def= α1x1 + . . .αnxn ≥ β, (8)

where α = (α1, . . . , αn) is a given real vector and β is a real threshold. Then

|{x ∈ C | αx < β} ∩max[f ]| ≤
∑

x∈min[f ]

p(x).

Proof. Suppose that some of the weights α1, . . . , αn are negative, say α1 < 0, . . . , αk < 0 and
α[k+1) ≥ 0. Since αx ≥ β for any x ∈ T (f) and since f is monotone, we have x ∈ T (f) ⇒
α[k+1)x ≥ β − α(k]c(k]. For any x ∈ C we also have {x | αx < β} ⊆ {x | α[k+1)x < β − α(k]c(k]}.
Hence it suffices to prove the lemma for the non-negative weight vector α[k+1) and the threshold
β − α(k]c(k]. In other words, we can assume without loss of generality that the original weight
vector α is non-negative.

Let σ ∈ Sn be a permutation such that ασ1 ≥ ασ2 ≥ · · · ≥ ασn ≥ 0. Then the threshold
function

g(x) =
{

1 if αx ≥ β,

0 otherwise.

is 2-monotonic with respect to σ. By (8), we have g ≥ f for all x ∈ C, i.e., g is a majorant of f .
In addition, F (g) = {x ∈ C | αx < β}, and hence Lemma 2 follows from Lemma 1. �
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We are now ready to show inequality (4) and finish the proof of Theorem 2. Given a non-
empty set X ⊆ FA,b,c, consider the monotone discrete function f : C → {0, 1} defined by the
condition min[f ] = X . Since (1) is monotone, any true vector of f also satisfies (1):

x ∈ T (f) ⇒ ak1x1 + . . .+ aknxn ≥ bk

for all k = 1, . . . , r. In addition, f 
≡ 0 because X 
= ∅. Thus, by Lemma 2 we have the
inequalities

|{x | ak1x1 + . . .+ aknxn < bk} ∩max[f ]| ≤
∑
x∈X

p(x) (9)

for each k = 1, ..., r. Now, from max[f ] = I(X ) we deduce that

I(FA,b,c) ∩ I(X ) ⊆
r⋃

k=1

{x | ak1x1 + . . .+ aknxn < bk} ∩max[f ],

and thus (4) and the theorem follows by (9). �

3 Bounding the number of minimal feasible solutions

To prove inequality (5) of Theorem 5, let us consider an arbitrary non-empty antichain Y ⊆
I(FA,b,c). For any y ∈ I(FA,b,c) we can find an index i = ρ(y) ∈ [r] def= {1, . . . , r} such that y

violates the ith inequality of the system, i.e., a(i)y < bi, where a(i) and bi denote the ith row and
component of A and b, respectively.

Consider a vector x ∈ I−1(Y) ∩ FA,b,c and let xl be a positive component of x. Then there
exists a vector y(l) ∈ Y such that y(l) ≥ x − el. Let i = ρ(y(l)) and assume without loss of
generality that

(a(i))1 ≥ (a(i))2 ≥ . . . ≥ (a(i))n. (10)

We claim that x(l] = z
(l]
(l)
, where

z(l) = y(l] + el. (11)

It follows from y(l) ≥ x − el that z
(l]
(l)

≥ x(l]. If (z(l))l > xl, then (y(l))l ≥ xl, which implies
y(l) ≥ x, a contradiction. Thus (z(l))l = xl holds. Moreover, if (z(l))j > xj for some j < l, then
we have (y(l))j ≥ xj + 1. By (10), a(i)(y(l) − ej + el) < bi, i.e., y(l) − ej + el is infeasible for (1).
However, y(l) − ej + el ≥ x by y(l) ≥ x− el and hence y(l) − ej + el must be feasible. This shows

that x(l] = z
(l]
(l) and consequently leads to the representation

x =
∨

l∈[n]: xl>0

z(l), (12)

where for vectors v, u ∈ C we let v ∨ u denote the component-wise maximum of v and u.
Not all of the vectors z(l) are necessary for this representation. Suppose that ρ(y(l)) =

ρ(y(l′)) = i for some positive components xl and xl′ of x, and l′ < l. Then (12) remains valid if
we drop z(l′), the vector with the smaller index l ′. In other words, by sorting the ith row of A
and then selecting among the vectors y(l) ∈ ρ−1(i) the one with the highest l, we obtain at most
r vectors z(i) = z(li) such that

x =
∨
i∈[r]

z(i). (13)

The latter representation readily implies (5). �
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